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MATHER DISCREPANCY AS AN EMBEDDING DIMENSION IN
THE SPACE OF ARCS

HUSSEIN MOURTADA, ANA J. REGUERA

Abstract. Let X be a variety over a field k and let X, be its space of arcs. We
study the embedding dimension of the complete local ring A= (’);;E where Pg
is the stable point defined by a divisorial valuation vg on X. Assuming char k& = 0,
we prove that embdim A = EE + 1 where /k\E is the Mather discrepancy of X
with respect to vg. We also obtain that dim A has as lower bound the Mather-
Jacobian log-discrepancy of X with respect to vg. For X normal and complete
intersection, we prove as a consequence that points Pg of codimension one in X
have discrepancy kg < 0.1

1. INTRODUCTION

In 1968, J. Nash introduced the space of arcs X, of an algebraic variety X in
order to study the singularities of X. More precisely, he wanted to understand what
the various resolutions of singularities have in common; his work being established
just after the proof of resolution of singularities in characteristic zero by H. Hiron-
aka. Nash’s work was spread by H. Hironaka and later by M. Lejeune-Jalabert.

The development of motivic integration gave powerful tools for studying finite-
ness properties in the (not of finite type) k-scheme X.,. Two main ideas in J.
Denef and F. Loeser’s article [DL] appear in this work: the change of variables for-
mula in motivic integration and the stability property, which had already appeared
in Kolchin’s work on differential algebra. More precisely, based on this stability
property, in [Rel] and [Re2] (see also [Re3]) we introduced stable points of X,
which are certain fat points of finite codimension in X,,. We proved that, if P is
stable then the complete local ring (D/X:p is a Noetherian ring. From this result we
proved a Curve Selection Lemma ending at stable points of X ... Stable points form
a natural framework whenever induced morphisms 7., : Yoo — X are consider,
where 1: Y — X is of finite type and locally dominant ([Re2] and [Re3]).

Mori theory is also related to the study of the space of arcs. The recent work
of T. de Fernex and R. Docampo [dFD] (see also [dF2]) has confirmed this rela-
tionship. In fact, a divisorial valuation v = v on X defines a stable point Pg on
X and, assuming the existence of a resolution of singularities and applying the
previous Curve Selection Lemma, we can characterize dimOx_ p, = 1 in terms
of a property of lifting wedges centered at Pr ([Re3]). Then, de Fernex and Do-
campo’s result, which gives an approach to Nash’s project, can be understood as
follows: assuming char & = 0, we have that if vg is a terminal valuation then
dimOx_  p, = dim O;;E = 1. On the other hand, several examples of a nor-
mal hypersurface X and an essential valuation vg for which the property of lifting
wedges centered at Pg does not hold have been studied ([IK], [dF1], [JK]). One of

1Keywords: Space of arcs, embedding dimension, Mather discrepancy.
MSC: 13A18, 13H99, 14B05, 14E15, 14J17.
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the key points in producing such examples is to require kg > 1 where kg is the dis-
crepancy of X with respect to /. This suggests a connection between dim Ox__ p,,

—_—
or dim Ox__ p,, and geometric invariants of (X, vg).

Understanding the algebraic properties of the rings (9/)(;0\ porof Ox_ p, P being
stable, is an important problem; it leads towards the study nonconstant families
of arcs in X,. In particular, one of our main goals is to compute dimOx_ p. In
general, for any stable point P, an upper bound on the dimension of Ox__ p fol-
lows from the stability property: Expressed in terms of cylinders, stable points are
precisely the generic points of the irreducible cylinders in X, and dimOx__ p is
bounded from above by the codimension as cylinder of the closure of P in X, (see
(4) in 2.3). If X is nonsingular at the center of P in X, then the ring Ox__ p is
regular and the dimension is equal to its upper bound, but in general the inequality
in the bound is strict. From the change of variables formula in motivic integration
it follows that the codimension as cylinder of the closure Ng of Pg is equal to %E +1
where EE is the Mather discrepancy of X with respect to E, introduced in [dFI]

(see also [I]). Hence dim Ox_ p, < kp+1.

In this article we study the embedding dimension of O(x_),.,,ps- We prove that,
assuming char k = 0, we have

(1) embdim Ox__ p, = embdim O(x_,.. p, = kp+1

that is, the embedding dimension of O(x_)..,.p; 1S equal to the codimension as
cylinder of Ng. Moreover, we describe explicitly a minimal system of coordinates
of (Xoo)red at Pg. Applying this, we obtain the following lower bound:

(2) dim Ox_ p, > ki — vp(Jacy) + 1

where Jacx is the Jacobian ideal of X. In particular, if X is normal and complete
intersection then dim Ox_ p, > kg + 1. Hence, in this case, dimOx__ p, = 1, or

dim O@E =1, implies kg < 0.

The graded algebra associated to the divisorial valuation vg plays an essential
role in this study. The natural coordinates of (X )rea at Pg are obtained by spe-
cialization techniques to the graded algebra of vg adapted from B. Teissier ([ZT],
[GT], [Te]). These techniques are applied to a general projection X — A¢ and the
induced valuation on A?. Such coordinates are introduced in [Re4]. In section 3 of
this paper we prove that they also provide minimal coordinates of (X )red at Pg
and we conclude (1). The way we obtain this proof is, with the language in [Te],
embedding X in a complete intersection X’ which is an overweight deformation of
an affine toric variety associated to the divisorial valuation vg. In section 4 we
prove the lower bound for dim OZ;E in (2); for this we embed X in a general
complete intersection X’. The important fact used here is that X can be substi-
tuted by X’ in order to compute the local rings O@E ([Re3], cf. 2.3 (ii) and (ix)
of this paper). All these results extend to arbitrary stable points P of X,.

Acknowledgements. We are grateful to Monique Lejeune-Jalabert, for so many
enlightening discussions during so many years. We thank O. Piltant for his sugges-
tions and comments.



2. PRELIMINAIRES

2.1. In this section we will set the notation and recall some properties of the
space of arcs and their stable points. For more details see [DL], [EM], [IK], [Re3].

Let &k be a perfect field and let X be a k-scheme. Given a field extension k C K,
a K-arc on X is a k-morphism Spec K[[t]] — X. The K-arcs on X are the K-
rational points of a k-scheme X, called the space of arcs of X. More precisely,
X = lim. X,,, where, for n € N, X, is the k-scheme of n-jets whose K-rational
points are the k-morphisms Spec K[t]/(t)"*! — X. In fact, the projective limit
is a k-scheme because the natural morphisms X, — X,,, for n’ > n, are affine
morphisms. We denote by j, : Xoo — X, n > 0, the natural projections.

For every k-algebra A, we have a natural isomorphism
(3) Homy(Spec A, X) = Homy(Spec Al[t]], X).

Given P € X, with residue field x(P), we denote by hp : Spec k(P)[[t]] — X the
k(P)-arc on X corresponding by (3) to the x(P)-rational point of X, defined by
P. The image in X of the closed point of Spec x(P)[[t]], or equivalently, the image
Py of P by jo: Xoo = X = X is called the center of P. Then, we denote by vp
the order function Ordth§3 : Ox.p, = NU{oo}. It also follows from (3) that a K-arc
on X, is equivalent to a K-wedge, i.e. a k-morphism ® : Spec K[[¢,t]] = X.

The space of arcs of the affine space AN = Spec k[x1,...,zn] is (AY)o =
Spec k[Xy, X;,...,X,,,...] where for n > 0, X, = (X1,n,...,XnNn) is an N-uple

of variables. For any f € k[z1,...,zn], let Yo7 F, t" be the Taylor expansion of
fX,, X, t"), hence F,, € k[X,,...,X,]. Equivalently, Y7, F, t" is the image of

f by the morphism of k-algebras OAQT—> O(amy,. [[t]] induced in (3) by the identity
map in (AY)w. If X C AY is affine, and Ix C k[x1,...,zy] is the ideal defining

X in A{CV , then we have

Xoo = SpeC k[&mzla oo 7&»@7 .. ] / ({Fn}nZO,fGIX)-
Analogously, if X = Spec k[[z1,...,2n]] / Ix then we have

Xoo = Spec k[[XOH[le D, G } / ({Fn}nZO,feIx)~

2.2. Let X be a separated k-scheme which is locally of finite type over some
Noetherian complete local ring Ry with residue field k. Note that X may be a
reduced separated k-scheme of finite type, and it may also be a k-scheme Spec R
being R the completion of a local ring R which is a k-algebra of finite type. In
[Re3] the stable points of X, were defined as follows:

First, if X is affine and irreducible and P is a point of X, i.e. a prime ideal of
Ox_,, then the following conditions are equivalent:

(a) There exist ny € N, and G € Ox__\ P, G € Ox,,, such that, for n > ny,
the map X,,+1 — X, induces a trivial fibration

Int1(Z(P)) N (Xni1)e — in(Z(P)) N (Xn)a
with fiber A¢, where d = dim X, (X,,)¢ is the open subset X,,\ Z(G) of X,
and j,(Z(P)) is the closure of j,(Z(P)) in X,, with the reduced structure.

(b) There exists G € Ox__ \ P such that the ideal P(Ox_ )¢ is the radical of
a finitely generated ideal of (Ox_)¢-
We say that the point P is stable if the previous conditions hold ([Re2] and [Re3],
see also J. Denef, F. Loeser [DL], lemma 4.1, and M. Lejeune-Jalabert [Le] for the
stability property on the maps j,41(Xoo) = Jn(Xoo))-
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In general, i.e. for X not necessarily irreducible, the set of stable points of X,
is the union of the sets of stable points of the irreducible components of X. Besides
this union is disjoint (see (i) in 2.3 bellow).

Recall that a subset C' of X is a cylinder if it is of the form C = j, 1(S) for
some n and some constructible subset S C X,, ([EM], sec. 5). Hence, from (b)
above it follows that the stable points of X, are precisely the generic points of the
irreducible cylinders.

2.3. The next properties of stable points will be used in the next sections. The
first ones, (i) to (iv), are direct consequence of the definition of stable points and
of the stability property in [DL], and property (v) applies also well-known facts of
the theory of valuations:

([Re3], prop. 3.7) Let P be a stable point of X, then the following holds:

(i) Let Xy be an irreducible component of X such that P € (X¢)eo. Then, the
arc hp : Spec k(P) [[t]] = X0 defined by P is a dominant morphism.

(ii) Let U be any irreducible open affine subscheme of X which contains the
image of hp, then

Ox_.p=0u_,pP.

Moreover, there exits X’ C Aév a complete intersection scheme which
contains U and of dimension dim U and, for any such X', we have that

OXo)rearP = OWe)rearP = O(X1)rea, P

where we also denote by P the point induced by P in (X )req and in
(X! )rea- Therefore X, is irreducible at P, i.e. the nilradical of the ring
Ox._, p is a prime ideal.

(iii) The residue field x(P) of P on X, is a countably pure trascendental ex-
tension of a finite extension of k. This implies that x(P) is a separably
generated field extension of k.

(iv) dim O5x.p, is constant for n >> 0, where Jn(Xso) is the closure of
Jn(Xeo) in X,,, with the reduced structure, and P, is the prime ideal P N
Om Since

(4) dim Ox__ p < sup,, dim Om,m

this implies that dim Ox__ p < o0.

(v) Let vp be the valuation on the function field K(Xy) of X, defined by the
arc hp, Xy being the irreducible component of X such that P € (X¢)oo-
Then, either P, is the generic point of X and in this case vp is trivial, or
vp is a divisorial valuation.

Property (i) is equivalent to the statement in [EM] lemma 5.1 for cylinders. In
property (iv), the right hand side term in (4) is the definition of the codimension
of the cylinder Z(P) (see [EM] sec. 5); but the inequality in (4) may be strict.
For property (v) in the setting of cylinders, see [dFEI] and also [ELM]. The next
property compares the local rings at stable points of the space of arcs of X =
Spec R, where R is a local ring which is a k-algebra of finite type, and of of X =
Spec ﬁ, where R is the completion of R:

(vi) Let P be a stable point of X, where X = Spec R as before, whose center
in X is the maximal ideal of R. Then P induces a stable point in X, that
we also denote by P, and we have



The following finiteness property of the stable points, which is the main result
in [Re2], is expressed in terms of the local ring Ox__ p, or more precisely, its formal
completion. It implies a Curve Selection Lemma in X, ending at a stable point P
([Re2], corol. 4.8). Property (viii) below helps to understand this local ring.

Finiteness property of the stable points ([Re2] th. 4.1). Let P be a stable point
of X, then:

(vii) The formal completion O()(/oozmp of the local ring of (X )rea at a stable
point P is a Noetherian ring.
(viii) Moreover, if X is affine, then there exists G € Ox_, \ P such that the ideal
P (O(Xoo)red)G is a finitely generated ideal of (O(Xm)red)G.
(ix) ([Re3] th. 3.13 if char k = 0) Moreover, we have (9/)(:13 = O()(/x;d,p.
From this it follows that, if P is a stable point of X, then the maximal ideal
of Ox_ ,pis POx_ p, and even more,

(5) embdim O/X;p = embdim Ox
(see [Bo] cap. III, sec. 2, no. 12, corol. 2).

oo )red; P+

Stable points behave well under birational proper k-morphisms and, if we assume
that char k = 0, then also under k-morphisms locally of finite type which are locally
dominant:

(x) ([Re3] prop. 4.1) Let m:Y — X be a birational and proper k-morphism,
then the morphism 7, : Yoo — X+ induces a one to one map between the
stable points of Y., and the stable points of X.,. Besides, if Q) is a stable
point of Y, and P its image, then the induced morphism (Q/X-: P — @
is surjective and induces an isomorphism on the residue fields £(P) = x(Q).

(xi) ([Re3] prop. 4.5) Suppose that char k = 0. Let n : ¥ — X be a k-
morphism locally dominant, then the morphism 7, : Yo — X induces a
map from the set of stable points of Y., to the set of stable points of X
Besides, if @ is a stable point of Y, and P its image by the previous map,
then the induced morphism (Ox_ p)..q = (Oyv...Q),eq 1S an injective local
morphism.

Moreover, if 77 is finite and dominant, then (’E: P — (m is unram-
ified at @ m7 that is P (@ =Q @, and it indices a finite
extension £(P) C k(@) on the residue fields.

(xii) ([Re4] prop. 2.5) Let n : Y — X be an étale k-morphism. Then Y is
ét;ale\ over ﬁoo\ and, if @ is a stable point of Y., and P its image, then
Ov...@ = Ox_, P ®up) K(Q)-

2.4. Suppose that there exists a resolution of singularities 7 : ¥ — X of X,
i.e. a proper, birational k-morphism, with Y is smooth, such that the induced
morphism Y \ 771(Sing X) — X \ Sing X is an isomorphism. Let E be a divisor
on Y and let Y.Z be the inverse image of E by the natural projection ji : Yo, — Y.
Then Y2 is an irreducible subset of Y., whose generic point P}J/ is a stable point
of Y. Besides, the image Pg of P]}/ by the morphism 7, : Yoo — Xoo is a stable
point of X, (see (x) above). We will denote Pp = P& if there is no possible
ambiguity. Note that Pr only depends on the divisorial valuation vg defined by F,
more precisely, if 7 : Y’ — X is another resolution of singularities such that the
center E’ of v in Y’ is a divisor, then the stable point Pg/ defined by E’ coincides
with Pgr. Note also that the order function vp, is equal to the restriction of the
divisorial valuation vg to the local ring of X at the generic point of 7 (E).
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The set Y2 is also denoted by Cont'(E). More generally
Cont®(E) :={Q' € Yoo / vg:(Ig) = €} forevery e>1

where I is the ideal defining E in an open affine subset of Y. We also have that
Cont®(E) is an irreducible subset of Y, whose generic point PY; is a stable point of
Yoo, and the image P=X, (also denoted by P.g) of PY; by T is a stable point of X .

Example 2.5. Note that there are stable points which are not of the type P.g
where v is a divisorial valuation on X. For instance, let X = A! and let P be the
prime ideal (zg, z3) of Ox__ = k[zo,x1,...]. Then vp is the divisorial valuation vg
defined by vg(x) = 1, hence it is the multiplicity in k[z], but P # Pg.

2.6. If 7 : Y — X is a resolution of singularities dominating the Nash blowing
up of X, then the image of the canonical homomorphism dr : 7*(A9Qx) — A%y
is an invertible sheaf. That is, there exists an effective divisor IA(y/ x with support
in the exceptional locus of 7 such that dr(7*(A9Qx)) = Oy(—f/{—y/x) A Qy. For
any prime divisor F on Y, we define the Mather discrepancy to be

/k\E = ordE(I?y/X).

Note that EE # 0 implies that F is contained in the exceptional locus of ,
and that EE only depends on the divisorial valuation vg defined by E. We have
sup,, dim Oj—<— p ) =€ (kg+1) ([DL], lemma 3.1, [dFEI], theorem 3.9). Hence
the inequality (4) states that

dimOXoc;PeE <e (/k\/’E + 1).

On the other hand, if X is normal and Q-Gorenstein (for instance X is a normal
complete intersection), the discrepancy of X with respect to E is defined to be
the coefficient of E in the divisor Ky, x with exceptional support which is linearly
equivalent to Ky — 7*(Kx). If X is nonsingular then kg = kg ([EM], appendix).
Moreover, we have:

(xiii) ([Re3] prop. 4.2 and [Re4] corol. 2.9) If X is nonsingular at the center
Py of a stable point P of X, then Ox_ p is a regular ring of dimension
dimOx__ p = sup,, dim Om,Pn' In particular, taking P = P.p, we
have dimOx_ p., = e(kg + 1).

In theorem 3.8 will prove that, also in the case that X is singular at Py, we have
that e (kg + 1) is the embedding dimension of Ox

oo)rechPeE :

Example 2.7. Let X be an irreducible formal plane curve over a field k of
characteristic zero. Let us consider a (primitive) Puiseux parametrization

x = uo
y= Zﬁoﬁi Ai vt
where \; € k for every i > By. Set eg := 5y and,

Bre1 =min{i / A #0 and g.c.d{Bo,..., 01} <er },
€r41 = g.c.d.{507...,/3r+1}

for 1 <r < g—1, being g such that e; = 1. Let ng = 1 and n, := e;—‘l fori1<r<g
and let B, = fBp and 3,, 1 <7 < g+ 1, be defined by

(6) ﬁr - nrflgr—l = ﬂr - ﬁrfla



hence we have

B, >mnp_1 B,._; for1<r<g, and 59+12ngﬁi
n,B, belongs to the semigroup generated by B,...,5,_1, 1 <r <g+1.

Let us consider qo, q1,...,qq € k[z,y] and g441 € k[[z y]] such that gy defines
an equation of the branch, i.e. X = Spec k[[z,y]] / (qur ), and q1,...,qq are its
approximate roots (see [ZT], appendix). More precisely, qo, - . ., gg+1 can be defined
as follows:

qo =1 Q1:y*Z)\zqéj°

i<B,
with ord,(q;) = B; and, for 1 <r < g,
by, by .
() @1 =q" —cr g .q," 7" — Z yq’...q)r, 1<r<yg
¥=(v0,-,7r)

with ordy,(gr+1) = B,4q (resp. o0) for 1 < 7 < g (resp. 7 = g), where {b,;}/ )
are the unique nonnegative numbers satisfying b,; < n; for 1 < i < r —1 and
n,.f, ZO<7, <r b.if3;, for each sequence 7 of nonnegative mtegers in the right
hand side we have n, 3, < 30 7iB; < B,41 (vesp. n.B3, <31 _,7viB;) if1<r<g
(resp. if r = g+ 1) and ¢,,¢y € k and ¢, # 0. For more details on approximate
roots and the space of arcs of a plane branch see [Mo] and [LMR].

Let v = vg be the divisorial valuation on X given by ord,, and let P = Pg be the
stable point in X, defined by v as in 2.4. Considering the projection n : X — A,{z,
(z,y) — z, and applying prop. 4.5 in [Re3] ((xi) in 2.3) we conclude that

POXOO7P = (X07...7X5071) OX(XHP.
We will next describe the ring (9?00\ p, and we will see that embdim (’)/X: p = Po,
which is equal to the multiplicity of X (see [Re3], corol. 5.7).

First note that POx_ p is generated by Q := {Qrin}o<, <, ne 1B, <n<B.
more, there exists G € Ox_ \ P such that P(Ox_ )¢ = (Q)(Ox_ )¢ (we may
take G == [[,<,<, QT;ET)' More precisely, (Q) defines a prime ideal in (O(a2y_)a
(see [Red], prop 4.5) whose extension to (Ox_)g is P(Ox_ )a. Note that, setting
f = qg4+1 € k[[z,y]], the following holds:

(i) v(Jac(f)) = v(gh) =nyB, — By Set e :=nyB, — By,

(ii) for all n > 0, the class of TJ“" in Ox_ p is a unit and, for n’ > n, the

even

class of ﬂ in Ox_, p belongs to POx_ p.
(iii) Fo,..., Fe,l belong to (Q)QO(Ai)w.

From this it follows that

AP) 2 kXt Xng o ) WKLol [ (AW = e Wgr o W7oy )

where W, is the class of @, 5 . We consider the embedding K(P) — O/X\p which

sends X,,, n > By, (resp. Wy) to X, € OX p (resp. Xgo € Ox,_, p) and recursively,
for 1 <r < g, sends W, to a n,-root of the image in (’)X pof cTVVOTO Wf:{ '
that exists by Hensel’s lemma. In particular, for each n > 0 we have defined
Yn(o) € k(P) such that Y, — Yn(o) € (Q). Arguing recursively on m > 1 and n > 0,
with the lexicographic order on (m,n), from {Feyy }n>0, applying (ii) and Hensel’s
lemma, and reasoning as in corol. 5.6 in [Re3] it follows that, for m,n > 0, there
exists Y™ € k(P)[Xo,-..,Xa,-1] such that,

Fen=Lc (Y, —Y™) mod (Q)™
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in the ring Op2)__ (o), Where [ := %, hence L. is a unit. Therefore, the previous
equalities define series Y, € x(P) [[Xo,. .. ,Xp,—1]], » > 0, and we conclude that

—

Ox..p = K(P)[[Xo,...,Xg,-1]] /({ﬁn}OSnSe—1>

where, for 0 < n < e — 1, ﬁn is obtained from F;,, by substituting Y, by }7",
0 <n’ <n. Since, for 0 <r < g,n._18,_; <n < f,, the series obtained from Q,
by substituting Y,,, by Y,,0<n' <n, belongs to (Xo,...,Xg,—1), from (iii) it fol-
lows that F,, € (Xo,...,Xp,-1)? for 0 < n < e—1. Therefore embdim (’ﬂ:p = fBo.

Remark 2.8. Let X be an algebraic plane curve over a field k of characteristic
zero, and suppose that it is analytically irreducible. Then, there exists an étale
morphism X’ — X such that the curve X’ has a Puiseux parametrization

7 = (u)P

8 / / 7
(8) Yy = Z,Bogigm AL (W)

where X\, € k for Sy < i < m, i.e. the image of ¢ has a finite number of terms.
Equivalently, the element g, ; obtained as in (7) from the previous parametrization,
which defines an equation of the curve X', is a polynomial.

In fact, consider a Puiseux parametrization z = v/, y = 2609 i ub of X and
keep the notation in example 2.7. Note that the series > Bo<i Ai u? belongs to the
hensalization k < u > of k[u](,) and also that the element g4,1 in (7) belongs to
k < x,y >. Since X is analytically irreducible, there exists v € k < z,y >, v a unit,
such that v gg41 is a polynomial in k[z,y]. Then taking o’ = (7)%:57 y = (ﬂﬁy

1

and v/ = (y)™171 u, we obtain (8). Recall that n;/3; is the least common multiple
of B, and ;. Since char k = 0, adding a n;3;-root of v defines an étale morphism
X = X.

Example 2.9. Let X C A} be the hypersurface singularity in [IK], defined by
r3+a3+as+ai+a8 = 0 over a field of characteristic # 2, 3. The blowing up X’ of X
at the origin has a unique singular point, and its exceptional locus Ej is irreducible
and defines an essential valuation vg (i.e. the center of vg on any resolution of
singularities p : X — X is an irreducible component of the exceptional locus of p).
The blowing up Y of X’ at its singular point is nonsingular, and its exceptional
locus is irreducible and defines an essential valuation v,, vq # vg. Let m: Y — X
be the induced resolution of singularities. Let P,, Pg be the stable points of X
defined by v, and vg respectively, and set N, := {P,}, Ng := {Ps} and X3¢
the inverse image of Sing X by jo : Xoo — X. We have N, C Nz = X3ins ([IK],
theorem 4.3).

Let I : Z — AZ be the embedded resolution of singularities of X whose re-
striction to X is . There exists a divisor E on Z whose intersection with Y is
Epg. Note that bp := ordgK3,,; is equal to 4 and aj := ord 11" (X) is equal to
3. Since, by the adjunction formula, kg, = by — ap, we have kg, = 1. Hence,
EEB = kg, +vg(Jacx) =1+2 =3 (see [EM], remark 9.6).

On the other hand, we have

P3(Ox.)x,,, = (X1,0, X250, X350, Xu30, X500) (Ox.)x,, -

In fact, (X1,0,...,X5,0) is the prime ideal in O(ys)_ defined by v, hence its mini-
mal number of generators is bz +1 = 5 (see (xiii) in 2.6). Besides, the ring @\Xoo’pﬁ



has been described in [Re3] remark 5.16 as follows:

@Xm,Pﬁ > k(Ps)[[X1,0, X2:00 X305 Xa30, X5.0]] / (Fo, Fi, F)
where, being f = 3 + 23 + 23 + 23 + 2¢ and being F,, the class of F;, modulo
(X1;0,--+,X5,0), we have that 3 = aj is the minimal n such that F', # 0, in fact
F3 = X7y + Xi, + X735 + X{y and

K(Ps) = k({Xia, .. X, J2<i<a)[X1a] / (F3).

Besides we have ﬁo,ﬁl € (X1.0,...,X5,0)? and the initial form in(ﬁg) of F in
K(Pﬁ)[[Xl;o, . ,X5;0]] is 3?11)(1;0+3X22;1X2;0+3X§;1X3;0+3XZ;1X4;0 where Yl;l
is the class of X1.; in k(Pg). Note that vg(Jacx) = 2, even more, for 1 <14 <4, if
fi= % then vg(f') =2, i.e. F}, Fi € Ps, Fi ¢ Pg, and the coefficient in X;.q of
in(fg) is the class of Fi in r(Ps). From this it follows that

embdim O;.::B =bz+1—(ap —vs(Jacx)) = kg, +1+vg(Jacx) = /];EB +1
which equals 4. Moreover, in this case

dimOx_p, = bz +1—az = kg, +1=2.

The argument to compute embdim (’);.:»B showed in example 2.9 can be gen-
eralized to monomial valuations restricted to a normal hyperssurface over a perfect
field of any characteristic. But, although, given a variety X and a divisorial valu-
ation vg, there always exists a complete intersection X’ containig X of the same

dimension and we have Ox_ p, = O;;E (see (ii) and (ix) in 2.3), X’ is not nor-
mal in general. So, there is no hope to extend the result embdim O;.::E =kg+1
applying this argument. For dim (’);.;E, even if X is a normal hypersurface
it is not true in general that dim O;.;DE equals kg + 1, but we will show that
dim Ox_ p, > kg + 1.

3. DEFINING MINIMAL COORDINATES AT STABLE POINTS OF THE SPACE OF ARCS

Let X be a (singular) reduced separated scheme of finite type over a field &k of
characteristic zero. Let v be a divisorial valuation on an irreducible component X
of X whose center lies in Sing X and let e € N.

Let us consider the stable point P.p of X, defined by v and e, i.e. we consider
any resolution of singularities 7 : Y — X such that the center of v on Y is a divisor
E, and define P.p = Pe)]g to be the image by m., of the generic point Pe)/E' of YE
(see 2.4). In order to study the ring Ox_ p,,, or its completion OX/OOT:EE, we may
suppose that X is affine, let X C AkN = Spec k[y1,...,yn]. We may also suppose
that 7 : Y — X dominates the Nash blowing up of X and that, if x; denotes the
class of y; in Ox, 1 <i < N, then, after reordering the x;’s, we have

(9) ordg W*(dwl /\.../\d{Ed) :7€\E.
where d = dim Xj.

Let p : X — A% be the projection on the first d coordinates, let n : ¥ — A

be the composition n = p o7 and let Pf; be the image of PY; by 7o. Then the
discrepancy kg (A{) of A{ with respect to the valuation induced by vg is equal
to kg by (9). Besides, we know that the local ring O(M)

dimension e(kg(Af)+1) (see (xiii) in 2.6). From this, and applying [Re3], prop. 4.5

pad 18 a regular ring of
" eE
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(see (xi) in 2.3) it follows that, if Q is a regular system of parameters of (’)(

(hence $Q = e(kg + 1)) then we have

(10) Pep Ox p.p = (Q) Ox Py and Pep O(x )rea.Pox = (Q) O(Xo)rea, Pos

in fact, the last assertion follows from the first one by Nakakama’s lemma. There-
= embdim Ox_ p., < e (kg+1) ([Red], corol. 4.10).

oo )reds PeE B —

Ad)os, LG

fore embdim O(x

Remark 3.1. The previous reasoning does not assure an analogous statement
to (10) for Pe)%OXW,P;;; since, in general the P:X,-adic topology on OXOO,PeXE is not
separated (see [Re3] example 3.16 and theorem 3.13).

3.2. Moreover, in [Re4] we have described a regular system of parameters Q
of O(Ad)ng\g' We will next recall how we proceeded. First, since char k = 0,
there exists an open subset U of Y with nonempty intersection with E, an étale
morphism U — U and {u, ..., uq} € O, {x1,...,24} C Oy, where V is an open
subset of X, such that the following holds: for all closed points ¥y in an open subset
of the strict transform E of E in U , after a possible replacement of u; by u; + ¢;,
¢ €k, 2 <i<d, we may suppose that {uy,...,uq} and {x1,...,24} are regular
systems of parameters in yo and in 1 o p(yo), and besides, the local morphism
nt: Ov,n(ye) = Oﬁ,yo is given by

m
x1 =yt 4
.ot ma2

Z2 = Z1gigm2 Az, uj + Uy~ U2

[ ms3
x3 = D 1<icms, A3.i(U2) Uy +u)™ ug

(11) e \ i .

Ts = Zl§i§m5 si(ug, ... us—1) uy +ui™ us

Ts+1 7 Us+l
Tq = Uq

where § = codimya 7(€g), m1 < ordy,z;, 2 <j <d, 0 <mg <mg <...<my,
and, for 2 < j < § and 0 < i < my, Aj;i(ua,...,u;—1) belongs to the henseliza-
tion k < ug,...,u;j—1 > of the local ring kfua, ..., Uj—1](uy, .u;_,)» and, if i < myr,
j' < j, then \;; belongs to k < ug,...,uj_1 >; moreover, with no loss of generality
we may also suppose that Aj ., (uz,...,u;_1) is a unit for 2 < j < 4§ ((4) in [Red],
see also [Re3], proof of prop. 4.5).

3.3. Now, we consider the following situation: Let j, 2 < j < d + 1, let
V2,...,vj—1 so that ui,va,...,vj_1,u5,...,uq € O defines a regular system of
parameters of Off,yo for all closed points yo in an open subset of F (more precisely,
there exist (¢;); € k%71 such that (u1, {v; + ¢}y, {vi + ¢i} g, ) is a regular sys-

tem of parameters of Op ), and let 6 : U — Spec k[va, . .. ,Vj—1]n[z1,y] be the
k-morphism given by

1 — umt

y Z Ai(vay ..y vj1) ub +ul o mod (up)™H

mi<i<m
where h € kfvg,...,vj-1] \ (v2,...,vj-1), m > mq, Ai(ve,...,vj_1) € Rj_1 =
k <wva,...,vuj_1 >, 0 € Oy,, and one of the following conditions holds:
(a) o is transcendental over k(uy,vs,...,vj_1)

(b) e=0.
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Set ¢ := g.c.d.({m1} U{i / \; # 0}), and define By := ep := mq, and Fr41 =
min{i / \; # 0 and g.c.d{Bo,...,Br,i} <er }, €41 = g.c.d{Bo,...,0r41} for
1 <r < g, being g such that e, = ¢, and Bg41 :=m. Let n, = <=2, 1 <r <g—1.
We define {8, }91, from {3,}9%; as in (6) in 2.7.

Let B be a domain which is an étale extension of k[ve,...,v;_1]; and contains
Ai(va,...,v-1), m1 < i < m. Let v be the order function on Blz1,y] extending
v and such that v(¢) = 0 for all £ € B (note that v is a valuation if there is no
nonzero element h with 7(h) = oo, for instance in case (a)). As in example 2.7,
we define qo, ..., ¢y € Blz1,y] such that v(g,) = B, for 0 < r < g+1 as follows:

do=71, 1 =Y — ZKBI )\§ (EJVO)E and, for 1 <r < g,

~ ~ bro b - .
(12) G1=q" — ¢ ¢y ... ¢, — Z gt g, 1<r<yg
Y=(Y0,---,7r)

where {b,;}:_, I are the unique nonnegative integers satisfing b, ; < mn;, 1 <i <r—1,
and n,.3, = Eo<z<r B, we have U(gQ° ... @) > n,f3, for each sequence 7 of non-
negative integers in the right hand side, and ¢,,¢, € B, ¢, # 0 and ¢y # 0 only for
a finite number of 4’s. In case (a), we also define gy+1 as in (12); then we have that
{[3 }g+1 is the minimal generating sequence for the semigroup v(B[z1, y]\ {0}) and
gos - -+, qg+1 € Blz1,y] is a minimal generating sequence for ¥ ([Sp] theorem 8.6). In
case (b), gg41 € Blxz1,y], also defined as in (12), defines the kernel of Bz, y] — Og.
In case (a), by induction on 7, 1 < r < g+ 1, we will define elements {¢.}?*] in

k(ve,...,vj_1,x1,y) more precisely,

r—1

q; € H T;,l k[’l}g, sy V51, l‘l,y]

r’=0
where T, is the multiplicative system generated by ¢, satisfying the following:
qo = x1 and, for 1 < r < g+ 1 the image of ¢, in the fraction field K(Oy,,) of
Oy, belongs to Oy, and, if we identify ¢/ with its image, then

(13) q. = (g, v500) uPr mod (u)?+ for 1 <r<g
Qg1 = Hgr1(va, ..., v5-1) u’s+1 o mod (u) B+l
where i, (v2, ..., v;_1) is a unit in R,;_;. In fact, once defined gj, . . . , ¢, the element
4.4, is defined as follows: let
b - T (@)™
h 7q6 0 'q;—l ! r,1 Ibror IT b1’ V2,...,Vj-1
qO f ...qril ’
where the integers {b,., }/,_}) are as in (12), Ty o= ,ull’“'l ~-~,uf_r_”‘1’1 is a unit, and
P,1 € k[z,v2,...,vj_1] is such that
oP, . o

(14)  Pri(uyr,ve,...,v-1) =0, 8;1 (uym,v2,...,vj-1) is a unit in R;_.

Then, we have n,8, < v(h1) < B,41. If v(h1) = B,,q, we set ¢, := hy. If not,
we define recursively

h b, b P ﬁrshr,sfl
’I“,S'_q() qr 1 7,8 bg bslvv27~"7vj71

r—

qO : QT—I

where {b%,}7, ! are the unique nonnegative integers satlsfylng b <, 1 <7 <

1

r —1, and V(hr,é_l) D o<ri<r1 U5 Byprs Fips U1 . ,uf,r 1 is a unit, and
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P, s € k[z,v2,...,vj_1] is such that

OP,,
0z

being As_1 € R;_; the initial form of h, ;. We have v(hys—1) < v(hys) < BTH

(15) P’I‘,S()\8717027"'70j71) :Ov

(As—1,v2,...,vj—1) is a unit in R;_;

hence, after a finite number of steps we obtain s such that v(h,.s) = 3,,; and we
set gry1 := h, s (for more details see [Red], lemma 3.1).

The elements ¢.. and ¢, are related. In fact, for 0 <r < g+ 1, ¢. and g, define
the same initial form in an étale covering of a localization of the graded algebra
gr klva, ... vj_1,21,Y](z,,y)- More precisely, there exist l,he [To<rien T;,IB[:Jsl, ],

{ being a unit and #(k) > B, such that ¢, = G- £+ h.

3.4. Recall the expression in (11). Fixed j, 2 < j < §, we apply the previous
study to

1 — um
[ m;
T E )\jﬂ‘(UQ,...,u]'_ﬁ up +ug’ uy.
lgigmj
Let Bj_1 be a domain which is an étale extension of kfug,...,u;_1] and con-
tains Aj;(u2,...,u;-1), m1 < i < my, let v; be the valuation on Bj_i[z1,z;]

extending v and let {Bjyr}‘;ff(_)l the minimal generating sequence for the semigroup
7;(Bj_1[z1,2,] \ {0}). Let {G;,}*+" € B;_1[x1,2,] be a minimal generating se-
quence for vj, and {qj . g:g € k(ug, ..., uj—1,x1,x;) defined as in 3.3.

Consider the following sets with the lexicographic order
T =A{M0)}A(,r) /2<j <0, 1<r<g;}, T:=T"UH0g+1)/2<)<6}
Applying the argument in 3.3 and arguing by induction on (j,7) € J, we can define
elements {q; }(j.rer,

(16) g€ I Tpk k..

G’y ET

(77 r)<(r)
where T} ,+ is the multiplicative system generated by g;/ ,, satisfying the following:
q1,0 = x1 and, for (j,r) € J, the image of g;, in the fraction field K(Oy,y,) of
Oy,y, belongs to Oy, and, if we identify g;, with its image, then

(17) Qj.r = pjr(ug, ..., uj_q) ulir mod (u)Pi-t! for 1 <r < g;
B, Bjg 4111
g;+1 = Hjgy+1(Uz, oo ujon) w9 uy mod (u) ot
where 1 (uz,...,uj_1) is a unit in k& < ug,...,uj_1 >. Besides, if bjo,...,b; g,

are the unique nonnegative integers satisfying b; , < n;,, 1 <7 < g;, and ﬁjﬂjﬂ =
Zogiggj bijj”n, and we set g;0 := q1,0 = 71, then, identifying ¢;, with its image
in Oy,y,, we have

4j,9;+1
(18) byo 717_7‘,9]. = v; € OY,yo-
950 ---Y5.g;

where v; = 7; u; mod (u), being ~; a unit in k < us,...,u;—1 >. In particular
note that k < us,...,u; >=k < va,...,v; >. Note also that g;, is obtained from

g, , , .
q;. by replacing v; by " e for 1 < 5/ < j. We will denote {P;, s}s the

.0 bj’,gj/ ’
j’o j/rgj/

polynomials in k[z,vg,...,v;1] defined in order to obtain ¢}, , from ¢j ., hence
satisfying (14) (resp. (15)) for s = 1 (resp. s > 1). The elements {g; ,}res are
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called a system of transverse generators forn:Y — Ag with respect to F.

3.5. Finally, for every element ¢ € Oy, which is the image of an element in the

fraction field of k[x1,...,x4], i.e. we can identify ¢ = /g where I, g € k[x1,...,x4],
we can define {Q,, },>0 in O(Ad) pre such that, in the ring Oy pv , we have

- oo e e
(19) Qn=Q, mod Py

More precisely, since PY, is a stable point and the image of g in Oy,y, is nonzero,
there exists ¢ € N such that Gg,...,G._1 € Pg%, G. ¢ PEYE. Hence we have

GQn+...+GpycQc = Lyye mod Pe);; forn>0

((14) in [Re3] proof of prop. 4.1) and we can define by recurrence Q,, € S7104a
where S is the multiplicative system generated by G., satisfying (19) (see also
lemma 4.1 in [Red]).

Applying this to each g;,, we obtain @ €O n > 0, such that

girsn (Ad) o, PALs

Qjrin = @j,r;n modulo PY;. More precisely,

— —=—1
Qirn€ ] Ty klov. 3]

4" rHeg*
(4",7)<(3:r)
where k21, ..., %;]o denotes O(spec kfo....z;]) a0d Tjr 4 is the multiplicative sys-
tem generated by Q . Then, let

j’,r’;ijzﬁT/
Q = {Qj’mn}(j”")ijenjy"‘*lijm—lSngegjm*l.
. d
It is clear (see (17)) that (Q)O(Ad)m,Pﬁg C PﬁEO(M)m,Pg\g'
applying (6), (11) and, for the last equality, also (9), we have
5 - _ _ _ _

tQ = Zj:g(eﬂj,l +e(Bj2 —nj1B1) .o+ e(B) g1 — Mg Big,)) =

(20) =e E%-:z (Bia + ( Bj2 —6»3]‘,1) +oo 4 (Big 41— Big,)) =
=€ Z]‘:z Bigi+1 =€ Zj:Q mj =€ (kE(Az) +1)=e (kp(X) +1).

and recall that O(Ad)oo,Pj‘g is a regular local ring of dimension e (kg(A{) + 1)

(see (xiii)). In [Red] we have proved that Q is a regular system of parameters
of O(Ad) pud; then Q is called regular system of parameters of O(Ad) pad AS-
Pl oo g

Besides, note that,

sociated to {qj,}(jres- The proof is based in the study of the graded algebra
grugklz1, ..., zq4). In fact, the main idea in the proof is to show that (Q)O(Ad)wpﬁxg
is a prime ideal and it follows from the following: It is proved that, modulo étale
extension, (9( Ad)o, P / (Q) is isomorphic to a polynomial ring in countable many
variables over certain localization of gr, k[z1,...,z4]. Since gr, klx1,...,z4] is a
domain because vg is a valuation it follows that O(Ad)oovag / (Q) is a domain (see

[Red], theorem 4.8). ’
More generally, let qo,...,Gg+1 € B[z1,y] be as in 3.3, and let us define Q=

{Qrin}0§r§g+1,enj,r,1ﬁ <n§eﬁjyr—1 where QT;" € B[xh y]OO and L := i:O Qr;eB .

j,r—1= r

Then (Q) is a prime ideal of (Blz1,y]oo)7 ([Red], prop. 4.5).

In order to study the ring (’)X/m\pe » we may first suppose that the irreducible
component Xy of X where the valuation v is defined is analytically irreducible. In
fact, there exists an étale morphism X — X such that each irreducible component
of X is analytically irreducible. Hence, there exists an irreducible component )Z'O
of X whose image is Xy, and there exists a divisorial valuation  on )~(0 extending
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V. Let ]56 be the stable point on )}0 defined by 7 and e, whose image is P.g. Then
(9);0 5 = Oxy,Pop Ox(p.p) K(Pe) (see (xii)). So, assume that X is analytically
1rredu(31ble. We will embed Xy in a complete intersection scheme X' C A,]CW of

dimension d = dim Xy. For any such X’ we have

O(X = O(X’

—

—
~
oo )red,PeE Jred,Per and O(Xoo) Pep — O(X' ):PeE

where we also denote by P.g the point induced by P)]{; in X! orin (X.)red (see
(ii) and (ix) in 2.3).

Proposition 3.6. Assume that char k = 0. Let Xy be a reduced separated k-
scheme of finite type. Assume that Xg is analytically irreducible. Let v = vg be a
divisorial valuation on Xg and let e € N. Then, there exist a complete intersection
scheme
X/:SpeCk[yla"'ayN]/(fd+17-"afN) - A;{;V

which contains Xo, and of dimension d = dim Xy, and elements {2 s }a+1<i<N,1<s<g,
in k[y1,...,yn|, such that, if given g € kly1,...,yn] we denote v(g) the v-value of
the class of g in Ox,, then the following holds:

(a) Ford+1<I<N,1<s<g letas:=v(zs) and let

Z = Ufid_HZl where 2 = {Zjsn} 1<s<q
0<n<eaqp,s
being Zjrin € kly1,-.,YN]oo- Then there exists G € Ony  such that
(QUZ) (O(AN)OO)G is a prime ideal and

Pe)%OXéwP;(E/ = (QUZ)OX/owPEXE/

(b) FOT’d+1§l§N fl fl(yla"'aydayl)Ek[ylv"'aydayl] Satisﬁes:
(i) v(Jac(fi)) = v(Gh); set e :=v(Jac(f),
(ii) for all n > 0, the class of w in Ox:_ p.p 5 a unit and, for

n’ > n, the class of% mn OX/ P.p belongs to P.pOx:_ p,,. Be-
in

sides, if we denote fl/J = Bfl then the class of M — F/

Llee; m

OX{)O,PSE belongs to P.g.

(iil) there exists L € Opa = k[z1,...,%dloo, L & Pf;, such that the ele-
ments Fl.o, ..., Fl.ee,—1 belong to (QU Z;)? (O(Afj) )
>~/ L

Proof. Let m:Y — Xo, p: Xo — A and n = pom : Y — A% be as in the beginning
of this section. Let us consider an étale morphism U — U as in 3.2 and keep the
notation in 3.2. From the discussion in 3.2, 3.3 and 3.4 it follows that there exist
{u,v2,...,va} € O and {z1,...,24,Z441,..., 2N} € Ox such that, after replacing
v; by v; + ¢; where ¢; € k, 2 < i < d, the following property holds for the points yo
in an open subset of E: {u,va,...,vq} (vesp. {x1,...,24}) is a regular system of
parameters of O v (resp. OAd (o)) and {Z1, ..., ¥4, Taq1, ..., N} generate the
maximal ideal of 16, Xo,7(y0) Such that:

(i) The local expression for 7 in (11) holds for the regular system of parameters
{u,v2,...,va} of Op , and {z1,...,xa} of Opayy, (ie. in (11) replace
u1 by u, u; by v; for 2 <4 <4, and set v; = u; for § < i < d).

(ii) There exists a system of transverse generators {q;,} ez for n: Y — Al
with respect to E, hence satisfying (16), (17) and (18).
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(ili) For d+1 <1 < N, the image of z; in Oy, is expressed as

(21) o= Aav) v

T)’L1Si
where, v := (v, ...,v4) and

ALilv) €k<u>n Oﬁ,yo

(22) Ai(v) €k<v2,...,vj,1>ﬂ(’)ﬁy0 ifi<m; for2<j<é¢

(recall (9) for the second assertion in (22)).

Fix [, d+1<1<N. Let B,,...,8,, be a minimal system of generators of
the semigroup defined by the restriction vy of vg to k(v)[z1,21](s, 2,). Let e, =
g.c.d.{ﬁl,o,...,ﬁlﬂ.}, 0<r<g,n,= e’e’;%:l, 1 <r <g,andlet Bio,...,0
be defined by BZ,T — nl,r_lgl7r_1 = bBir —’6577_1 as in (6). Consider h € k[v]
such that k[v]p is contained in the ring Oﬁ and consider the morphism 6; : U —
Spec k[v]p[z1,y] given by

Ty — um
y o= M) W
mlgi

Since X is analytically irreducible, there exists a domain B; such that Bj[zq,y] is
an étale extension of k[v],[x1,y] and there exist z},vy’ € Bj[z1,y] with

=y 2z, ¥ =y wherey,v € Bjr1,y] are units
and u' = p u where p is a unit in an étale extension of k[v]n[u], such that the
induced morphism 6, : U — Spec B, [], ], being U — U étale, is given by
y e (u)™
v D N W)
my<i<m
where \j; € B for m; < i < m (see remark 2.8). Let @ o,...,q1q,,q,g+1 €

By[z},y'] be the elements defined as in 3.3 applied to the previous expression,
hence case (b) in 3.3. Hence qj,4,+1 defines the kernel of B;[z1,y] — 05, ie.

Bilz1,z1) = Bilz1,y] / (G,g41)-

Thus q; g,+1 defines an equation of a plane curve in Spec L[z}, y'], where L; is a field
extension of k£ containing )‘2,2‘ for m; < ¢ < m, which is analytically irreducible, and
Qi1s---,q1,g are its approximate roots. Let us also consider the following elements
in klulplx1,y]: Let f} := qo = =1 and, for 1 <r < g+ 1, let us define f/. to be an
irreducible polynomial in k[v],[x1,y] defining the contracted ideal of (g.)Bi[x1,y]
to k[v]n[z1,y]. Set f/ := fi,4,+1 and note that we have

(23) fl/(yvxhy) = Zjl’glJrl -h
where h € By[zy,y] and di.g1+1 does not divide h. Let

Ci = Spec kluln[z1,y] / (fi)  Ci:=Spec Bilz1,y] / (d1.g+1)-
Note that the induced morphism C~'l — (] is étale.

We consider now the spaces of arcs of Cf, 5;. Let v be a divisorial valuation
on B[z1,y] / (¢1,9,+1) extending vy, hence U(A\) = 0 for all A € B; (recall that
vi(vj) = 0,2 < j <d) and let P/ (resp. P,) be the stable point of Oy, (resp.
O(éz)x) defined by v, and e (resp. ¥ and e). Note that we have

~

O(Cl)oo’Pl/ = O(éz)m,ﬁz
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Le. the ring on the right hand side dominates the ring on the left hand side.
Following 3.5, let Q; := {Q, T'"}O<r<gl,enj r 1By Sn<eBy ,—1 then (Q;) defines a

prime ideal P; in (Bi[#1,y]os )7, where L= e, QT 5,» and we have

(Ql) O(al)xﬂﬁl - Pl 0(51)00 P,

(this argument has already been applied in Example 2.7, it is based on [Re4],
prop. 4.5, see also 3.5). Besides P; is a stable point of Bj[z1, Y], since Q) is a
finite set. Let P} be the image of P; in (Spec k[v][1,y])so- Since the morphism
Elvlnle1, Y)(21.y) = Bilr1,Y](2,,y) is étale, P} is a stable point and we have

(24) (Bilz1,yloo)s, = (Klulnl1, yloo)p @ncey) #(P1)

([Re4] prop 2.5, see (xil)). Let Fj := {F] . }o<r<g . 0<n<v(s;,) and let L' =
Hy-TI%_, F.. ey(f ) then () (k[v, 21, y]oo), is a prime ideal ([Re4], proof of prop.
4.5, see 3.5) and we have

(25) (F) (klnlr1, yleo) =P (k[uln[21, yloo) 1
and
(F1) Owyy..pr = Pl Oy Py

Now, for q; g,4+1, we have

~ ~ ~ [ 0q ~ (0q, =
(a.1) PJac(ign) = 7 (Zgt) = 7(Z) = (g — DBy + - +
+(n1 — 1)/8l,1 = Ni,q,0 a Bu,g.- Set €=y gzﬂl,gl — Bi,g,, then:

(b.1) for all n > 0, the class of Pgiiezin 3, )

5v7 (@) B is equal to the class of

ni,g, — ~Anii—1 > a@l,gl+1;e€+n . .
. . m lo P, hence —2L" ni
Mg 11 Q Lo eﬁl B lel;eﬁm odulo P;, hence 5v7 S a unit

in O(Cz

(c.1) for n’ > n, the class of W in O, p, belongs to ]31(’)(5[)0075,
Therefore:

(b’.1) for all n > 0, the class of % in O, p isisaunitin Og,

(c’.1) for n’ > n, the class of %& in O, p belongs to PO
(d-1) Qugi41:05---»Qugt1:e6-1 belong to (Ql)2Bl[[$17 Yoo

In fact, to prove (d.1) we argue by recurrence, and prove that, for 1 <r < g; + 1,

- ~ 2
(26) Qurn € ({Ql’rl;n}OSTIST—LOSHSEL,TI—1 ) Bl[xlvy]oo

for0<n<e ((nr-1—1B 1+ .4 (m1—1)B,) =e(B;, — Bir). Now, from
(24) and (25) we obtain that Fj,..., F},.,_, belong to (F';)? (kz[y,a:l,y]oo)m,

where ¢ = (h) + n1,9,81. 4, — Br.g,- Therefore (recall (23)), we conclude that:

(C1) o P

(a.2) y(Jac(f])) = yl(af’ ) = ¢+ (h). Let € denote this integer, then:

(b.2) foralln > 0, the class of Faiﬁ “in O(c,)  py is a unit. Besides, if by := %—Z

then the class of L“ — Hjee in O(cl)wpl/ belongs to P;.

(c.2) for n' > n, the class of ’Y;f in O(c,y_,p belongs to P/Oc,) _ pr.
(d.2) Fl;07 . .,Fl;ee_1 belong to (]—" )2 (k[y,xhy]oo)Ho.
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Now, let b be the smallest nonnegative integer such that g, := h®f; belongs to
kv, z1,y] and let {b; ,}(jr)es+ be a minimal sequence of nonnegative integers such
that

fl($1,~-,90d7yl) =

_ LY 42,g>+1 45,95+1
- H qjar 91 b2,0 2,950 7 bso 05,95 yLs+1y -+ Ld>, L1, Y1

b
(Gr)eTr 1,0 -+ 92,9 950 -+ 45,95

belongs to k[x1, ..., 24, y1], being y; an indeterminacy (recall (16) and (18)). There-
fore we have

(27) fl(xh...,xd,l'l)zo-
From (9) and (a.2) it follows that

0 i
(28) e :=v(Jac(f)) =v ((9;2) =v H q?jr” A
(4r)eT*

i.e. (i) in the statement of the proposition holds. From (b.2) and (c.2) we obtain
that (ii) also holds.

For 0 < s < g;+1, let b(l, s) be the smallest nonnegative integer such that gl’,s =
hb(l’s)fl”S belongs to k[v,z1,y] and let {b;(l,s)}(res- be a minimal sequence of
nonnegative integers such that

Zl,s =
(29) by, (l,s)
3,7ty / d2,95+1 45,95+1
H(j,T)EJ* C]]-’T 'glys b2 0 b2.gp 2" ") bso bé,gé s Ls4+15---5Lds L1, Yl
d2,0 92,9, 45,0 5,5
belongs to klx1,...,2zq4,yi]. Set @5 := v(z1,5), being x; 5 the class of z; 5 in Ox,

and 2 := {Z} sn}1<s<g, 0<n<eay,- Then, from (d.2) and applying also the second
assertion in (22), we conclude that

—1
F‘Z;O;-'-aFl;eqfl S (QUZZ)2 H Tj’r k[xlw--amdayl]oo
(4,m)eT* Ho

. . . 4j,g,;+1
where, if we consider h as an element of k(x1,...,zq), i.e. replace v; by b;qiﬁq”
75 77

950 95,9,

(resp. x;), for 1 < j < § (resp. 6+1 < j < d), then Hy € I1.meo T;Tl klz1, ..., %4
satisfies Hy = Ho mod PY, asin 3.5. In particular, if L := HO-H(J- e @j rieB.
; RET

we obtain that Fig,...,Fleq—1 € (QU Z)? (k[z1,..., 24, y)oo) - Setting G, =
LT[, Zi sem, . and applying (25) and that Q is a regular system of parameters
of O(Ad) pud, we have that (QU Z)(k[z1,...,2d,U)oo), 18 @ prime ideal.

o0y eE

Finally, applying (27) we conclude that

X’:Spec k[xlv"'axdvyd-l-lv"wyN} / (fd+17"'7fN)

is a d-dimensional complete intersection scheme in AY containing X and satisfying
(i) to (iii) in (b). Besides, if we set G = L - H;\;dﬂ [T9., z1,5:5, . then we conclude
that (QU Z))(k[z1,...,Zd,Yd+1,---,YN]oo)c 1S @ prime ideal such that

X/
(QUZI)OXQO,PCX,; :PeEOXf,O,PfE,'

Thus, the the proposition is proved. O
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Remark 3.7. Keep the notation in prop. 3.6, and fix [, d +1 <[ < N.
Denote Y := (Yi;n, ..., Yau, Vi), n > 0, and f/ ; = g% je{l,...,d,1}. Then,
applying Taylor’s formula it follows that, for n > e¢,

ee; €€

(30) -Fl;n+6q+1 Hl n+eel+1+ § § F‘ljz Jintee+1— z+ E Fllz }/ln—&-eel—&-l —1
j=11i=0 =0

where Hjpiet1 € k[X((Jl), .. ,Xg)] is the coefficient in t"Fet of fi(37 YEI) t)
(see [Rel] proof of lemma 3.2). In particular, since ¢ := v(Jac(f;)) = 1/(8;), it
follows that, for n > e¢,
8Fl‘n+eel+1 /
Glinteatl _ pr o p,
Y—l;nJrl L,l;ee; ¢ E
OF | ntee+1 { E',Z;EEF(H_TL) €P.p forn+1<n <n+eg
R

Yiin/+1 for n+ee < n'.

This idea, generalized to complete intersection schemes (see[Re2], proof of lemma
4.2) is a key point in the proof of [Re2], th. 4.1 (see 2.3 (vii) and (viii)). Proposition
3.6 is an improvement of the previous assertion to a similar property for 0 < n < ee;.

Theorem 3.8. Assume that char k = 0. Let X be a reduced separated k-scheme
of finite type, let v = vg be a divisorial valuation on an irreducible component X,
of X, and let e € N. Then

(31) embdim O x = embdim (’)(X:)T:peE =e (%E +1).

oo)revaeE

where EE is the Mather discrepancy of X with respect to E.
Moreover, if p: X — Ag, where d = dim Xq, is a general projection, more pre-
cisely a projection that satisfies (9), and Q@ ={Q; rin}(; e, eny r_1B,, 1<n<cB, -1

is a regular system of parameters of O(Ad) pad , then Q is a minimal system of co-
k/o00" eE

ordinates of ((Xeo)red, P25), that is, we have §Q = e (EE +1) and

PE)(E O(Xoo)redvpgg = (Q) O(Xoo)redvpgg

Proof. First recall that, since Q is a regular system of parameters of (’)( A7), P

([Re4], theorem 4.8) and p : X — A{ is a dominant morphism, we have
Pl Ox_px = (QOx_ px
([Re3], prop. 4.5, see (xi)). From this and Nakayama’s lemma, the second assertion

of the theorem follows (see also (20)). Therefore, we only have to prove (31), or
equivalently, the independence of the elements of Q in P, / (PX,)2.

Let X — X be an étale morphism such that each irreducible component of X is
analytically irreducible. Let Xo be an irreducible component of X whose i image is
X, and let 7 be a divisorial valuation on X, extending v. More precisely, if Y — X
Is a resolution of singularities of X and E is a divisor on Y such that v = v then
Y = Y ®x X — X is a resolution of singularities of X and we may choose a divisor
E on Y whose image on Y is E, and take 7 = = vg. Then OXOO,PE.E is étale over

Ox.P.p and, since Qg . = 0 we have kE(X) = kE(X) Therefore, it suffices

to prove the theorem for X , equivalently, we may suppose that X is analytically
irreducible.
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So, let us assume that X, is analytically irreducible. Then, we can apply
prop. 3.6. Let X’ be the d-dimensional complete intersection scheme contain-
ing Xo defined in 3.6 and keep the notation in prop. 3.6. We have O(x_)

red, Per =
O(X{,o)md,Pjg and O(X/oc;’eg = O(?)J’e)g (see (ii) and (ix)). Therefore, in order to
prove (31) we may suppose that X = X’. We will next describe the ring (’)X/w\peE,
where X = X’ and P.p = Pe){E. We will follow the ideas in example 2.7 (or corol.
4.6 in [Re3]), where an analogous description is made.

The residue field of PA7 is

d
K(PfE) =k ({le}n>em1 U {Xj;n} 2<j<d> [{Wj,r}(j,r)ej*] / J

n>em;

where we set m; := 0 for § + 1 < j < d (see (11)), W, is the class of Q

r.g;eB
and J is the ideal generated by
7 Njr .
32 P ’ujvTal(ij) ” W2192+1 ijl»gj*1+1
( ) Jyr1 ij,o ij,v-—l ’ Wb2,0 Wb2,y2 ot bj—1,0 bj—1,9;_4
o Wire, Wi o Walg, Wio Wil

(recall 3.3 and 3.4). From the property (14) satisfied by P; .1 and Hensel’s lemma,
it follows that we can define an embedding x(AY) < O(Ad)w,Pjg sending Xj.,, to
Xjm € O(Ad) for j = 1,n > emy, and 2 < j < d,n > emy, sending Wi o

i
to X1,em, and, recursively, for (j,r) € J*\ {(1,0)}, sending W; , to a root of the
polynomial obtained from (32) by replacing W .+, (j',7') < (j,r), by its image in
O —_—

(Ad)o, PAL this root exists by Hensel’s lemma. Then we have
o0y eFE

—

d
(%) oo, Pl

d
o = R(PﬁE)

{Xj,r;n} _(Gmeg _
L enj r—18;,_1<n<ef; .
—_—

J— —_—
where the image of X ,.,, in O(Ad)x,Pg\g is (), j,,,- Besides OXOQ’PE)% is a quotient of

K(Pd)

{Xjrn} Gryed where the residue field x(PX%;) of P, is a
enjr—1B; . 1<n<eB;, |

finite field extension of /Q(Pf};).

Now, fix I, d+1 <1 < N. Arguing analogously we obtain that
ri= R(P) (WYL /0 = w(P).

where W, s is the class of Zj sz, and J; is the ideal generated by the relations

on {W; s}9", induced by GZ,s;u(f{ N—Bra—rt e Bray)’ 2 < s < g (see (29)). Ap-

plying recursively Hensel’s lemma to these relations we can define an embedding
Ky < OXWPXE sending X;., to X;.,, € OXx,P’va for j = 1,n > emy, and

—

2 <j <dn > emj, and sending Wi to Xi.em, € OXOO,P); In particular,
for each n > 0 we have defined Yl(g) € x; such that Y, — Yl(o) € (QUZ). Ar-

in
guing recursively on m > 1 and n > 0, with the lexicographic order on (m,n),
from {Fj.ce,+n}n>0, applying property (ii) in prop. 3.6 (b) and Hensel’s lemma,

and reasoning as in corol. 5.6 in [Re3] it follows that, for m,n > 0, there exists
(m)
Yi;n € 'ﬁ[{XJ}T;"}(j,r)ej,enjm713j,r,1§n<eﬁjyr] such that,

(33) Feel-i-n = gg’n) (}/l;n - }/lfz’b)) mod (Q U Zl)m
in the ring (k[z1, ..., %4, Y1) (ou z,) Where L™ s a unit. More precisely, L™
F1.ce, € (QU Z;) where recall that f]; := %.
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Therefore, Yl(;n) - YZ(TT) € (QU Z)™ by (33), hence we have defined series }N/l;n €

Ky {[{X3”"}(jm)ej,en,-,rflﬁj,r,l§n<eEjJ} ., Y., = lim,, Yf;n) and we conclude that

N
K(PY) = w(PZ) [(Wistawes] /D i
l=d+1

{Xjﬂ“;"} _(Gmeg . / <{Fl;n} d+1<I<N )
en],T—lﬂj,T'71Sn<eﬁj,7- Osnseq—1

where, ford+1 <[ < N, 0 < n < e —1, }7};" is obtained from Fj,, by substi-
tuting Y. by Yien, 0 < 0/ < n (see (25) in [Re3]). In fact, we have applied the
definition OX/OO,\Rj; i= limey, Ox_ px /(PJp)™" and also that P,Ox _ px =
(Q U Z) OXoo,Pe);; and OXoo = k’[:l?l, e Ty Yd41s - yN]oc /({ﬂ;n}d+1§l§N,n20) .
Besides, if Zl,s;n denotes the series obtained from Z; ;. by substituting Y;.,,» by
}Nflm, 0 < n' < n, then we have

and

(34) Ox_ px = K(PJ)

(35) ZZ,S;TL e <{X],r,n} _Greg > fOI‘ d+ ]. S l S N,O S n S 66[75.

en; r—18; ,._1<n<eB; .

. d
Since Fjl;()7 PN 7F‘l;eelfl S (QUZl)2 K(PﬁE)[[{X-j’r;n}(j,r)6;776”]',7‘—lﬁj7r71§n<eﬁj’r]] by
(iii) in (b) in prop. 3.6, applying (35) we conclude that that

2
Eme ({Xj,rm} _Gmea > ford+1<I<N,0<n<;e¢g-1.

enjy"‘*lﬁjﬂ‘—l §n<€ﬁj,r

Therefore, the images of {Xjrn} define a basis of

j7r)€~77en.7yT—1Bj,7'—lSn<e§j,'r
PgSOXWPﬁE/(Pe)%OXWPgE)Q. Thus we obtain(31), and this finishes the proof. O

Remark 3.9. Let X be a reduced separated scheme of finite type over a
field k£ of characteristic zero. Let P be any stable point of X, and suppose that
X is nonsingular at the center P, of P and that P, is not the generic point of X.
There exists a birational and proper morphism 7 : Y — X such that the center of
vp on Y is a divisor E, and e € N such that vp = evg ([Re3], (vii) in prop. 3.7,
see (v)). Let PY € Y, whose image by 7o is P, let p : X — A{ be a general
projection and let PA” be the image of P in (Ad)oo. Then kp(A?) = kg where kg
is the Mather discrepancy of X with respect to E, and we have dim (’)(Ad)wmd =

e kg + dim Oy_ pv (see (xiii)). Recall that P O P2, hence PAY D PEA]; and, if
Q is a regular system of parameters of O(Ad)wPAg’ then @ C P. Note that, since
vp = evg, the proof of prop. 3.6 extends to this case, and we obtain that the
complete intersection scheme X’ and the set Z defined in proposition 3.6 for the
valuation vg and e also satisfy the properties obtained replacing P.g by P in (i) to
(iii) in prop 3.6 (b). Then, from the proof of theorem 3.8 it follows that

embdim Ox_) ., p = embdim (’)(X/uxd’p =e (%\E +dim Oy, pv).

red;



21

4. A LOWER BOUND FOR THE DIMENSION

Recall that, given a divisorial valuation » = vg on X, the Mather-Jacobian
log-discrepancy of X with respect to F is defined to be

CLMJ(E;X) = EE — Z/E(JQCX) + 1
where Jacy is the Jacobian ideal of X (see [I]).

Theorem 4.1. Assume that char k = 0. Let X be a reduced separated k-scheme
of finite type, let v = vg be a divisorial valuation on an irreducible component X
of X, and let e € N. Then we have

dimOZm\P)% > eapy(E; X).
In particular, if X is normal and complete intersection then
dlmOXoo,Pj% Z e (kE+1)

Proof. Tt is always possible to embed X in a complete intersection scheme X’ such

—

that EE(X) = EE(X’) and vg(Jacx) = ve(Jacxs). Hence, since Ox_yp., =
Oxr) PX! (see (ii) and (ix)), it suffices to prove the result for X’. That is, we may
assume that X is a complete intersection, more precisely, we may suppose that

X = Spec k[x1,...,xn]/(f1y -\ [N=d)-
We may also suppose that (9) holds, i.e.
(9) ordg 7*(dx1 A ... ANdzy) = EE

For simplicity in the notation we will prove the result when e = 1; the proof when
e > 1 follows in the same way. Let p : X — A¢ be the projection on the first d
coordinates, let 7 : Y — A% be the composition n = p o, let P]‘éd be the image of
PY by s and let Q = { rin ) (r)ed, njr1By 1 <n<B, 1 be a regular system of

parameters of O(Ad)m,Pgd associated to {q;,}(j,res, as in 3.5. So we have

. =
(36) P O(x.)pea,py = ({Qj,r;n}(j,r)ej, nj,,,vflﬁj,r_lgngé,,r—l) O(X e )rea P+

(theorem 3.8).
Let us consider the following (N — d) x (N — d)-matrix with coefficients in

k[ml, N ,LL‘N]:
A < ofi >
0T+ j 1<i,j<N—d

and let d;llyr denote the determinant of the r x r- minor of A defined by the rows

i1,...,%, and the columns ji,...,j,. After reordering {xqy; }é\:ld we may suppose
that

1,0 . o1\ Ve .
(37) vp (dl"“’i) _ 1nf{1/E (dl’“"i_l’j)} for 1 <i<N—d.

For 1 <i< N —d set

1.4 . afl Nd . i1V —d
6; *= Vg (d1:::::i> € = mf{yE ( )} = 1nf{1/E (d})}jzl

0%+ j j=1

and note that §; = €; and dy_q := vg(Jacx) by (9). It can be proved by recurrence
that, for 1 <I< N —-d,1<1i,57 <N —d, we have

Tonl=14  gl,0l—=2 _ gl,.,0—=20  gl,..,0—1 1y, l—2,0 1,.,0—2,1—1
(38) dl,.A.,l—l,j'dl,.A.,l—Q - dl,...,l—Q,j'dl,...,l—l - dl,...,l—Q,l—l‘d1,...,l—2,j :
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Let f] o= 50, 1 <i < N, thus f{ ;,, =d}, 1 <i <N —d Let 3,0 Ff . t"
(resp. 3,50 D;i ;Tnt”) denote the image of f] ; (resp. d“’ ’“) inklry,..., N0
Given a; > €; and n > (a1 —€1), applying Taylor’s formula to f1(wo+t"~ (‘“’el)wl),
where wg = >\ 0(“1 )-1 z; t' and wy = Zian(alfq) x; t'~(n=(e1=€1)) e obtain

that for n > ny :=2a; — € (1.e. 2(n — (a1 —€1)) > n+€1) we have

F1;€1+7L = H{;n(KO’ s ?Xn—(al—el)—l) + Z Z Fll,i;rXi;'fl-‘rﬁ—?“

i=1r=0

where Hy ,, € k[Xy, ..., X, (4, _c,)-1] (see [Re2], proof of theorem 4.1, or equality

(30) in remark 3.7, where the same argument is applied). Hence, there exists a

polynomial Hy., € k [XO, v X (g —en) =10 1 X } 1<j<d } such that
n—(a1—e1)<n’<n+te;

Fl;el-l—n = Hl;n(l@,--- Xn (a1—€1)— 17{X_7n} 1<J<d )Jr

n’<n-4e€;

N—d al
1 1
+ E § Di;TXdJri;nvLEl*T mod <{Di§5}1<i<N‘i>‘
i=1 r=e;

0<s<er

(39)

It follows that, for n > n; there exists

1
X(§+)1 n € k {{ij/} 1<j<a U {Xd+1 in/ }0<n/<n1 ) {Xd+1n }2<1<N d:|
0<n’<n4e; 0<n/<n | p1

1lieq

such that

Fre4n = D%;sl (Xd+1;n Xd.:,-)1 n) mod ({Dz s}1<l<N o U{F 16,40/ oy <n/ <n>

<8<€1
in the ring (k[z1,...,2N]x0) D . Besides, it can be proved by recurrence that, for
€1
n>n1—|—a1—61,2<z<N dand0<r<a1—glwehave
aXé}i-)l +
40 __arim D;, 61 s gl d D! L '
(40) OXdvim—r Z DL~ T mo ({ i 9}10<<§2€1d)
where
1 1 b
By_.:= ) (-1) v Dliey k)™ Dl 4k,
r—s - by!---by,! (D%el)

ki,..km b1y bm

with k1,...,km,b1,..., b, runnig over all positive integers satisfying k1 < ko <

< ky andzl 1bk‘ =r—s,and b:=) " b.

Analogously, taking as > €2, applying Taylor’s formula to fa, and then replacing
Xda+1,n by X¢§+)1 v for n’ > ny, ie. considering the image F2(;16)2+n of Foe,qn in
k {Xj;n'} 1<j<d U {Xd—i-l in’ }0<n’<n1 U {Xd+z n’ }2<L<N d , We obtain that

0<n’'<ex+n 0<n’<n D1
€1
forn >>0,2<i<N-—d, 0<r<inf{(a; —€1),(az — €2)}, we have

(1) r 12

OF5. Dy
(A1) et = 3 Skttt Bl wmod (DL }ucse o UDEJucion o).
d+in—r 5—0 1;€1 0<s<e€1 0<s<e2

In fact, to conclude (41) we have to apply Taylor’s development as in (39) and also
the identities (40). Hence, if (a; — €1) and (ag — €2) are bigger than (d — §; — €2),
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forn >> 0,0 <r <inf{(a; —€1) — (62 — 61 — €2), (a2 — €2) — (92 — 61 — €2)} and
2 <i< N —d, we have

(1) r 1,2
8F2 ;02—01+n _ Z Dl 7;02+s Bl
8Xd+i,n—r pord D}’El r—s

mod ({Dl S}1<L<N aU {Dz s}1<1<1\7 aUJ {D} 225}1<1<Nd> .

0<s<e1 0<s<ez 0<s<d2

In particular

12 (1)
OFypsen _ Dl 0 OFabesiin _ o o
0Xarin DL 0 TOX.n orm =
d+i,n 1ieq d+i,n’

This implies that there exists ny such that for n > no there exists

1
Xc(l—&-)Z-n €k {ij/} 1<j<d U {Xd+i;n/}1gig2 U {Xd—&-i;n/}Sgingd
’ n/<n+dx—081 n’<n; n’<n D} Di ; s
JE1 2

such that
1,2
Lo, (1)
Fap—b14n = i (Xa+2m — Xg/0.,)
lieq
n+(62—01—€2)
mod {Dz 1517 1 i; 52} 1<i<N—d U {F1e4n} n'=ni+1 U {F2:6,—e+n' g <n’<n
17]<2
51<01,52<d2
in the ring (k[z1,...,ZN] )D% LD and
aXdl) r s
+2;n 1,1, +s 2 1,2
SV = — Z = B; , mod {Dl 5}1<1<N aU{D 7 hicisn—a
8Xd+i;n_,~ 1 2 s 1<5<2 0<5<d2
14,02
0<s<e1
fOI‘ 2 S 7 S N*d and 0 S T S inf{(al—el)—(§l—6l_1—el)—. . -7(52761762)}1§l§2a
where we set g := 0.
Now let
1,2, ,N d—1,N—d
- {Dzs}1<l]<N dU{Dlls} 1<i gN_dU...U{D Ned—1irs } 1<i<N-_d
0<9<€J 0_3<62 ” 7 0<s<dN_a

and Dy := Df,, - D%g 5 Dig ’%73;6N7d. Recall that, by (37) and since §; =

I/E(d1 ) we have that, for each element in D, its class in Oy px isin P and
also that the class of Dy is a unit in Oy PX - Following as before we obtain that,
for 1 <i < N —d, given a; > ¢;, there exists n; such that for n > n; there exists

X(g}i-)z,n ck {Xj;n’} 1<j<d U {XdJr] in/ } 1<]<1 U {Xd+g in’ }z+1<]<N d

0<n’'<n+d;—08;—1 n'<n n’'<n Do
satisfying
Dlw’lj‘& 1
Fiss,—5,_14n = DI — Bt (Xagim — Xoin)
(42) ’L*l 51 1
mod (D U {Fj;5j_5j71+n } 1<j<i U {Fi;éi—6i71+n’}ni<n’<n>
n;<n'<+n+(8;—d8;i—1—¢€;)
in the ring (k[z1,...,2N]o0) p,, and
8X(1) —1,2
(43) T—S

—_ddim Z ’l 1]5+s B! mod (D)
OXdjin—r 5=0 s,
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fori<j< N-—dandr <inf{(a;—¢)— (0, —0j—1—€)—...—(0; —6—1 — fi)}lglgi
where
1,. 1,. b,
i b b! (D 1,. ,1,5 +k1) (D ,z,& Kk )
B, = Z (*1)()!...(, ! Dl b
P T Y 1 m: ( ,1,57)

ki,...,km,b1,...,b, running over all positive integers such that k1 < ... < k,
and D", bjk; =1 —s, and b := >." | b;. Note that from (43) and applying the
equalities (38) it follows that for n >> 0, the image FZ(+)1 Sii1—bitn of Fiy1:5,11—5,4n

ink |:{X] n’ } 1<j<d U {Xd+] n/ } 1<321 U {Xd+J n }1+1<<J<N d satisfies
<n

<n'<e;jr1+n '<n Do
PYas) S r Pl ,zH:;l 5
i+150;41—04 1,...,1, i
DAl —ditn 3 W00 ®E pi  mod(D).
aXCH‘jv"_"" s=0 ::7,,51
fori+1 <j < N—dandr < inf{(a;—€)—(6;—01—1—€;)—. . .—(0i41—0i—€:) }r<i<it1-

This is used in the recurrence reasoning. Therefore, taking a; > € + (6; — §j—1 —
€)+ ...+ (ON—d — ON—d—1 — €n—q) for 1 <1 < N —d, we conclude the existence
of nj, 1 <i <N —d,and X\, ., 1<i< N —d, n>n;, satisfying (42) and (43).

From the previous discussion and arguing by recurrence on (m,i,n), m > 1,1 <
i1 < N —d,n>n;+ 1, with the lexicographic order, we obtain

Xé-i—z)n € k {XJ n/ }1<J<d U {Xd+j n’ }1<J<N d:|D
0

<n’<n;
satisfying
1oi
_ 1,...,3;0; (m)
Fi§5i*5z‘71+n = Dl"“’i_l (Xd+i;n - Xd+1';n)
1,‘..,1-71;51‘71
mod (D)m ({FJ 30;—65_14+n’ }1<]<N d)
n;<n’

in (k[x1,...,7N]o0)p,- Thus we have

+1 m
XéTi;n) - X;Tz),n € (D) <{F] 30 =0 _1+n’ }1<J<N d> .

nj<n’
Recall (36) and that the image of D in Ox_ px is in PZ. Fix an embedding
k(PE) < O;o.;}; sending Xj., to Xj,, € (9;“;5, for 1 <j<d, n>m; (see
the proof of theorem 3.8). Then, for 1 < ¢ < N —d and n > n,;, the polynomials
{Xé:rfgm}mzl define a series

Xarim € K(P)

{Xj,r;n} _Gmeg U {XdJrj RO Xd+] n’ }1<]<N d]]

Njr—1B8; r_1<n<B; <n'<n;

where we identify X .., with Q] r:n» @ i the proof of th. 3.8, and where Xd_w o €
OX/O.;E‘ is the image of the class of X4 ., in /{(P})E(), for1<j<N—-d, 0<n <
n;. Setting Yyt . = Xatjm — Xatjm, 1 <j < N—d, 0<n' <nj, we conclude
that OZ.;;‘ is isomorphic to

k()

{Xj»'f;n} (G,mET U {Yd+j;n'}1SjSNd‘|‘| / ({ﬁ],n} 1<j<N-d
n'<n;

nj,r— 1ﬂJT 1<n<BJT n<§;—d8;_1+n;

)
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where for 1 < j < N —d,0<n <d; —d—1 +ny, ﬁj;n is obtained from Fj,, by
substituting Xgyin by Xgyim, for 1 <i <N —dand 0 <n' <n, and Xgyj,n by
Xatjim + Yapjm for 1 < j < N—d, 0 <n <n;. Applying Krull’s theorem we
obtain that
o R N—d N—d R
dim OXoo,Pe}% > kE+1+Z (an].)* Z (5i*5i—1+ni+]—) =kg+1-0n_q= aMJ(E).
i=1 i=1

Finally, if X is normal and complete intersection, we have ap;j(E) = kg + 1 ([EM]
appendix). Hence we conclude the result. O

4.2. Recall that, given an extension of fields k¥ C K, a K-wedge on X is a k-
morphism Spec K[[¢,t]] — X; equivalently it is a K-arc on X (see (3)). Given a
birational and proper k-morphism p : Y — X and a stable point P of X, we say
that p satisfies the property of lifting wedges centered at P if, for any field extension
K of the residue field k(P) of P in X, and for any K-wedge ¢ : Spec K[[¢,t]] = X
on X whose special arc is P (i.e. P is the image in X, of the closed point of
Spec K[[¢]]), there exists a K-wedge ¢ : Spec K[[¢,t] — Y on Y such that pod = 6.

In [Re3], corol. 5.12, it is proved that, if ¥ = v is an essential divisorial valuation
on X, then, the following are equivalent:

(i) dim OZO,\Pg =1 and Spec OZ;;}%( is irreducible.
(iii) For every resolution of singularities p : Y — X, p satisfies the property of
lifting wedges centered at Pg.
(iii’) There exists a resolution of singularities p : ¥ — X that satisfies the
condition in (iii), and such that the center of v on Y has codimension 1.

T. de Fernex and R. Docampo [dFD] have proved that, if vg is a terminal
valuation then condition (iii) above holds. In fact, this follows from the proof of
th.1.1 in [dFD], note that their statement in th.1.1 is weaker to condition (iii) (see
[Re2], th.5.1 or [Re3] section 5). Terminal valuations are the divisorial valuations
defined by the exceptional divisors of a minimal model of X, hence they are essential
(see [dFD]).

From this and theorem 4.1 above, corollaries 4.3 and 4.4 below follow:

Corollary 4.3. Let X be a reduced separated scheme of finite type over a field k
of char k = 0. Let v = vg be an essential divisorial valuation on an irreducible
component Xg of X. Consider the following conditions:

(1) vg is a terminal valuation.

(2) dim Oy _ px = 1.

(3) aps(E; X) < 1, in particular kg(X) < 0 if X is normal and complete

intersection.

We have that (1) implies (2) and (2) implies (3).

The following example shows that (2) does not imply (1). It has been pointed
out to us by M. Mustata.

Remark 4.4. In [dFD], example 6.3, the toric variety X defined by the
cone o in R? spanned by the vectors (1,0, 0), (0,1,0) and (1, 1,2) is considered, and
the divisorial valuation vg defined by (1,1,1), which is not a terminal valuation.
It can be proved that dim O;.;;é( = 1. In this case we have kg(X) = 2 and
ve(Jacx) = 3, hence aprj(E; X) = 0.
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Corollary 4.5. Let X be a reduced separated scheme of finite type over a field k
of char k = 0. Suppose that X is normal and complete intersection. Let v = vy be
an essential divisorial valuation on an irreducible component Xy of X and suppose
that kg > 1. Then, for every resolution of singularities p : Y — X such that
the center of v on'Y has codimension 1, p does not satisfy the property of lifting
wedges centered at Py, i.e. there exist a field extension K of k(Pg) and a K -wedge
¢ : Spec K[[€,t]] = X on X whose special arc is Pg and which does not lift to Y.
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