Controllability and optimal control of the transport equation with a localized vector field

Abstract : We study controllability of a Partial Differential Equation of transport type, that arises in crowd models. We are interested in controlling such system with a control being a Lipschitz vector field on a fixed control set ω. We prove that, for each initial and final configuration, one can steer one to another with such class of controls only if the uncontrolled dynamics allows to cross the control set ω. We also prove a minimal time result for such systems. We show that the minimal time to steer one initial configuration to another is related to the condition of having enough mass in ω to feed the desired final configuration.
Type de document :
Communication dans un congrès
25th Mediterranean Conference on Control and Automation (MED), Jul 2017, Valletta, Malta. IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, Mediterranean Conference on Control and Automation, pp.74 - 79, 2017, 2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED). 〈10.1109/MED.2017.7984098〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01474551
Contributeur : Michel Duprez <>
Soumis le : vendredi 27 octobre 2017 - 12:09:16
Dernière modification le : mercredi 12 septembre 2018 - 01:27:19

Fichiers

Identifiants

Citation

Michel Duprez, Morgan Morancey, Francesco Rossi. Controllability and optimal control of the transport equation with a localized vector field. 25th Mediterranean Conference on Control and Automation (MED), Jul 2017, Valletta, Malta. IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, Mediterranean Conference on Control and Automation, pp.74 - 79, 2017, 2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED). 〈10.1109/MED.2017.7984098〉. 〈hal-01474551v3〉

Partager

Métriques

Consultations de la notice

279

Téléchargements de fichiers

21