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Geneviève Sella† and Emmanuel Duflos∗

∗Centrale Lille, CRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France
†Safran Electronics & Defense, 91344 Massy, France

marcos.borges@safrangroup.com, dominique.maltese@safrangroup.com, philippe.vanheeghe@centralelille.fr,
genevieve.sella@safrangroup.com, emanuel.duflos@centralelille.fr

Abstract—This paper introduces an Expected Risk Reduction
approach to Sensor Management and Multi-Target Tracking in
a surveillance context that implements an IR-Radar sensor suite.
Due to operational restrictions (for instance, electromagnetic
emission constraints), it is assumed that there are more targets
than given sensors are capable of tracking simultaneously when
a radar emission control is applied. It is also presumed that an
incorrect target classification entails a cost that is different for
each target class. The Expected Risk Reduction is then applied
to a simulated IR-Radar sensor management to preserve an
acceptable level of kinematic accuracy on targets of high cost.
Finally, empirical statistical tests show that a track on high
priority targets is maintained better when the aforementioned
approach is introduced than in the case of other conventional
methods, such as the information gain approach or the round
robin assignment.

I. INTRODUCTION

The key to successful target tracking lies in the optimal
extraction of useful information about the target’s state from
the observations in the presence of sensor’s imperfections.
This task is usually realized by maintaining an estimate of the
target’s state over time using algorithms such as a Kalman
filter [1]. Nonetheless, in most cases, due to operational
restrictions, sensors are not able to maintain a satisfactory
estimate of all target states in a given area over a period of
time. Consequently, the targets with poor estimates will be
lost.

In many target tracking scenarios a sensor can be controlled
by changing the position, orientation or motion of the sensor
platform, which may have a significant impact on the quality
of the estimation performance of the tracking system. At times,
the control decisions are driven by a manual intervention, or
by some deterministic control policy, which does not guarantee
the optimality.

The field of view (FOV) restrictions in a pan tilt zoom
(PTZ) camera that attempts to autonomously locate a target of
interest provides a good example of operational limitations.
The PTZ camera needs to zoom in on potential targets to
classify them, at the sacrifice of collecting state measurements
on other targets. Analogous sensor management problems exist
for IR-Radar sensors. Common radar systems use a “pencil

beam” mode and steering capabilities (Electronic Scanning
Radar) with the adequate resolution to both classify and track
targets of interest.

In scenarios embracing a large number of targets, an au-
tonomous sensor management is typically employed to track
as many targets as possible. This usually involves scheduling
the sensor to measure the target track estimate, characterized
by the highest level of uncertainty of the true target state.
The uncertainty reduction is commonly obtained using the
Kullback Leibler divergence, the Fisher information gain, or
the Renyi divergence [2]–[4].

When only a subset of the total targets can be successfully
tracked, the prioritization of target tracks is crucial and cannot
be realized by means of information gain-based metrics. To
overcome the limitations on existing metrics, a statistical risk
model used to calculate an expected cost as a metric, has
gained interest in recent research [4], [5].

This paper takes into consideration a surveillance context
with electromagnetic emission constraints. In that case, there
are too many maneuverable targets to be tracked by the IR-
Radar multisensory system. A significant amount of research
in this field has been conducted [6]–[10]. It is assumed in
this paper that only a subset of all total targets needs to
be tracked, and that initially all the target kinematic states
are known (targets tracks may have been provided by an
upper level tactical module). Besides, their classification states
may be unknown. Finally, it is also supposed that there is a
cost resulting from an incorrect decision on a target’s true
classification.

In this paper, the task of a sensor manager is to decide
which targets the sensor should focus on in order to reduce
the expected cost of an incorrect classification decision. Thus,
the cost value and the event of losing a target track are strictly
correlated. Therefore, the expected cost incorporates both the
track kinematic and the classification estimate.

Section II presents the models used for maneuvering target
tracking and the classification state. Section III highlights the
calculation of the expected cost and the amount of its reduction
according to new measurements. The results of experiments
applying this specific metric are shown in details in Section IV.



II. KINEMATIC AND CLASSIFICATION STATE ESTIMATION

For each target, there is information about kinematic true
state and its classification, and both are represented by X as
follows:

X = [Xkinematic Xclassification]

The specific values of X are discussed in the following
subsections.

A. Kinematic State Estimation

A Kalman filter is often employed in kinematic measure-
ments to estimate the position, velocity, and acceleration of
a target [11], [12]. The kinematic and observation models in
target tracking can be formulated as follows:

xk+1 = fk(xk) + vk

zk = hk(xk) + wk

where xk is the target state at the discrete time k, zk is
the observation, vk and wk are process and measurement
noise respectively, while fk and hk are some time-varying
functions. Usually, estimates of these true target states are
updated by a standard extended Kalman filter (EKF) [12].
Given the latest estimate xk|k and latest state error covariance
Pk|k, the prediction is such as:

xk+1|k = fk(xk|k) (1)

Pk+1|k = FkPk|kF
T
k +GkQkG

T
k (2)

The update to these estimates given the measurement zk+1

at time k + 1 is:

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +Rk+1)−1 (3)

xk+1|k+1 = xk+1|k +Kk+1(zk+1 − hk(xk+1|k)) (4)
Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (5)

where Fk and Hk terms are the local linearization of the
functions fk and hk+1 as follows:

Fk =
∂fk(x)

∂x

∣∣∣∣
x=xk|k

Hk+1 =
∂hk(xk+1)

∂x

∣∣∣∣
x=xk+1|k

In this paper, both targets and sensors are defined in a
three dimensional space. Consequently, the true kinematic
state consists of a three dimensional position and velocity:

Xkinematic =


x
ẋ
y
ẏ
z
ż



IR measurements basically provide angular information, that
is to say an azimuth angle θ and an elevation angle φ, whereas
radar measurements consist of an azimuth angle θ, an elevation
angle φ, a range r and range rate ṙ as shown hereafter.

ZIR =

[
θ
φ

]

ZRadar =


θ
φ
r
ṙ


where:

θ = arctan
(y
x

)
φ = arctan

(
z√

x2 + y2

)

r =
√
x2 + y2 + z2

ṙ =
(xẋ+ yẏ + zż)

r

To avoid singularities in the linearization process, measure-
ments are converted to Cartesian coordinates. The linearization
on the noise is achieved as shown by Bar-Shalom and Li [13].
In this way, measurements are represented as:

ZCartesianIR =

 x
y
z



ZCartesianRadar =


x
y
z
ṙ


Where:

x = r cos(φ) cos(θ)

y = r cos(φ) sin(θ)

z = r sin(φ)

It is assumed that the initial position of targets is known. The
matrix H is given as shown below. Note that it corresponds
here to a linear filter.

H =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


The measurement error covariance matrix R is defined as

follows:

R =

 Σxx Σxy Σxz
Σyx Σyy Σyz
Σzx Σzy Σzz





The subsequent paragraph demonstrates how to calculate
the matrix R using linearization. Measures θm, φm and rm
are defined with respect to true θ, φ and r data as hereafter:

θm = θ + θ̃

φm = φ+ φ̃

rm = r + r̃

where errors θ̃, φ̃ and r̃ are assumed to be independent with
zero mean and standard deviations σθ, σφ, σr respectively.

Denoting (x, y, z) the true Cartesian position and using first
order terms of the Taylor series expansion of the Cartesian
measurements at (θm, φm, rm), i.e., applying linearization,
yields the Cartesian coordinate errors as hereafter:

xm − x ≈ r̃ cos(φ) cos(θ)− φ̃rm sin(θ) cos(θ)

− θ̃rm cos(φ) sin(θ)

ym − y ≈ r̃ cos(φ) sin(θ)− φ̃rm sin(φ) sin(θ)

+ θ̃rm cos(φ) cos(θ)

zm − z ≈ r̃ sin(φ) + φ̃rm cos(φ)

The mean of the errors, as given by the above equations
is zero. Consequently, the elements of the corresponding
covariance matrix R are:

Σxx = σ2
r cos2(φ) cos2(θ) + σ2

φr
2 sin(φ) cos(θ)

+ σ2
θr

2 cos2(φ) sin2(θ)

Σyy = σ2
r cos2(φ) sin2(θ) + σ2

φr
2 sin2(φ) sin2(θ)

+ σ2
θr

2 cos2(φ) cos2(θ)

Σzz = σ2
r sin2(φ) + σ2

φr
2 cos2(φ)

Σxy = σ2
r cos2(φ) cos(θ) sin(θ) + σ2

φr
2 sin2(φ) cos(θ) sin(θ)

− σ2
θr

2 cos2(φ) cos(θ) sin(θ)

Σxz = σ2
r cos(φ) sin(φ) cos(θ)− σ2

φr
2 cos(φ) sin(φ) cos(θ)

Σyz = σ2
r cos(φ) sin(φ) sin(θ)− σ2

φr
2 cos(φ) sin(φ) sin(θ)

In this paper, we set σ2
r = 1 m2 and σ2

θ = σ2
φ =

3.0462× 10−4 rad2 (i.e., the standard deviation of 1 degree).
The process noise covariance matrix Q is given by:

Q = Φs



T 4
/4 T 3

/2 0 0 0 0
T 3
/2 T 2 0 0 0 0
0 0 T 4

/4 T 3
/2 0 0

0 0 T 3
/2 T 2 0 0

0 0 0 0 T 4
/4 T 3

/2
0 0 0 0 T 3

/2 T 2



In this paper, the scan rate of IR sensor is TIR = 1 second,
while for Radar sensor TRadar = 2 seconds, and Φs = 5 m/s2.
Finally the state transition model F is a basic constant velocity
model:

F =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1


B. Classification State Estimation

The classification state estimate is formulated hereafter. As-
suming there are n possible classification states for each target,
J is a random variable that stands for the true classification
with support {j | j ∈ [1, n]}.

Xclassification =

 P (J = 1)
...

P (J = n)


The classification probability is updated by applying the

Bayes’ theorem as shown below. The classification measure-
ment is represented by a discrete random variable M with
support {m |m ∈ [1, n]}.

P ′(J = i) , P (J = i |M = m)

=
P (M = m | J = i)P (J = i)

P (M = m)

=
P (M = m | J = i)P (J = i)∑n
r=1 P (M = m | J = r)P (J = r)

(6)

where P ′ indicates the posterior probability. To simplify
classification notations in this paper, measurement likelihoods
P (M = m | J = i) are represented by a normalized confusion
matrix CC.

CC =


1 . . . n

1 P (M = 1 | J = 1) . . . P (M = 1 | J = n)
...

...
. . .

...
n P (M = n | J = 1) . . . P (M = n | J = n)



III. STATISTICAL RISK AND KL DIVERGENCE

A. Type 1 Error Cost

There is a decision to be made on target classification. An
incorrect decision results in a cost that can be interpreted as a
cost of a lost target of interest, or a loss of sensor resources.
In this paper, an incorrect decision is tagged as being a type
1 error during statistical hypothesis testing. A type 1 error
corresponds to an incorrect rejection of a true null hypothesis,
and occurs when H0 is true yet rejected.



The matrix CM1, as defined below, contains the cost
of committing a type 1 error. Each column represents the
true classification, and each row stands for the decision on
classification. The diagonal is zero, since there is no cost when
the correct decision takes place.

CM1 =


1 2 . . . n

1 0 c11 . . . c1n
2 c11 0 . . . c1n
...

...
...

. . .
...

n c11 c12 . . . 0


B. The Expected Cost for Making a Type 1 Error

The expected cost of a type 1 error on target classification
is influenced by many factors, including the current classifica-
tion, the probability of the actual target being lost (or not), and
the decision about this classification. The above-mentioned
factors are modeled by random variables. The expected cost is
obtained by applying the law of total expectation, as detailed
below.

Let C1 be a discrete random variable representing the cost
of the type 1 error. The cost matrix CM1 contains entries
{c1ij} where each c1ij entry occurs when a decision falsely
rejects H0, resulting in a type 1 error. J corresponds to a
categorical random variable representing the current classi-
fication, {j|j ∈ [1, n]}. I is a categorical random variable
denoting the decision on classification, {i|i ∈ [1, n]}. Î is
a discrete, uniformly distributed, random variable denoting
the classification decision on a reacquired target after its lost,
{i|i ∈ [1, n]}. L is a Bernoulli random variable representing
whether or not the actual target is lost, where the event space
is {0, 1}. Using the law of the iterated expectation for each
random variable that determines the cost, we describe the
expected cost by:

Ec1 (C1|I = i)

= Ec1 (C1|I = i, L = 1, J = i)P (L = 1)P (J = i)

+ Ec1 (C1|I = i, L = 1, J 6= i)P (L = 1)P (J 6= i)

+ Ec1
(C1|I = i, L = 0, J = i)P (L = 0)P (J = i)

+ Ec1
(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

= Ec1
(C1|I = i, L = 1, J = i)P (L = 1)P (J = i)

+ Ec1
(C1|I = i, L = 1, J 6= i)P (L = 1)P (J 6= i)

+ 0

+ Ec1
(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

(7)

In the above summation, the third term becomes zero since
the correct decision is made and the target is not lost. If,
however, the situation was the opposite and the target was
lost, at this point, it would be necessary to consider the case in
which the target would be reacquired. Note that regardless of
the classifier’s accuracy, it is possible that the acquired target
is not the original one. Thus (7) would be as follows:

Ec1
(C1|I = i)

= Ec1
(C1|I = i, L = 1, J = i, Î = i)P (L = 1)P (J = i)P (Î = i)

+ Ec1
(C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

+ Ec1
(C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

+ Ec1 (C1|I = i, L = 1, J 6= i, Î 6= i)P (L = 1)P (J 6= i)P (Î 6= i)

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

= 0

+ Ec1
(C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

+ Ec1 (C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

+ 0

+ Ec1
(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

(8)

In the above summation, the first term becomes zero once
the correct decision has been made, even though the track
had been lost and later reacquired. Hence, there is no cost. In
the second term, the cost is observed when the target is lost
and reacquired and a wrong decision about its classification
takes place. In the third term, the cost is present and the target
classification decision is never correct, even after the target
has been lost and reacquired. The fourth term of summation
represents the case in which the classification decision is
incorrect (i.e. I = i and J 6= i), and the reacquired target
is characterized by a different classification (i.e. Î 6= i and
J 6= i). Consequently, the cost is zero, because it does not
exist with regard to the initial decision of I = i before the
track had been lost. The last term illustrates the cost stemming
from a wrong target classification, since the target is never lost.
These terms are related to specific rows and columns of the
cost matrix CM1 as shown below:

Ec1 (C1|I = i)

= Ec1 (C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

+ Ec1
(C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

+ Ec1 (C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

=
∑
c1ij

c1ij

(
P (C1 = c1ij |I = i, L = 1, J = i, Î 6= i)

P (L = 1)P (J = i)P (Î 6= i)
)

+
∑
c1ij

c1ij

(
P (C1 = c1ij |I = i, L = 1, J 6= i, Î = i)

P (L = 1)P (J 6= i)P (Î = i)
)

+
∑
c1ij

c1ijP (C1 = c1ij |I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

=
∑
r∈I

c1riP (L = 1)P (J = i)P (Î 6= i) ∀r 6= i

+
∑
r∈J

c1irP (L = 1)P (J = r)P (Î = i) ∀r 6= i

+
∑
r∈J

c1irP (L = 0)P (J = r) ∀r 6= i

(9)



Note that the first term in (9) is a function of the rows of
the cost matrix over column J = i. This implies an incorrect
decision after the target was reacquired. Finally, assuming Î
being uniformly distributed, and Plost the probability of the
actual target to be lost, Equation (9) can be rewritten as below:

Ec1(C1|I = i) =
∑
r∈I

cri P (J = i)Plost
n− 1

n
∀r 6= i

+
∑
r∈J

cir P (J = r)Plost
1

n
∀r 6= i

+
∑
r∈J

cir P (J = r)(1− Plost) ∀r 6= i

(10)

The probability Plost is assumed to be the portion of a
multivariate normal distribution N (x̂k, P̂k) not contained in
the sensor’s field of view when the sensor’s aim-point is
centered on kinematic state of the target (x̂ is the mean state
estimate and P̂ is the state estimate covariance).

C. The Expected Risk Reduction

When a decision on a target classification is made, the
goal is to minimize the risk. In this way, the minimum
expected cost is chosen among all possible decisions for
each track classification. The risk always decreases with new
measurements and reduces the probability of the target being
misclassified or lost [4], [5], [14].

The expected risk reduction (ERR) is achieved using the
minimum expected cost presented in (10). Note that probabil-
ities in this equation change as measurements are accumulated
by a sensor. It is assumed that probabilities change as a
Bayesian update. Denoting R as the minimum cost before a
measurement update, we can calculate the ERR as:

Ri , Ec1(C1|I = i) (11)
R = min

i
{Ri} (12)

Assuming that the posterior probabilities are denoted by
P ′lost and P ′(J = i), the risk using these updated probabilities
is:

R′ = min
i
{R′i}

= min
i



∑
r∈I

cri P
′(J = i)P ′lost

n−1
n

+
∑
r∈J

cir P
′(J = r)P ′lost

1
n

+
∑
r∈J

cir P
′(J = r)(1− P ′lost)


∀r 6= i

(13)

When the classification probability is updated through the
direct application of Bayes’ theorem, as detailed in (6), then
(13) can be rewritten as follows:

R′ = min
i
{R′i}

= min
i



∑
r∈I

cri
P (M=m|J=i)P (J=i)

P (M=m)
P ′lost

n−1
n

+
∑
r∈J

cir
P (M=m|J=r)P (J=r)

P (M=m)
P ′lost

1
n

+
∑
r∈J

cir
P (M=m|J=r)P (J=r)

P (M=m)
(1− P ′lost)


(14)

Since any classification measurement M is possible, it
is necessary to calculate an additional expectation over all
possible measurements. The expectation over all possible
measurements 〈R′〉 is calculated as:

〈
R′
〉

=
∑
m∈M

R′ P (M = m)

=
∑
m∈M

min
i



∑
r∈I

cri (P (M = m|J = i)P (J = i)

P ′lost
n−1
n

)
∀r 6= i

+
∑
r∈J

cir (P (M = m|J = r)P (J = r)

P ′lost
1
n

)
∀r 6= i

+
∑
r∈J

cir (P (M = m|J = r)P (J = r)

(1− P ′lost)
)
∀r 6= i


(15)

Taking into consideration that the expected cost decreases
in value with new measures [5], [14], ERR is given by:

ERR = R− 〈R′〉 (16)

D. Kullback-Leibler Divergence
The Kullback-Leibler Divergence (KL divergence) is a mea-

sure of the similarity between two probability distributions. It
is conventionally defined for two probability distributions P
and Q.

Specifically, the KL divergence of Q from P , denoted
DKL(P ||Q), is the amount of information lost when Q is
used to approximate P . When P and Q are discrete probability
distributions, KL divergence is defined as in [2]:

DKL(P ||Q) =
∑
i

Pi log
Pi
Qi

(17)

In this paper, to calculate the KL divergence we use two
multivariate normal distributions, with means µ1, µ2 and co-
variance matrices Σ1, Σ2. The two distributions have the same
dimension, k. In this case, the KL divergence corresponds to:

DKL(N1||N2) =
1

2

(
(µ2 − µ1)TΣ−12 (µ2 − µ1)− k

+ trace(Σ−12 Σ1) + log

(
det Σ2

det Σ1

))
(18)



IV. EXPERIMENTS

In order to evaluate the performance of the sensor manage-
ment processing ERR metric, we run a set of two scenarios.
Each of them concerns a 300-second duration. The first sce-
nario involves 10 maneuvering targets, 4 of which are targets
of interest (targets 2, 3, 8, and 10), and consequently should
be tracked. The second scenario embraces 15 maneuvering
targets, 4 of which are targets of interest (targets 3, 5, 12, and
15).

The sensor suite combines an Infrared Search and Track
(IRST) and Radar. Both of them are located at the reference
position (x = y = z = 0). Every second the IR sensor
obtains measurements of all targets while Radar sensor takes
a measurement of only one target every 2 seconds (using
electromagnetics emission constraints). Thus, every 2 seconds
a sensor management algorithm based on the risk metrics
decides which target track is to be estimated using the Radar
sensor report. The sensor management used in this paper is
performed through contact reports combining IRST and Radar
sensors.

Radar sensor field of view (FOV) is a 500 m2 region cen-
tered on the estimated track position. The target is considered
lost if the ground truth position is outside of this FOV. In
such a case, a state estimate is very poor and no further
measurements are made on targets.

Several simulations using the Monte Carlo method are per-
formed. As for classification of targets, two types of tests were
run: one where all target classifications are initially unknown
and another one where all target classifications are initially
known. For all tests, each target starts with a high accuracy
kinematic track. Thus, tasks of the IR-Radar are to correctly
classify, maintain a track on, and allocate measurements to
the targets of interest. The ground truth over 300 seconds for
scenario 1 and 2 is shown in Figure 1 and Figure 2.

Fig. 1. Scenario 1: targets of interest (in red), targets not of interest (in green),
and the sensor location (cyan triangle).

Fig. 2. Scenario 2: targets of interest (in red), targets not of interest (in green),
and the sensor location (cyan triangle).

For comparison purposes, the expected risk reduction ap-
proach was contrasted with three different sensor manage-
ment methods involving the Kullback-Leibler divergence, the
random assignment, and the round robin assignment; in the
latter, the targets are repeatedly selected in a specific order.
One thousand Monte Carlo runs were conducted using each
method. The track error was calculated between the ground
truth position and the estimate for all tracks. For each analysis
below, the 5% of the highest and the lowest error measure-
ments were discarded to remove outliers.

A. Two Classification

For evaluating ERR metric, a binary classification state is
considered where the target to be tracked is either a target of
interest (J = 1) or a target of non interest (J = 2). The binary
classification measurement M has support {m|m ∈ [1, 2]}.
Cost matrix CM1 and confusion matrix CC are:

CM1 =

( 1 2

1 0 1
2 30 0

)
CC =

( 1 2

1 0.8 0.2
2 0.2 0.8

)
1) Initial target classifications are known: In this case, all

target classifications are initially known. Table I presents the
resulting median error on each target for each sensor manager
method in scenario 1.

For all targets of interest, the ERR approach maintains the
value of an acceptable error that is lower when compared to
others methods. The sensor manager using ERR maintains a
track on targets 2, 3, 8, and 10 with the error’s value lower than
sensor’s FOV radius (250m). The Kullback-Leibler divergence
has poor performance for target 3 and 10. The random method
performs very poorly and the round robin method has poor
performance for target 3.



TABLE I
THE MEDIAN POSITION ERROR IN METERS FOR SCENARIO 1. TARGETS OF

INTEREST ARE 2, 3, 8, AND 10.

Class Target ERR KLdiv Random Round Robin
2 1 8949 8949 7943 107
1 2 27 122 1976 112
1 3 40 7191 5875 6215
2 4 4900 29 2365 46
2 5 7777 36 4605 62
2 6 6053 6053 3500 85
2 7 5778 5778 25001 88
1 8 31 40 3765 91
2 9 7848 7848 7600 120
1 10 41 6867 4218 105

When using ERR, more measurements can be assigned to
targets 2, 3, 8, and 10, since they are targets of interest. Thus,
tracking performance is improved yet the track quality for
targets of no interest is diminished.

To examine more accurately the results presented by met-
rics, it is necessary to notice that the average track error is
less than 250 meters and so, still within the sensor’s FOV. If
the average error on targets 2, 3, 8, and 10 is greater than
250 meters, it means that the sensor manager method was
ineffective on average.

Table II focuses on p-values for a Student t-test (H0: true
mean error is ≤ 250 meters). We can observe that ERR
approach is the only method that effectively maintains track
on all of targets of interest.

TABLE II
P-VALUES FOR H0 : RESIDUAL ERROR ≤ 250 METERS

Target ERR KLdiv Random Round Robin
2 1 1 0 1
3 1 0 0 0
8 1 1 0 1
10 1 0 0 1

Table III represents the resulting median error on each target
for each sensor manager method in scenario 2. For all targets
of interest, the ERR approach maintains track on targets 3, 5,
12, and 15. The error does not exceed sensor’s FOV radius
(250m). The Kullback-Leibler divergence performs well only
for target 15. The random method performs very poorly, and
the round robin method performs well only for target 5.

Table IV provides p-values for a Student t-test (H0: true
mean error is ≤ 250 meters).

2) Initial target classifications are unknown: In this case,
all target classifications are initially unknown. Table V pro-
vides the resulting median error on each target for each sensor
manager method in scenario 1. For all targets of interest, the
ERR approach and the Kullback-Leibler divergence perform
well for targets 2 and 8. The random method performs very
poorly, and the round robin method only fails to track target 3.

Table VI shows the resulting median error on each target
for each sensor manager method in scenario 2 where all target
classifications are initially unknown. For all targets of interest,
the ERR approach maintains tracks on targets 5 and 15 with

TABLE III
THE MEDIAN POSITION ERROR IN METERS FOR SCENARIO 2. TARGETS OF

INTEREST ARE 3, 5, 12, AND 15.

Class Target ERR KLdiv Random Round Robin
2 1 8949 8949 7880 8949
2 2 4965 4965 2826 132
1 3 226 7191 6336 6220
2 4 4900 44 3165 56
1 5 33 7777 5571 72
2 6 6053 6053 4274 104
2 7 5778 5778 6617 101
2 8 5497 68 4361 102
2 9 7848 7848 7416 115
2 10 6867 6867 5154 114
2 11 4841 4841 3539 105
1 12 39 7102 5280 7102
2 13 7657 32 5694 7657
2 14 6913 6913 4733 124
1 15 34 35 4992 6690

TABLE IV
P-VALUES FOR H0 : RESIDUAL ERROR ≤ 250 METERS

Target ERR KLdiv Random Round Robin
3 1 0 0 0
5 1 0 0 1

12 1 0 0 0
15 1 1 0 0

TABLE V
THE MEDIAN POSITION ERROR IN METERS FOR SCENARIO 1. TARGETS OF

INTEREST: 2, 3, 8, AND 10. ALL TARGET CLASSIFICATIONS ARE
INITIALLY UNKNOWN.

Class Target ERR KLdiv Random Round Robin
2 1 8487 8949 8029 107
1 2 30 122 1980 112
1 3 7191 7191 6082 6216
2 4 1578 29 2440 46
2 5 1748 36 4369 62
2 6 1405 6053 3382 85
2 7 2539 5778 22672 88
1 8 34 40 3703 91
2 9 2749 7848 7981 120
1 10 3269 6867 4468 105

the error not exceeding the sensor’s FOV radius (250m). The
Kullback-Leibler divergence performs well only for target 15.
The random method performs very poorly, and the round robin
method performs well only for target 5.

B. Three Classifications

In order to evaluate the ERR metric, we also consider a
tertiary classification state where the target being tracked is
either a target of high interest (J = 1), of medium interest
(J = 2), or of low interest (J = 3). The tertiary classification
measurement M has support {m|m ∈ [1, 2, 3]}. Cost matrix
CM1 and confusion matrix CC are:

CM1 =


1 2 3

1 0 20 1
2 30 0 1
3 30 20 0

 CC =


1 2 3

1 0.8 0.1 0.1
2 0.1 0.8 0.1
3 0.1 0.1 0.8





TABLE VI
MEDIAN POSITION ERROR IN METERS FOR SCENARIO 2. TARGETS OF

INTEREST ARE 3, 5, 12, AND 15. INITIALLY, ALL TARGET
CLASSIFICATIONS ARE UNKNOWN.

Class Target ERR KLdiv Random Round Robin
2 1 8597 8949 7880 8949
2 2 637 4965 2826 132
1 3 7191 7191 6336 6220
2 4 571 44 3165 56
1 5 54 7777 5571 72
2 6 5676 6053 4274 104
2 7 3825 5778 6617 101
2 8 1057 68 4361 102
2 9 7848 7848 7416 115
2 10 6867 6867 5154 114
2 11 1516 4841 3539 105
1 12 7102 7102 5280 7102
2 13 2539 32 5694 7657
2 14 3832 6913 4733 124
1 15 138 35 4992 6690

Initially, all target classifications are unknown. Table VII
shows the resulting median error on each target for each
sensor manager method for scenario 1. For all targets of
interest, the ERR approach performs well only for target 2.
The Kullback-Leibler divergence performs well for targets
2 and 8. The random method performs very poorly, and
the round robin method only fails to track target 3. While
comparing Table V and VII, we can observe that the ERR
method improves results in the tertiary classification on target
10 (hight interest) despite the opposite impact on targets 2 and
8 (medium interest).

TABLE VII
THE MEDIAN POSITION ERROR IN METERS FOR SCENARIO 1. THERE ARE
THE FOLLOWING TARGETS OF INTEREST: 2, 8, AND 10. INITIALLY, ALL

TARGET CLASSIFICATIONS ARE UNKNOWN.

Class Target ERR KLdiv Random Round Robin
3 1 8704 8949 7909 107
2 2 47 122 2182 112
3 3 7191 7191 5543 6220
3 4 2112 29 2228 46
3 5 1994 36 3600 62
3 6 4193 6053 3346 85
3 7 5660 5778 10838 88
2 8 293 40 4290 91
3 9 2716 7848 7616 120
1 10 1825 6867 3587 105

Table VIII illustrates the resulting median error on each
target for each sensor manager method in scenario 2. For all
targets of interest, the ERR approach performs well only in
the case of target 5, and shows that the value of the average
error on targets 12 and 15 is lower than when other methods
are employed, but higher than the sensor’s FOV. The Kullback-
Leibler divergence performs well only for target 8. The random
method performs very poorly, and the round robin method can
only track target 5.

If we compare Table VI and VIII, we can notice improved
results for the tertiary classification of tracks on target 12 when
the ERR method is applied. As for tracks on targets 5 and 15
(medium interest), the outcomes are less satisfactory. However,

TABLE VIII
THE MEDIAN POSITION ERROR IN METERS FOR SCENARIO 2. THERE ARE
THE FOLLOWING TARGETS OF INTEREST: 5, 12, AND 15. INITIALLY, ALL

TARGET CLASSIFICATIONS ARE UNKNOWN.

Class Target ERR KLdiv Random Round Robin
3 1 8251 8949 7823 8949
3 2 2174 4965 2495 132
3 3 7191 7191 6205 6211
3 4 1890 44 2765 56
2 5 157 7777 5230 72
3 6 6053 6053 4324 104
3 7 5778 5778 22830 101
3 8 2438 67 4193 102
3 9 7848 7848 7209 115
3 10 6867 6867 5104 114
3 11 3727 4841 3656 105
1 12 2095 7102 5119 7102
3 13 7657 32 5950 7657
3 14 6913 6913 4822 124
2 15 308 35 5208 6690

the value of an average error on target 12 turns out to be higher
than sensor’s FOV.

V. CONCLUSION

This paper introduces the Expected Risk Reduction ap-
proach to sensor management in the case of an IR-Radar
sensor suite. The ERR is based on the expected cost of an
incorrect decision on a target’s classification. This cost was
then conditioned on the event of losing a target track which
allowed for achieving the combination of classification and
kinematic uncertainty in the same metric. When all target
classifications were initially known, it has been proved that
the ERR approach can maintain a track on targets of interest
when it is not possible for a single sensor to track all targets
in the environment. In the case where all target classifications
were initially unknown, the ERR approach did not perform
very well. Nevertheless, it is clear that there was a significant
reduction of the value of the average error for targets of
interest, which, however, remained higher than sensor’s FOV.
The ERR turns out to be effective when it comes to the IR-
radar case, specifically when the initial classification of targets
are known. The round robin method has a good performance
when the number of targets is not too high, however, it never
prioritizes tracking targets of interest.
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