Controllability and optimal control of the transport equation with a localized vector field

Abstract : We study controllability of a Partial Differential Equation of transport type, that arises in crowd models. We are interested in controlling such system with a control being a Lipschitz vector field on a fixed control set ω. We prove that, for each initial and final configuration, one can steer one to another with such class of controls only if the uncontrolled dynamics allows to cross the control set ω. We also prove a minimal time result for such systems. We show that the minimal time to steer one initial configuration to another is related to the condition of having enough mass in ω to feed the desired final configuration.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01474551
Contributeur : Michel Duprez <>
Soumis le : mercredi 22 mars 2017 - 18:50:55
Dernière modification le : vendredi 24 mars 2017 - 01:07:04
Document(s) archivé(s) le : vendredi 23 juin 2017 - 12:21:01

Fichiers

MEDconf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01474551, version 2
  • ARXIV : 1702.07272

Citation

Michel Duprez, Francesco Rossi, Morgan Morancey. Controllability and optimal control of the transport equation with a localized vector field. 2017. 〈hal-01474551v2〉

Partager

Métriques

Consultations de
la notice

170

Téléchargements du document

48