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MATHER DISCREPANCY AS AN EMBEDDING DIMENSION IN

THE SPACE OF ARCS

HUSSEIN MOURTADA, ANA J. REGUERA

Abstract. Let X be a variety over a field k and let X∞ be its space of arcs. We

study the embedding dimension of the complete local ring Â := ÔX∞,PE where PE

is the stable point defined by a divisorial valuation νE on X. Assuming char k = 0,

we prove that embdim Â = k̂E + 1 where k̂E is the Mather discrepancy of X

with respect to νE . We also obtain that dim Â has as lower bound the Mather-
Jacobian log-discrepancy of X with respect to νE . For X normal and complete
intersection, we prove as a consequence that points PE of codimension one in X∞
have discrepancy kE ≤ 0.1

1. Introduction

In 1968, J. Nash introduced the space of arcs X∞ of an algebraic variety X in
order to study the singularities of X. More precisely, he wanted to understand what
the various resolutions of singularities have in common; his work being established
just after the proof of resolution of singularities in characteristic zero by H. Hiron-
aka. Nash’s work was spread by H. Hironaka and later by M. Lejeune-Jalabert.

The development of motivic integration gave powerful tools for studying finite-
ness properties in the (not of finite type) k-scheme X∞. Two main ideas in J.
Denef and F. Loeser’s article [DL] appear in this work: the change of variables for-
mula in motivic integration and the stability property, which had already appeared
in Kolchin’s work on differential algebra. More precisely, based on this stability
property, in [Re1] and [Re2] (see also [Re3]) we introduced stable points of X∞,
which are certain fat points of finite codimension in X∞. We proved that, if P is

stable then the complete local ring ÔX∞,P is a Noetherian ring. From this result we
proved a Curve Selection Lemma ending at stable points of X∞. Stable points form
a natural framework whenever induced morphisms η∞ : Y∞ → X∞ are consider,
where η : Y → X is of finite type and locally dominant ([Re2] and [Re3]).

Mori theory is also related to the study of the space of arcs. The recent work
of T. de Fernex and R. Docampo [dFD] (see also [dF2]) has confirmed this rela-
tionship. In fact, a divisorial valuation ν = νE on X defines a stable point PE on
X∞ and, assuming the existence of a resolution of singularities and applying the
previous Curve Selection Lemma, we can characterize dimOX∞,PE = 1 in terms
of a property of lifting wedges centered at PE ([Re3]). Then, de Fernex and Do-
campo’s result, which gives an approach to Nash’s project, can be understood as
follows: assuming char k = 0, we have that if νE is a terminal valuation then

dimOX∞,PE = dim ÔX∞,PE = 1. On the other hand, several examples of a nor-
mal hypersurface X and an essential valuation νE for which the property of lifting
wedges centered at PE does not hold have been studied ([IK], [dF1], [JK]). One of

1Keywords: Space of arcs, embedding dimension, Mather discrepancy.
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the key points in producing such examples is to require kE ≥ 1 where kE is the dis-
crepancy of X with respect to E. This suggests a connection between dimOX∞,PE

,

or dim ÔX∞,PE
, and geometric invariants of (X, νE).

Understanding the algebraic properties of the rings ÔX∞,P or of OX∞,P , P being
stable, is an important problem; it leads towards the study nonconstant families
of arcs in X∞. In particular, one of our main goals is to compute dimOX∞,P . In
general, for any stable point P , an upper bound on the dimension of OX∞,P fol-
lows from the stability property: Expressed in terms of cylinders, stable points are
precisely the generic points of the irreducible cylinders in X∞ and dimOX∞,P is
bounded from above by the codimension as cylinder of the closure of P in X∞ (see
(4) in 2.3). If X is nonsingular at the center of P in X, then the ring OX∞,P is
regular and the dimension is equal to its upper bound, but in general the inequality
in the bound is strict. From the change of variables formula in motivic integration

it follows that the codimension as cylinder of the closure NE of PE is equal to k̂E+1

where k̂E is the Mather discrepancy of X with respect to E, introduced in [dFI]

(see also [I]). Hence dimOX∞,PE ≤ k̂E + 1 .

In this article we study the embedding dimension of O(X∞)red,PE
. We prove that,

assuming char k = 0, we have

(1) embdim ÔX∞,PE
= embdim O(X∞)red,PE

= k̂E + 1

that is, the embedding dimension of O(X∞)red,PE
is equal to the codimension as

cylinder of NE . Moreover, we describe explicitly a minimal system of coordinates
of (X∞)red at PE . Applying this, we obtain the following lower bound:

(2) dim ÔX∞,PE
≥ k̂E − νE(JacX) + 1

where JacX is the Jacobian ideal of X. In particular, if X is normal and complete

intersection then dim ÔX∞,PE ≥ kE + 1. Hence, in this case, dimOX∞,PE = 1, or

dim ÔX∞,PE
= 1, implies kE ≤ 0.

The graded algebra associated to the divisorial valuation νE plays an essential
role in this study. The natural coordinates of (X∞)red at PE are obtained by spe-
cialization techniques to the graded algebra of νE adapted from B. Teissier ([ZT],
[GT], [Te]). These techniques are applied to a general projection X → Ad and the
induced valuation on Ad. Such coordinates are introduced in [Re4]. In section 3 of
this paper we prove that they also provide minimal coordinates of (X∞)red at PE

and we conclude (1). The way we obtain this proof is, with the language in [Te],
embedding X in a complete intersection X ′ which is an overweight deformation of
an affine toric variety associated to the divisorial valuation νE . In section 4 we

prove the lower bound for dim ÔX∞,PE
in (2); for this we embed X in a general

complete intersection X ′. The important fact used here is that X can be substi-

tuted by X ′ in order to compute the local rings ÔX∞,PE
([Re3], cf. 2.3 (ii) and (ix)

of this paper). All these results extend to arbitrary stable points P of X∞.

Acknowledgements. We are grateful to Monique Lejeune-Jalabert, for so many
enlightening discussions during so many years. We thank O. Piltant for his sugges-
tions and comments.
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2. Preliminaires

2.1. In this section we will set the notation and recall some properties of the
space of arcs and their stable points. For more details see [DL], [EM], [IK], [Re3].

Let k be a perfect field and let X be a k-scheme. Given a field extension k ⊆ K,
a K-arc on X is a k-morphism Spec K[[t]] → X. The K-arcs on X are the K-
rational points of a k-scheme X∞ called the space of arcs of X. More precisely,
X∞ = lim←Xn, where, for n ∈ N, Xn is the k-scheme of n-jets whose K-rational
points are the k-morphisms Spec K[t]/(t)n+1 → X. In fact, the projective limit
is a k-scheme because the natural morphisms Xn′ → Xn, for n′ ≥ n, are affine
morphisms. We denote by jn : X∞ → Xn, n ≥ 0, the natural projections.

For every k-algebra A, we have a natural isomorphism

(3) Homk(Spec A, X∞) ∼= Homk(Spec A[[t]], X).

Given P ∈ X∞, with residue field κ(P ), we denote by hP : Spec κ(P )[[t]] → X the
κ(P )-arc on X corresponding by (3) to the κ(P )-rational point of X∞ defined by
P . The image in X of the closed point of Spec κ(P )[[t]], or equivalently, the image
P0 of P by j0 : X∞ → X = X0 is called the center of P . Then, we denote by νP
the order function ordth

♯
P : OX,P0 → N∪{∞}. It also follows from (3) that a K-arc

on X∞ is equivalent to a K-wedge, i.e. a k-morphism Φ : Spec K[[ξ, t]] → X.

The space of arcs of the affine space AN
k = Spec k[x1, . . . , xN ] is (AN

k )∞ =
Spec k[X0, X1, . . . , Xn, . . .] where for n ≥ 0, Xn = (X1;n, . . . , XN ;n) is an N -uple
of variables. For any f ∈ k[x1, . . . , xN ], let

∑∞
n=0 Fn tn be the Taylor expansion of

f(
∑

n Xn tn), hence Fn ∈ k[X0, . . . , Xn]. Equivalently,
∑∞

n=0 Fn tn is the image of
f by the morphism of k-algebras OAN

k
→ O(AN

k )∞ [[t]] induced in (3) by the identity

map in (AN
k )∞. If X ⊆ AN

k is affine, and IX ⊂ k[x1, . . . , xN ] is the ideal defining
X in AN

k , then we have

X∞ = Spec k[X0, X1, . . . , Xn, . . .] / ({Fn}n≥0,f∈IX ).

Analogously, if X = Spec k[[x1, . . . , xN ]] / IX then we have

X∞ = Spec k[[X0]][X1, . . . , Xn, . . .] / ({Fn}n≥0,f∈IX ).

2.2. Let X be a separated k-scheme which is locally of finite type over some
Noetherian complete local ring R0 with residue field k. Note that X may be a

reduced separated k-scheme of finite type, and it may also be a k-scheme Spec R̂,

being R̂ the completion of a local ring R which is a k-algebra of finite type. In
[Re3] the stable points of X∞ were defined as follows:

First, if X is affine and irreducible and P is a point of X∞, i.e. a prime ideal of
OX∞ , then the following conditions are equivalent:

(a) There exist n1 ∈ N, and G ∈ OX∞ \ P , G ∈ OXn1
such that, for n ≥ n1,

the map Xn+1 −→ Xn induces a trivial fibration

jn+1(Z(P )) ∩ (Xn+1)G −→ jn(Z(P )) ∩ (Xn)G

with fiber Ad
k, where d = dimX, (Xn)G is the open subset Xn \Z(G) of Xn

and jn(Z(P )) is the closure of jn(Z(P )) in Xn with the reduced structure.
(b) There exists G ∈ OX∞ \ P such that the ideal P (OX∞)G is the radical of

a finitely generated ideal of (OX∞)G.

We say that the point P is stable if the previous conditions hold ([Re2] and [Re3],
see also J. Denef, F. Loeser [DL], lemma 4.1, and M. Lejeune-Jalabert [Le] for the
stability property on the maps jn+1(X∞) → jn(X∞)).
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In general, i.e. for X not necessarily irreducible, the set of stable points of X∞
is the union of the sets of stable points of the irreducible components of X. Besides
this union is disjoint (see (i) in 2.3 bellow).

Recall that a subset C of X∞ is a cylinder if it is of the form C = j−1n (S) for
some n and some constructible subset S ⊆ Xn ([EM], sec. 5). Hence, from (b)
above it follows that the stable points of X∞ are precisely the generic points of the
irreducible cylinders.

2.3. The next properties of stable points will be used in the next sections. The
first ones, (i) to (iv), are direct consequence of the definition of stable points and
of the stability property in [DL], and property (v) applies also well-known facts of
the theory of valuations:

([Re3], prop. 3.7) Let P be a stable point of X∞, then the following holds:

(i) Let X0 be an irreducible component of X such that P ∈ (X0)∞. Then, the
arc hP : Spec κ(P ) [[t]] → X0 defined by P is a dominant morphism.

(ii) Let U be any irreducible open affine subscheme of X which contains the
image of hP , then

OX∞,P = OU∞,P .

Moreover, there exits X ′ ⊆ AN
k a complete intersection scheme which

contains U and of dimension dimU and, for any such X ′, we have that

O(X∞)red,P
∼= O(U∞)red,P

∼= O(X′
∞)red,P

where we also denote by P the point induced by P in (X∞)red and in
(X ′∞)red. Therefore X∞ is irreducible at P , i.e. the nilradical of the ring
OX∞,P is a prime ideal.

(iii) The residue field κ(P ) of P on X∞ is a countably pure trascendental ex-
tension of a finite extension of k. This implies that κ(P ) is a separably
generated field extension of k.

(iv) dimO
jn(X∞),Pn

is constant for n >> 0, where jn(X∞) is the closure of

jn(X∞) in Xn, with the reduced structure, and Pn is the prime ideal P ∩
O

jn(X∞)
. Since

(4) dimOX∞,P ≤ supn dimO
jn(X∞),Pn

this implies that dimOX∞,P < ∞.
(v) Let νP be the valuation on the function field K(X0) of X0 defined by the

arc hP , X0 being the irreducible component of X such that P ∈ (X0)∞.
Then, either P0 is the generic point of X and in this case νP is trivial, or
νP is a divisorial valuation.

Property (i) is equivalent to the statement in [EM] lemma 5.1 for cylinders. In
property (iv), the right hand side term in (4) is the definition of the codimension
of the cylinder Z(P ) (see [EM] sec. 5); but the inequality in (4) may be strict.
For property (v) in the setting of cylinders, see [dFEI] and also [ELM]. The next
property compares the local rings at stable points of the space of arcs of X =

Spec R, where R is a local ring which is a k-algebra of finite type, and of of X̂ =

Spec R̂, where R̂ is the completion of R:

(vi) Let P be a stable point of X∞, where X = Spec R as before, whose center

in X is the maximal ideal of R. Then P induces a stable point in X̂∞, that
we also denote by P , and we have

ÔX∞,P = ÔX̂∞,P .
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The following finiteness property of the stable points, which is the main result
in [Re2], is expressed in terms of the local ring OX∞,P , or more precisely, its formal
completion. It implies a Curve Selection Lemma in X∞ ending at a stable point P
([Re2], corol. 4.8). Property (viii) below helps to understand this local ring.

Finiteness property of the stable points ([Re2] th. 4.1). Let P be a stable point
of X∞, then:

(vii) The formal completion ̂O(X∞)red,P of the local ring of (X∞)red at a stable
point P is a Noetherian ring.

(viii) Moreover, if X is affine, then there exists G ∈ OX∞ \P such that the ideal
P
(
O(X∞)red

)
G

is a finitely generated ideal of
(
O(X∞)red

)
G
.

(ix) ([Re3] th. 3.13 if char k = 0) Moreover, we have ÔX∞,P
∼= ̂O(X∞)red,P .

From this it follows that, if P is a stable point of X∞, then the maximal ideal

of ÔX∞,P is P ÔX∞,P , and even more,

(5) embdim ÔX∞,P = embdim O(X∞)red,P .

(see [Bo] cap. III, sec. 2, no. 12, corol. 2).

Stable points behave well under birational proper k-morphisms and, if we assume
that char k = 0, then also under k-morphisms locally of finite type which are locally
dominant:

(x) ([Re3] prop. 4.1) Let π : Y → X be a birational and proper k-morphism,
then the morphism π∞ : Y∞ → X∞ induces a one to one map between the
stable points of Y∞ and the stable points of X∞. Besides, if Q is a stable

point of Y∞ and P its image, then the induced morphism ÔX∞,P → ÔY∞,Q

is surjective and induces an isomorphism on the residue fields κ(P ) ∼= κ(Q).

(xi) ([Re3] prop. 4.5) Suppose that char k = 0. Let η : Y → X be a k-
morphism locally dominant, then the morphism η∞ : Y∞ → X∞ induces a
map from the set of stable points of Y∞ to the set of stable points of X∞
Besides, if Q is a stable point of Y∞ and P its image by the previous map,
then the induced morphism (OX∞,P )red → (OY∞,Q)red is an injective local
morphism.

Moreover, if η is finite and dominant, then ÔX∞,P → ÔY∞,Q is unram-

ified at Q ÔY∞,Q, that is P ÔY∞,Q = Q ÔY∞,Q, and it indices a finite
extension κ(P ) ⊆ κ(Q) on the residue fields.

(xii) ([Re4] prop. 2.5) Let η : Y → X be an étale k-morphism. Then Y∞ is
étale over X∞ and, if Q is a stable point of Y∞ and P its image, then

ÔY∞,Q
∼= ÔX∞,P ⊗κ(P ) κ(Q).

2.4. Suppose that there exists a resolution of singularities π : Y → X of X,
i.e. a proper, birational k-morphism, with Y is smooth, such that the induced
morphism Y \ π−1(Sing X) → X \ Sing X is an isomorphism. Let E be a divisor
on Y and let Y E

∞ be the inverse image of E by the natural projection jY0 : Y∞ → Y .
Then Y E

∞ is an irreducible subset of Y∞ whose generic point PY
E is a stable point

of Y∞. Besides, the image PX
E of PY

E by the morphism π∞ : Y∞ → X∞ is a stable
point of X∞ (see (x) above). We will denote PE = PX

E if there is no possible
ambiguity. Note that PE only depends on the divisorial valuation νE defined by E,
more precisely, if π′ : Y ′ → X is another resolution of singularities such that the
center E′ of νE in Y ′ is a divisor, then the stable point PE′ defined by E′ coincides
with PE . Note also that the order function νPE is equal to the restriction of the
divisorial valuation νE to the local ring of X at the generic point of π(E).
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The set Y E
∞ is also denoted by Cont1(E). More generally

Conte(E) := {Q′ ∈ Y∞ / νQ′(IE) = e} for every e ≥ 1

where IE is the ideal defining E in an open affine subset of Y . We also have that
Conte(E) is an irreducible subset of Y∞ whose generic point PY

eE is a stable point of
Y∞, and the image PX

eE (also denoted by PeE) of P
Y
eE by π∞ is a stable point of X∞.

Example 2.5. Note that there are stable points which are not of the type PeE

where νE is a divisorial valuation on X. For instance, let X = A1 and let P be the
prime ideal (x0, x3) of OX∞ = k[x0, x1, . . .]. Then νP is the divisorial valuation νE
defined by νE(x) = 1, hence it is the multiplicity in k[x], but P ̸= PE .

2.6. If π : Y → X is a resolution of singularities dominating the Nash blowing
up of X, then the image of the canonical homomorphism dπ : π∗(∧dΩX) → ∧dΩY

is an invertible sheaf. That is, there exists an effective divisor K̂Y/X with support

in the exceptional locus of π such that dπ(π∗(∧dΩX)) = OY (−K̂Y/X) ∧d ΩY . For
any prime divisor E on Y , we define the Mather discrepancy to be

k̂E := ordE(K̂Y/X).

Note that k̂E ̸= 0 implies that E is contained in the exceptional locus of π,

and that k̂E only depends on the divisorial valuation νE defined by E. We have

supn dimO
jn(X∞),(PeE)n

= e (k̂E+1) ([DL], lemma 3.1, [dFEI], theorem 3.9). Hence

the inequality (4) states that

dimOX∞,PeE ≤ e (k̂E + 1).

On the other hand, if X is normal and Q-Gorenstein (for instance X is a normal
complete intersection), the discrepancy of X with respect to E is defined to be
the coefficient of E in the divisor KY/X with exceptional support which is linearly

equivalent to KY − π∗(KX). If X is nonsingular then k̂E = kE ([EM], appendix).
Moreover, we have:

(xiii) ([Re3] prop. 4.2 and [Re4] corol. 2.9) If X is nonsingular at the center
P0 of a stable point P of X∞, then OX∞,P is a regular ring of dimension
dimOX∞,P = supn dimO

jn(X∞),Pn
. In particular, taking P = PeE , we

have dimOX∞,PeE
= e(kE + 1).

In theorem 3.8 will prove that, also in the case that X is singular at P0, we have

that e (k̂E + 1) is the embedding dimension of O(X∞)red,PeE
.

Example 2.7. Let X be an irreducible formal plane curve over a field k of
characteristic zero. Let us consider a (primitive) Puiseux parametrization

x = uβ0

y =
∑

β0≤i λi u
i

where λi ∈ k for every i ≥ β0. Set e0 := β0 and,

βr+1 := min {i / λi ̸= 0 and g.c.d.{β0, . . . , βr, i} < er } ,
er+1 := g.c.d.{β0, . . . , βr+1}

for 1 ≤ r ≤ g−1, being g such that eg = 1. Let n0 = 1 and nr := er−1

er
for 1 ≤ r ≤ g

and let β0 = β0 and βr, 1 ≤ r ≤ g + 1, be defined by

(6) βr − nr−1βr−1 = βr − βr−1,
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hence we have

βr > nr−1 βr−1 for 1 ≤ r ≤ g, and βg+1 ≥ ng βg;

nrβr belongs to the semigroup generated by β0, . . . , βr−1, 1 ≤ r ≤ g + 1.

Let us consider q0, q1, . . . , qg ∈ k[x, y] and qg+1 ∈ k[[x, y]] such that qg+1 defines
an equation of the branch, i.e. X = Spec k[[x, y]] / (qg+1), and q1, . . . , qg are its
approximate roots (see [ZT], appendix). More precisely, q0, . . . , qg+1 can be defined
as follows:

q0 = x q1 = y −
∑
i<β1

λi q
i

β0
0

with ordu(q1) = β1 and, for 1 ≤ r ≤ g,

(7) qr+1 = qnr
r − cr q

br,0
0 . . . q

br,r−1

r−1 −
∑

γ=(γ0,...,γr)

cγ qγ0

0 . . . qγr
r , 1 ≤ r ≤ g

with ordu(qr+1) = βr+1 (resp. ∞) for 1 ≤ r < g (resp. r = g), where {br,i}r−1i=0

are the unique nonnegative numbers satisfying br,i < ni for 1 ≤ i ≤ r − 1 and

nrβr =
∑

0≤i<r br,iβi, for each sequence γ of nonnegative integers in the right

hand side we have nrβr <
∑r

i=0 γiβi < βr+1 (resp. nrβr <
∑r

i=0 γiβi) if 1 ≤ r < g
(resp. if r = g + 1) and cr, cγ ∈ k and cr ̸= 0. For more details on approximate
roots and the space of arcs of a plane branch see [Mo] and [LMR].

Let ν = νE be the divisorial valuation onX given by ordu, and let P = PE be the
stable point in X∞ defined by ν as in 2.4. Considering the projection η : X → A1

k,
(x, y) 7→ x, and applying prop. 4.5 in [Re3] ((xi) in 2.3) we conclude that

P ÔX∞,P = (X0, . . . , Xβ0−1) ÔX∞,P .

We will next describe the ring ÔX∞,P , and we will see that embdim ÔX∞,P = β0,
which is equal to the multiplicity of X (see [Re3], corol. 5.7).

First note that POX∞,P is generated by Q := {Qr;n}0≤r≤g, nr−1βr−1≤n<βr
, even

more, there exists G ∈ OX∞ \ P such that P (OX∞)G = (Q)(OX∞)G (we may
take G :=

∏
0≤r≤g Qr;βr

). More precisely, (Q) defines a prime ideal in (O(A2)∞)G
(see [Re4], prop 4.5) whose extension to (OX∞)G is P (OX∞)G. Note that, setting
f := qg+1 ∈ k[[x, y]], the following holds:

(i) ν(Jac(f)) = ν(∂f∂y ) = ngβg − βg. Set ϵ := ngβg − βg,

(ii) for all n ≥ 0, the class of ∂Fϵ+n

∂Yn
in OX∞,P is a unit and, for n′ > n, the

class of ∂Fϵ+n

∂Yn′
in OX∞,P belongs to POX∞,P .

(iii) F0, . . . , Fϵ−1 belong to (Q)2O(A2
k)∞

.

From this it follows that

κ(P ) ∼= k(Xβ0+1, . . . , Xn, . . .) [{Wr}gr=0]
/ (

{Wnr
r − crW

br,0
0 · · ·W br,r−1

r−1 }gr=1

)
where Wr is the class of Qr;βr

. We consider the embedding κ(P ) ↪→ ÔX∞,P which

sendsXn, n ≥ β0, (resp. W0) toXn ∈ ÔX∞,P (resp. Xβ0 ∈ ÔX∞,P ) and recursively,

for 1 ≤ r ≤ g, sends Wr to a nr-root of the image in ÔX∞,P of crW
br,0
0 · · ·W br,r−1

r−1 ,
that exists by Hensel’s lemma. In particular, for each n ≥ 0 we have defined

Y
(0)
n ∈ κ(P ) such that Yn − Y

(0)
n ∈ (Q). Arguing recursively on m ≥ 1 and n ≥ 0,

with the lexicographic order on (m,n), from {Fϵ+n}n≥0, applying (ii) and Hensel’s
lemma, and reasoning as in corol. 5.6 in [Re3] it follows that, for m,n ≥ 0, there

exists Y
(m)
n ∈ κ(P )[X0, . . . , Xβ0−1] such that,

Fϵ+n ≡ Lϵ (Yn − Y (m)
n ) mod (Q)

m
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in the ring O(A2)∞,(Q), where l := ∂f
∂y , hence Lϵ is a unit. Therefore, the previous

equalities define series Ỹn ∈ κ(P ) [[X0, . . . , Xβ0−1]], n ≥ 0, and we conclude that

ÔX∞,P
∼= κ(P ) [[X0, . . . , Xβ0−1]]

/ (
{F̃n}0≤n≤ϵ−1

)
where, for 0 ≤ n ≤ ϵ − 1, F̃n is obtained from Fn by substituting Yn′ by Ỹn,
0 ≤ n′ ≤ n. Since, for 0 ≤ r ≤ g, nr−1βr−1 ≤ n < βr, the series obtained from Qn

by substituting Yn′ by Ỹn, 0 ≤ n′ ≤ n, belongs to (X0, . . . , Xβ0−1), from (iii) it fol-

lows that F̃n ∈ (X0, . . . , Xβ0−1)
2 for 0 ≤ n ≤ ϵ−1. Therefore embdim ÔX∞,P = β0.

Remark 2.8. Let X be an algebraic plane curve over a field k of characteristic
zero, and suppose that it is analytically irreducible. Then, there exists an étale
morphism X ′ → X such that the curve X ′ has a Puiseux parametrization

(8)
x′ = (u′)β0

y′ =
∑

β0≤i≤m λ′i (u
′)i

where λ′i ∈ k for β0 ≤ i ≤ m, i.e. the image of y′ has a finite number of terms.
Equivalently, the element q′g+1 obtained as in (7) from the previous parametrization,
which defines an equation of the curve X ′, is a polynomial.

In fact, consider a Puiseux parametrization x = uβ0 , y =
∑

β0≤i λi u
i of X and

keep the notation in example 2.7. Note that the series
∑

β0≤i λi u
i belongs to the

hensalization k < u > of k[u](u) and also that the element qg+1 in (7) belongs to
k < x, y >. Since X is analytically irreducible, there exists γ ∈ k < x, y >, γ a unit,

such that γ qg+1 is a polynomial in k[x, y]. Then taking x′ = (γ)
1
β1 x, y′ = (γ)

1
β0 y

and u′ = (γ)
1

n1β1 u, we obtain (8). Recall that n1β1 is the least common multiple
of β0 and β1. Since char k = 0, adding a n1β1-root of γ defines an étale morphism
X ′ → X.

Example 2.9. Let X ⊂ A5
k be the hypersurface singularity in [IK], defined by

x3
1+x3

2+x3
3+x3

4+x6
5 = 0 over a field of characteristic ̸= 2, 3. The blowing upX ′ ofX

at the origin has a unique singular point, and its exceptional locus Eβ is irreducible
and defines an essential valuation νβ (i.e. the center of νβ on any resolution of

singularities p : X̃ → X is an irreducible component of the exceptional locus of p).
The blowing up Y of X ′ at its singular point is nonsingular, and its exceptional
locus is irreducible and defines an essential valuation να, να ̸= νβ . Let π : Y → X
be the induced resolution of singularities. Let Pα, Pβ be the stable points of X∞
defined by να and νβ respectively, and set Nα := {Pα}, Nβ := {Pβ} and XSing

∞
the inverse image of Sing X by j0 : X∞ → X. We have Nα ⊂ Nβ = XSing

∞ ([IK],
theorem 4.3).

Let Π : Z̃ → A5
k be the embedded resolution of singularities of X whose re-

striction to X is π. There exists a divisor Ẽ on Z̃ whose intersection with Y is
Eβ . Note that bẼ := ordẼKZ̃/A5 is equal to 4 and aẼ := ordẼΠ

∗(X) is equal to

3. Since, by the adjunction formula, kEβ
= bẼ − aẼ , we have kEβ

= 1. Hence,

k̂Eβ
= kEβ

+ νβ(JacX) = 1 + 2 = 3 (see [EM], remark 9.6).

On the other hand, we have

Pβ (OX∞)X1;1
= (X1;0, X2;0, X3;0, X4;0, X5;0) (OX∞)X1;1

.

In fact, (X1;0, . . . , X5;0) is the prime ideal in O(A5)∞ defined by νẼ , hence its mini-

mal number of generators is bẼ +1 = 5 (see (xiii) in 2.6). Besides, the ring ÔX∞,Pβ
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has been described in [Re3] remark 5.16 as follows:

ÔX∞,Pβ
∼= κ(Pβ)[[X1;0, X2;0, X3;0, X4;0, X5;0]] / (F̃0, F̃1, F̃2)

where, being f = x3
1 + x3

2 + x3
3 + x3

4 + x6
5 and being Fn the class of Fn modulo

(X1;0, . . . , X5;0), we have that 3 = aẼ is the minimal n such that Fn ̸= 0, in fact

F 3 = X3
1;1 +X3

1;2 +X3
1;3 +X3

1;4 and

κ(Pβ) ∼= k({Xi;1, . . . Xi;n, . . .}2≤i≤4)[X1;1] / (F 3).

Besides we have F̃0, F̃1 ∈ (X1;0, . . . , X5;0)
2 and the initial form in(F̃2) of F̃2 in

κ(Pβ)[[X1;0, . . . , X5;0]] is 3X
2

1;1X1;0+3X2
2;1X2;0+3X2

3;1X3;0+3X2
4;1X4;0 where X1;1

is the class of X1;1 in κ(Pβ). Note that νβ(JacX) = 2, even more, for 1 ≤ i ≤ 4, if

f i := ∂f
∂xi

then νβ(f
i) = 2, i.e. F i

0, F
i
1 ∈ Pβ , F

i
2 ̸∈ Pβ , and the coefficient in Xi;0 of

in(F̃2) is the class of F i
2 in κ(Pβ). From this it follows that

embdim ÔX∞,Pβ
= bẼ + 1− (aẼ − νβ(JacX)) = kEβ

+ 1 + νβ(JacX) = k̂Eβ
+ 1

which equals 4. Moreover, in this case

dim ÔX∞,Pβ
= bẼ + 1− aẼ = kEβ

+ 1 = 2.

The argument to compute embdim ÔX∞,Pβ
showed in example 2.9 can be gen-

eralized to monomial valuations restricted to a normal hyperssurface over a perfect
field of any characteristic. But, although, given a variety X and a divisorial valu-
ation νE , there always exists a complete intersection X ′ containig X of the same

dimension and we have ÔX∞,PE
∼= ÔX′

∞,PE
(see (ii) and (ix) in 2.3), X ′ is not nor-

mal in general. So, there is no hope to extend the result embdim ÔX∞,PE
= k̂E +1

applying this argument. For dim ÔX∞,PE
, even if X is a normal hypersurface

it is not true in general that dim ÔX∞,PE
equals kE + 1, but we will show that

dim ÔX∞,PE ≥ kE + 1.

3. Defining minimal coordinates at stable points of the space of arcs

Let X be a (singular) reduced separated scheme of finite type over a field k of
characteristic zero. Let ν be a divisorial valuation on an irreducible component X0

of X whose center lies in Sing X and let e ∈ N.
Let us consider the stable point PeE of X∞ defined by ν and e, i.e. we consider

any resolution of singularities π : Y → X such that the center of ν on Y is a divisor
E, and define PeE = PX

eE to be the image by π∞ of the generic point PY
eE of Y E

∞
(see 2.4). In order to study the ring OX∞,PeE

, or its completion ̂OX∞,PeE
, we may

suppose that X is affine, let X ⊆ AN
k = Spec k[y1, . . . , yN ]. We may also suppose

that π : Y → X dominates the Nash blowing up of X and that, if xi denotes the
class of yi in OX , 1 ≤ i ≤ N , then, after reordering the xi’s, we have

(9) ordE π∗(dx1 ∧ . . . ∧ dxd) = k̂E .

where d = dimX0.

Let ρ : X → Ad
k be the projection on the first d coordinates, let η : Y → Ad

be the composition η = ρ ◦ π and let PAd

eE be the image of PY
eE by η∞. Then the

discrepancy kE(Ad
k) of Ad

k with respect to the valuation induced by νE is equal

to k̂E by (9). Besides, we know that the local ring O
(Ad)∞,PAd

eE

is a regular ring of

dimension e(kE(Ad
k)+1) (see (xiii) in 2.6). From this, and applying [Re3], prop. 4.5
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(see (xi) in 2.3) it follows that, if Q is a regular system of parameters of O
(Ad)∞,PAd

eE

(hence ♯Q = e(k̂E + 1)) then we have

(10) PeE
̂OX∞,PeE = (Q) ̂OX∞,PeE and PeE O(X∞)red,PeE

= (Q) O(X∞)red,PeE

in fact, the last assertion follows from the first one by Nakakama’s lemma. There-

fore embdim O(X∞)red,PeE
= embdim ̂OX∞,PeE ≤ e (k̂E +1) ([Re4], corol. 4.10).

Remark 3.1. The previous reasoning does not assure an analogous statement
to (10) for PX

eEOX∞,PX
eE

since, in general the PX
eE-adic topology on OX∞,PX

eE
is not

separated (see [Re3] example 3.16 and theorem 3.13).

3.2. Moreover, in [Re4] we have described a regular system of parameters Q
of O

(Ad)∞,PAd
eE

. We will next recall how we proceeded. First, since char k = 0,

there exists an open subset U of Y with nonempty intersection with E, an étale

morphism Ũ → U and {u1, . . . , ud} ⊂ OŨ , {x1, . . . , xd} ⊂ OV , where V is an open
subset of X, such that the following holds: for all closed points y0 in an open subset

of the strict transform Ẽ of E in Ũ , after a possible replacement of ui by ui + ci,
ci ∈ k, 2 ≤ i ≤ d, we may suppose that {u1, . . . , ud} and {x1, . . . , xd} are regular
systems of parameters in y0 and in η ◦ φ(y0), and besides, the local morphism
η♯ : OV,η(y0) → OŨ,y0

is given by

(11)

x1 7→ um1
1

x2 7→
∑

1≤i≤m2
λ2,i u

i
1 + um2

1 u2

x3 7→
∑

1≤i≤m3
λ3,i(u2) u

i
1 + um3

1 u3

. . . . . . . . .
xδ 7→

∑
1≤i≤mδ

λδ,i(u2, . . . , uδ−1) u
i
1 + umδ

1 uδ

xδ+1 7→ uδ+1

. . . . . . . . .
xd 7→ ud

where δ = codimAd η(ξE), m1 ≤ ordu1xj , 2 ≤ j ≤ d, 0 < m1 ≤ m2 ≤ . . . ≤ md,
and, for 2 ≤ j ≤ δ and 0 ≤ i ≤ mj , λj,i(u2, . . . , uj−1) belongs to the henseliza-
tion k < u2, . . . , uj−1 > of the local ring k[u2, . . . , uj−1](u2,...uj−1), and, if i < mj′ ,
j′ < j, then λj,i belongs to k < u2, . . . , uj′−1 >; moreover, with no loss of generality
we may also suppose that λj,mj

(u2, . . . , uj−1) is a unit for 2 ≤ j ≤ δ ((4) in [Re4],
see also [Re3], proof of prop. 4.5).

3.3. Now, we consider the following situation: Let j, 2 ≤ j ≤ d + 1, let
v2, . . . , vj−1 so that u1, v2, . . . , vj−1, uj , . . . , ud ∈ OŨ defines a regular system of

parameters of OŨ,y0
for all closed points y0 in an open subset of Ẽ (more precisely,

there exist (ci)i ∈ kd−1 such that (u1, {vi + ci}δi=2, {vi + ci}di=δ+1) is a regular sys-

tem of parameters of OŨ,y0
), and let θ : Ũ → Spec k[v2, . . . , vj−1]h[x1, y] be the

k-morphism given by

x1 7→ um1
1

y 7→
∑

m1≤i≤m

λi(v2, . . . , vj−1) u
i
1 + um

1 ϱ mod (u1)
m+1

where h ∈ k[v2, . . . , vj−1] \ (v2, . . . , vj−1), m ≥ m1, λi(v2, . . . , vj−1) ∈ Rj−1 :=
k < v2, . . . , vj−1 >, ϱ ∈ OY,y0 and one of the following conditions holds:

(a) ϱ is transcendental over k(u1, v2, . . . , vj−1)
(b) ϱ = 0.
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Set e := g.c.d.({m1} ∪ {i / λi ̸= 0}), and define β0 := e0 := m1, and βr+1 :=
min {i / λi ̸= 0 and g.c.d.{β0, . . . , βr, i} < er }, er+1 := g.c.d.{β0, . . . , βr+1} for
1 ≤ r < g, being g such that eg = e, and βg+1 := m. Let nr = er−1

er
, 1 ≤ r ≤ g − 1.

We define {βr}
g+1
r=0 from {βr}g+1

r=0 as in (6) in 2.7.

Let B be a domain which is an étale extension of k[v2, . . . , vj−1]h and contains
λi(v2, . . . , vj−1), m1 ≤ i ≤ m. Let ν̃ be the order function on B[x1, y] extending
ν and such that ν̃(ℓ) = 0 for all ℓ ∈ B (note that ν̃ is a valuation if there is no
nonzero element h with ν̃(h) = ∞, for instance in case (a)). As in example 2.7,
we define q̃0, . . . , q̃g ∈ B[x1, y] such that ν̃(q̃r) = βr for 0 ≤ r ≤ g + 1 as follows:

q̃0 = x1, q̃1 = y −
∑

i<β1
λ′i (q̃0)

i
β0 and, for 1 ≤ r ≤ g,

(12) q̃r+1 = q̃nr
r − c̃r q̃

br,0
0 . . . q̃

br,r−1

r−1 −
∑

γ=(γ0,...,γr)

c̃γ q̃γ0

0 . . . q̃γr
r , 1 ≤ r < g

where {br,i}r−1i=0 are the unique nonnegative integers satisfing br,i < ni, 1 ≤ i ≤ r−1,

and nrβr =
∑

0≤i<r br,iβi, we have ν̃(q̃
γ0

0 . . . q̃γr
r ) > nrβr for each sequence γ of non-

negative integers in the right hand side, and c̃r, c̃γ ∈ B, c̃r ̸= 0 and c̃γ ̸= 0 only for
a finite number of γ’s. In case (a), we also define q̃g+1 as in (12); then we have that

{βr}
g+1
r=0 is the minimal generating sequence for the semigroup ν̃(B[x1, y]\{0}) and

q̃0, . . . , q̃g+1 ∈ B[x1, y] is a minimal generating sequence for ν̃ ([Sp] theorem 8.6). In
case (b), q̃g+1 ∈ B[x1, y], also defined as in (12), defines the kernel of B[x1, y] → OŨ .

In case (a), by induction on r, 1 ≤ r ≤ g + 1, we will define elements {q′r}
g+1
r=1 in

k(v2, . . . , vj−1, x1, y) more precisely,

q′r ∈
r−1∏
r′=0

T−1r′ k[v2, . . . , vj−1, x1, y]

where Tr′ is the multiplicative system generated by q′r′ , satisfying the following:
q′0 := x1 and, for 1 ≤ r ≤ g + 1 the image of q′r in the fraction field K(OY,y0) of
OY,y0 belongs to OY,y0 and, if we identify q′r with its image, then

(13)
q′r = µr(v2, . . . , vj−1) u

βr mod (u)βr+1 for 1 ≤ r ≤ g

q′g+1 = µg+1(v2, . . . , vj−1) u
βg+1 ϱ mod (u)βg+1+1

where µr(v2, . . . , vj−1) is a unit in Rj−1. In fact, once defined q′0, . . . , q
′
r, the element

q′r+1 is defined as follows: let

hr,1 := q′0
br,0 · · · q′r−1

br,r−1 Pr,1

(
µr,1(q

′
r)

nr

q′0
br,0 · · · q′r−1

br,r−1
, v2, . . . , vj−1

)
where the integers {br,r′}r−1r′=0 are as in (12), µr,1 := µ

br,1
1 · · ·µbr,r−1

r−1 is a unit, and
Pr,1 ∈ k[z, v2, . . . , vj−1] is such that

(14) Pr,1(µ
nr
r , v2, . . . , vj−1) = 0,

∂Pr,1

∂z
(µnr

r , v2, . . . , vj−1) is a unit in Rj−1.

Then, we have nrβr < ν(h1) ≤ βr+1. If ν(h1) = βr+1, we set q′r+1 := h1. If not,
we define recursively

hr,s := q′
bs0
0 · · · q′b

s
r−

r−1 Pr,s

(
µr,shr,s−1

q
bs0
0 · · · qb

s
r−1

r−1

, v2, . . . , vj−1

)
where {bsr′}

r−1
r′=0 are the unique nonnegative integers satisfying bsr′ < nr′ , 1 ≤ r′ ≤

r − 1, and ν(hr,s−1) =
∑

0≤r′≤r−1 b
s
j,r′βj,r′ , µr,s := µ

bs1
1 · · ·µbsr−1

r−1 is a unit, and
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Pr,s ∈ k[z, v2, . . . , vj−1] is such that

(15) Pr,s(λs−1, v2, . . . , vj−1) = 0,
∂Pr,s

∂z
(λs−1, v2, . . . , vj−1) is a unit in Rj−1

being λs−1 ∈ Rj−1 the initial form of hr,s−1. We have ν(hr,s−1) < ν(hr,s) ≤ βr+1

hence, after a finite number of steps we obtain s such that ν(hr,s) = βr+1 and we
set qr+1 := hr,s (for more details see [Re4], lemma 3.1).

The elements q′r and q̃r are related. In fact, for 0 ≤ r ≤ g + 1, q′r and q̃r define
the same initial form in an étale covering of a localization of the graded algebra

grνk[v2, . . . vj−1, x1, y](x1,y). More precisely, there exist ℓ̃, h̃ ∈
∏

0≤r′<r T
−1
r′ B[x1, y],

ℓ̃ being a unit and ν̃(h̃) > βr such that q′r = q̃r · ℓ̃+ h̃.

3.4. Recall the expression in (11). Fixed j, 2 ≤ j ≤ δ, we apply the previous
study to

x1 7→ um1
1

xj 7→
∑

1≤i≤mj

λj,i(u2, . . . , uj−1) u
i
1 + u

mj

1 uj .

Let Bj−1 be a domain which is an étale extension of k[u2, . . . , uj−1] and con-
tains λj,i(u2, . . . , uj−1), m1 ≤ i ≤ mj , let ν̃j be the valuation on Bj−1[x1, xj ]

extending ν and let {βj,r}
gj+1
r=0 the minimal generating sequence for the semigroup

ν̃j(Bj−1[x1, xj ] \ {0}). Let {q̃j,r}
gj+1
r=0 ∈ Bj−1[x1, xj ] be a minimal generating se-

quence for ν̃j , and {q′j,r}
gj+1
r=0 ∈ k(u2, . . . , uj−1, x1, xj) defined as in 3.3.

Consider the following sets with the lexicographic order

J ∗ := {(1, 0)}∪{(j, r) / 2 ≤ j ≤ δ, 1 ≤ r ≤ gj}, J := J ∗∪{(j, gj+1) / 2 ≤ j ≤ δ}.
Applying the argument in 3.3 and arguing by induction on (j, r) ∈ J , we can define
elements {qj,r}(j,r)∈J ,

(16) qj,r ∈
∏

(j′,r′)∈J∗

(j′,r′)<(j,r)

T−1j′,r′ k[x1, . . . , xj ]

where Tj′,r′ is the multiplicative system generated by qj′,r′ , satisfying the following:
q1,0 := x1 and, for (j, r) ∈ J , the image of qj,r in the fraction field K(OY,y0) of
OY,y0 belongs to OY,y0 and, if we identify qj,r with its image, then

(17)
qj,r = µj,r(u2, . . . , uj−1) u

βj,r mod (u)βj,r+1 for 1 ≤ r ≤ gj

qj,gj+1 = µj,gj+1(u2, . . . , uj−1) u
βj,gj+1 uj mod (u)

βj,gj+1+1

where µj,r(u2, . . . , uj−1) is a unit in k < u2, . . . , uj−1 >. Besides, if bj,0, . . . , bj,gj
are the unique nonnegative integers satisfying bj,r < nj,r, 1 ≤ r ≤ gj , and βj,gj+1 =∑

0≤i≤gj bj,rβj,r, and we set qj,0 := q1,0 = x1, then, identifying qj,r with its image

in OY,y0 , we have

(18)
qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

= vj ∈ OY,y0 .

where vj = γj uj mod (u), being γj a unit in k < u2, . . . , uj−1 >. In particular
note that k < u2, . . . , uj >= k < v2, . . . , vj >. Note also that qj,r is obtained from

q′j,r by replacing vj′ by
qj′,g

j′+1

q
b
j′,0

j′,0 ...q
b
j′,g

j′
j′,g

j′

, for 1 ≤ j′ < j. We will denote {Pj,r,s}s the

polynomials in k[z, v2, . . . , vj−1] defined in order to obtain q′j,r+1 from q′j,r, hence
satisfying (14) (resp. (15)) for s = 1 (resp. s > 1). The elements {qj,r}(j,r)∈J are
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called a system of transverse generators for η : Y → Ad
k with respect to E.

3.5. Finally, for every element q ∈ OY,y0 which is the image of an element in the
fraction field of k[x1, . . . , xd], i.e. we can identify q = l/g where l, g ∈ k[x1, . . . , xd],
we can define {Qn}n≥0 in O

(Ad)∞,PAd
eE

such that, in the ring OY∞,PY
eE
, we have

(19) Qn ≡ Qn mod PY
eE .

More precisely, since PY
eE is a stable point and the image of g in OY,y0 is nonzero,

there exists c ∈ N such that G0, . . . , Gc−1 ∈ PY
eE , Gc ̸∈ PY

eE . Hence we have

GcQn + . . .+Gn+cQe ≡ Ln+c mod PY
eE for n ≥ 0

((14) in [Re3] proof of prop. 4.1) and we can define by recurrence Qn ∈ S−1OAd
∞
,

where S is the multiplicative system generated by Gc, satisfying (19) (see also
lemma 4.1 in [Re4]).

Applying this to each qj,r, we obtain Qj,r;n ∈ O
(Ad)∞,PAd

eE

, n ≥ 0, such that

Qj,r;n ≡ Qj,r;n modulo PY
eE . More precisely,

Qj,r;n ∈
∏

(j′,r′)∈J∗

(j′,r′)<(j,r)

T
−1
j′,r′ k[x1, . . . , xj ]∞

where k[x1, . . . , xj ]∞ denotes O(Spec k[x1,...,xj ])∞ and T j′,r′ is the multiplicative sys-

tem generated by Qj′,r′;eβj′,r′
. Then, let

Q := {Qj,r;n}(j,r)∈J ,enj,r−1βj,r−1≤n≤eβj,r−1
.

It is clear (see (17)) that (Q)O
(Ad)∞,PAd

eE

⊆ PAd

eEO
(Ad)∞,PAd

eE

. Besides, note that,

applying (6), (11) and, for the last equality, also (9), we have

(20)

♯Q =
∑δ

j=2(eβj,1 + e(βj,2 − nj,1βj,1) + . . .+ e(βj,gj+1 − nj,gjβj,gj )) =

= e
∑δ

j=2

(
βj,1 + ( βj,2 − βj,1) + . . .+ (βj,gj+1 − βj,gj )

)
=

= e
∑δ

j=2 βj,gj+1 = e
∑δ

j=2 mj = e (kE(Ad
k) + 1) = e (k̂E(X) + 1).

and recall that O
(Ad)∞,PAd

eE

is a regular local ring of dimension e (kE(Ad
k) + 1)

(see (xiii)). In [Re4] we have proved that Q is a regular system of parameters
of O

(Ad)∞,P Ad
eE

; then Q is called regular system of parameters of O
(Ad)∞,PAd

E

as-

sociated to {qj,r}(j,r)∈J . The proof is based in the study of the graded algebra
grνEk[x1, . . . , xd]. In fact, the main idea in the proof is to show that (Q)O

(Ad)∞,PAd
eE

is a prime ideal and it follows from the following: It is proved that, modulo étale
extension, O

(Ad)∞,PAd
eE

/ (Q) is isomorphic to a polynomial ring in countable many

variables over certain localization of grνE
k[x1, . . . , xd]. Since grνE

k[x1, . . . , xd] is a
domain because νE is a valuation it follows that O

(Ad)∞,PAd
eE

/ (Q) is a domain (see

[Re4], theorem 4.8).

More generally, let q̃0, . . . , q̃g+1 ∈ B[x1, y] be as in 3.3, and let us define Q̃ :=

{Q̃r;n}0≤r≤g+1,enj,r−1βj,r−1≤n≤eβj,r−1
where Q̃r;n ∈ B[x1, y]∞ and L̃ :=

∏g
r=0 Q̃r;eβr

.

Then (Q̃) is a prime ideal of (B[x1, y]∞)L̃ ([Re4], prop. 4.5).

In order to study the ring ̂OX∞,PeE we may first suppose that the irreducible
component X0 of X where the valuation ν is defined is analytically irreducible. In

fact, there exists an étale morphism X̃ → X such that each irreducible component

of X̃ is analytically irreducible. Hence, there exists an irreducible component X̃0

of X̃ whose image is X0, and there exists a divisorial valuation ν̃ on X̃0 extending
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ν. Let P̃e be the stable point on X̃0 defined by ν̃ and e, whose image is PeE . Then

ÔX̃0,P̃e

∼= ÔX0,PeE ⊗κ(PeE) κ(P̃e) (see (xii)). So, assume that X0 is analytically

irreducible. We will embed X0 in a complete intersection scheme X ′ ⊆ AM
k of

dimension d = dimX0. For any such X ′ we have

O(X∞)red,PeE
∼= O(X′

∞)red,PeE
and ̂O(X∞),PeE

∼= ̂O(X′
∞),PeE

where we also denote by PeE the point induced by PX
eE in X ′∞ or in (X ′∞)red (see

(ii) and (ix) in 2.3).

Proposition 3.6. Assume that char k = 0. Let X0 be a reduced separated k-
scheme of finite type. Assume that X0 is analytically irreducible. Let ν = νE be a
divisorial valuation on X0 and let e ∈ N. Then, there exist a complete intersection
scheme

X ′ = Spec k[y1, . . . , yN ] / (fd+1, . . . , fN ) ⊆ AN
k

which contains X0, and of dimension d = dimX0, and elements {zl,s}d+1≤l≤N,1≤s≤gl
in k[y1, . . . , yN ], such that, if given g ∈ k[y1, . . . , yN ] we denote ν(g) the ν-value of
the class of g in OX0 , then the following holds:

(a) For d+ 1 ≤ l ≤ N, 1 ≤ s ≤ gl let αl,s := ν(zl,s) and let

Z = ∪N
l=d+1Zl where Zl := {Zl,s;n} 1≤s≤gl

0≤n<eαl,s

being Zj,r;n ∈ k[y1, . . . , yN ]∞. Then there exists G ∈ O(AN )∞ such that

(Q∪ Z)
(
O(AN )∞

)
G

is a prime ideal and

PX′

eEOX′
∞,PX′

eE
= (Q∪ Z)OX′

∞,PX′
eE

(b) For d+ 1 ≤ l ≤ N , fl = fl(y1, . . . , yd, yl) ∈ k[y1, . . . , yd, yl] satisfies:

(i) ν(Jac(fl)) = ν(∂fl∂yl
); set ϵl := ν(Jac(fl)),

(ii) for all n ≥ 0, the class of
∂Fl;eϵl+n

∂Yl;n
in OX′

∞,PeE is a unit and, for

n′ > n, the class of
∂Fl;eϵl+n

∂Yl;n′
in OX′

∞,PeE belongs to PeEOX′
∞,PeE . Be-

sides, if we denote f ′l,l := ∂fl
∂yl

then the class of
∂Fl;eϵl+n

∂Yl;n
− F ′l,l;eϵl in

OX′
∞,PeE belongs to PeE.

(iii) there exists L ∈ OAd
∞

= k[x1, . . . , xd]∞, L ̸∈ PAd

eE , such that the ele-

ments Fl;0, . . . , Fl;eϵl−1 belong to (Q∪ Zl)
2
(
O(AN

k )∞

)
L
.

Proof. Let π : Y → X0, ρ : X0 → Ad
k and η = ρ◦π : Y → Ad

k be as in the beginning

of this section. Let us consider an étale morphism Ũ → U as in 3.2 and keep the
notation in 3.2. From the discussion in 3.2, 3.3 and 3.4 it follows that there exist
{u, v2, . . . , vd} ∈ OŨ and {x1, . . . , xd, xd+1, . . . , xN} ∈ OX such that, after replacing
vi by vi + ci where ci ∈ k, 2 ≤ i ≤ d, the following property holds for the points y0
in an open subset of Ẽ: {u, v2, . . . , vd} (resp. {x1, . . . , xd}) is a regular system of
parameters of OŨ,y0

(resp. OAd
k,η(y0)) and {x1, . . . , xd, xd+1, . . . , xN} generate the

maximal ideal of OX0,π(y0) such that:

(i) The local expression for η in (11) holds for the regular system of parameters
{u, v2, . . . , vd} of OŨ,y0

and {x1, . . . , xd} of OAd,η(y0) (i.e. in (11) replace

u1 by u, ui by vi for 2 ≤ i ≤ δ, and set vi = ui for δ < i ≤ d).
(ii) There exists a system of transverse generators {qj,r}(j,r)∈J for η : Y → Ad

k

with respect to E, hence satisfying (16), (17) and (18).
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(iii) For d+ 1 ≤ l ≤ N , the image of xl in OY,y0 is expressed as

(21) xl =
∑
m1≤i

λl,i(v) u
i

where, v := (v2, . . . , vd) and

(22)
λl,i(v) ∈ k < v > ∩ OŨ,y0

λl,i(v) ∈ k < v2, . . . , vj−1 > ∩ OŨ,y0
if i < mj for 2 ≤ j ≤ δ

(recall (9) for the second assertion in (22)).

Fix l, d + 1 ≤ l ≤ N . Let βl,0, . . . , βl,gl
be a minimal system of generators of

the semigroup defined by the restriction νl of νE to k(v)[x1, xl](x1,xl). Let el,r =

g.c.d.{βl,0, . . . , βl,r}, 0 ≤ r ≤ gl, nl,r =
el,r−1

el,r
, 1 ≤ r ≤ gl, and let βl,0, . . . , βl,gl

be defined by βl,r − nl,r−1βl,r−1 = βl,r − βl,r−1 as in (6). Consider h ∈ k[v]

such that k[v]h is contained in the ring OŨ and consider the morphism θl : Ũ →
Spec k[v]h[x1, y] given by

x1 7→ um1

y 7→
∑
m1≤i

λl,i(v) u
i

Since X0 is analytically irreducible, there exists a domain Bl such that Bl[x1, y] is
an étale extension of k[v]h[x1, y] and there exist x′1, y

′ ∈ Bl[x1, y] with

x′1 = γ1 x1, y′ = γl y where γ1, γl ∈ Bl[x1, y] are units

and u′ = µ u where µ is a unit in an étale extension of k[v]h[u], such that the

induced morphism θ̃l :
˜̃
U → Spec Bl[x

′
1, y
′], being

˜̃
U → Ũ étale, is given by

x′1 7→ (u′)m1

y′ 7→
∑

m1≤i≤m

λ′l,i (u
′)i

where λ′l,i ∈ Bl for m1 ≤ i ≤ m (see remark 2.8). Let q̃l,0, . . . , q̃l,gl , q̃l,gl+1 ∈
Bl[x

′
1, y
′] be the elements defined as in 3.3 applied to the previous expression,

hence case (b) in 3.3. Hence q̃l,gl+1 defines the kernel of Bl[x1, y] → O ˜̃
U
, i.e.

Bl[x1, xl] ∼= Bl[x1, y] / (q̃l,gl+1).

Thus q̃l,gl+1 defines an equation of a plane curve in Spec Ll[x
′
1, y
′], where Ll is a field

extension of k containing λ′l,i for m1 ≤ i ≤ m, which is analytically irreducible, and
q̃l,1, . . . , q̃l,gl are its approximate roots. Let us also consider the following elements
in k[v]h[x1, y]: Let f ′0 := q̃0 = x1 and, for 1 ≤ r ≤ g + 1, let us define f ′r to be an
irreducible polynomial in k[v]h[x1, y] defining the contracted ideal of (q̃r)Bl[x1, y]
to k[v]h[x1, y]. Set f

′
l := fl,gl+1 and note that we have

(23) f ′l (v, x1, y) = q̃l,gl+1 · h̃

where h̃ ∈ Bl[x1, y] and q̃l,gl+1 does not divide h̃. Let

Cl := Spec k[v]h[x1, y] / (f ′l ) C̃l := Spec Bl[x1, y] / (q̃l,gl+1).

Note that the induced morphism C̃l → Cl is étale.

We consider now the spaces of arcs of Cl, C̃l. Let ν̃ be a divisorial valuation
on Bl[x1, y] / (q̃l,gl+1) extending νl, hence ν̃(λ) = 0 for all λ ∈ Bl (recall that

νl(vj) = 0, 2 ≤ j ≤ d) and let P ′l (resp. P̃l) be the stable point of O(Cl)∞
(resp.

O(C̃l)∞
) defined by νl and e (resp. ν̃ and e). Note that we have

Ô(Cl)∞,P ′
l

≺ Ô(C̃l)∞,P̃l
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i.e. the ring on the right hand side dominates the ring on the left hand side.

Following 3.5, let Q̃l := {Q̃l,r;n}0≤r≤gl,enj,r−1βj,r−1≤n≤eβl,r−1
, then (Q̃l) defines a

prime ideal P̃l in (Bl[x1, y]∞)L̃, where L̃ =
∏g

r=0 Q̃r;eβr
, and we have

(Q̃l) O(C̃l)∞,P̃l
= P̃l O(C̃l)∞,P̃l

(this argument has already been applied in Example 2.7, it is based on [Re4],

prop. 4.5, see also 3.5). Besides P̃l is a stable point of Bl[x1, y]∞, since Q̃l is a

finite set. Let P′l be the image of P̃l in (Spec k[v]h[x1, y])∞. Since the morphism
k[v]h[x1, y](x1,y) → Bl[x1, y](x1,y) is étale, P′l is a stable point and we have

(24) ̂(Bl[x1, y]∞)P̃l

∼= ̂(k[v]h[x1, y]∞)P′
l
⊗κ(P′

l)
κ(P̃l)

([Re4] prop. 2.5, see (xii)). Let F ′l := {F ′l,r;n}0≤r≤gl,0≤n<ν(f ′
l,r)

and let L′ =

H0 ·
∏g

r=0 F
′
r;eν(f ′

r)
, then (F ′l ) (k[v, x1, y]∞)L′ is a prime ideal ([Re4], proof of prop.

4.5, see 3.5) and we have

(25) (F ′l ) (k[v]h[x1, y]∞)L′ = P′l (k[v]h[x1, y]∞)L′

and

(F ′l ) O(Cl)∞,P ′
l

= P ′l O(Cl)∞,P ′
l
.

Now, for q̃l,gl+1, we have

(a.1) ν̃(Jac(q̃l,gl+1)) = ν̃
(

∂q̃l,gl+1

∂y

)
= ν̃

(
∂q̃l,gl+1

∂y′

)
= (nl,gl − 1)βl,gl

+ . . . +

+(n1 − 1)βl,1 = nl,glβl,gl
− βl,gl . Set ϵ̃ := nl,glβl,gl

− βl,gl , then:

(b.1) for all n ≥ 0, the class of
∂Q̃l,gl+1;eϵ̃+n

∂Y ′
n

in O(C̃l)∞,P̃l
is equal to the class of

nl,gl . . . nl,1 Q̃
nl,gl

−1
l,gl;eβl,gl

· · · Q̃nl,1−1
l,1;eβl,1

modulo P̃l, hence
∂Q̃l,gl+1;eϵ̃+n

∂Y ′
n

is a unit

in O(C̃l)∞,P̃l
,

(c.1) for n′ > n, the class of
∂Q̃l,gl+1;eϵ̃+n

∂Y ′
n′

in O(C̃l)∞,P̃l
belongs to P̃lO(C̃l)∞,P̃l

; .

Therefore:

(b’.1) for all n ≥ 0, the class of
∂Q̃l,gl+1;eϵ̃+n

∂Yn
in O(C̃l)∞,P̃l

is is a unit in O(C̃l)∞,P̃l

(c’.1) for n′ > n, the class of
∂Q̃l,gl+1;eϵ̃+n

∂Yn′
in O(C̃l)∞,P̃l

belongs to P̃lO(C̃l)∞,P̃l
;

(d.1) Q̃l,gl+1;0, . . . , Q̃l,gl+1;eϵ̃−1 belong to (Q̃l)
2Bl[[x1, y]]∞.

In fact, to prove (d.1) we argue by recurrence, and prove that, for 1 ≤ r ≤ gl + 1,

(26) Q̃l,r;n ∈
(
{Q̃l,r′;n}0≤r′≤r−1,0≤n≤βl,r′−1

)2
Bl[x1, y]∞

for 0 ≤ n < e
(
(nl,r−1 − 1)βl,r−1 + . . .+ (nl,1 − 1)βl,1

)
= e(βl,r −βl,r). Now, from

(24) and (25) we obtain that F ′l;0, . . . , F
′
l;eϵ′−1 belong to (F ′l)2 (k[v, x1, y]∞)P′

l
,

where ϵ′ = ν̃(h̃) + nl,glβl,gl
− βl,gl . Therefore (recall (23)), we conclude that:

(a.2) νl(Jac(f
′
l )) = νl(

∂f ′
l

∂y ) = ϵ̃+ ν̃(h̃). Let ϵ′ denote this integer, then:

(b.2) for all n ≥ 0, the class of
∂F ′

l;eϵ′+n

∂Yn
inO(Cl)∞,P ′

l
is a unit. Besides, if hl :=

∂f ′
l

∂y

then the class of
∂F ′

l;eϵ′+n

∂Yn
−Hl;eϵ′ in O(Cl)∞,P ′

l
belongs to P ′l .

(c.2) for n′ > n, the class of
∂F ′

l;eϵ+n

∂Yn′
in O(Cl)∞,P ′

l
belongs to P ′lO(Cl)∞,P ′

l
.

(d.2) F ′l;0, . . . , F
′
l;eϵ−1 belong to (F ′l)2 (k[v, x1, y]∞)H0

.
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Now, let b be the smallest nonnegative integer such that g′l := hbf ′l belongs to
k[v, x1, y] and let {bj,r}(j,r)∈J ∗ be a minimal sequence of nonnegative integers such
that

fl(x1, . . . , xd, yl) :=

=
∏

(j,r)∈J ∗

q
bj,r
j,r g′l

 q2,g2+1

q
b2,0
1,0 . . . q

b2,g2
2,g2

, . . . ,
qδ,gδ+1

q
bδ,0
δ,0 . . . q

bδ,gδ
δ,gδ

, xδ+1, . . . , xd, x1, yl


belongs to k[x1, . . . , xd, yl], being yl an indeterminacy (recall (16) and (18)). There-
fore we have

(27) fl(x1, . . . , xd, xl) = 0.

From (9) and (a.2) it follows that

(28) ϵl := ν(Jac(fl)) = ν

(
∂fl
∂yl

)
= ν

 ∏
(j,r)∈J ∗

q
bj,r
j,r hb

+ ϵ′

i.e. (i) in the statement of the proposition holds. From (b.2) and (c.2) we obtain
that (ii) also holds.

For 0 ≤ s ≤ gl+1, let b(l, s) be the smallest nonnegative integer such that g′l,s :=

hb(l,s)f ′l,s belongs to k[v, x1, y] and let {bj,r(l, s)}(j,r)∈J ∗ be a minimal sequence of
nonnegative integers such that

(29)

zl,s :=∏
(j,r)∈J ∗ q

bj,r(l,s)
j,r · g′l,s

(
q2,g2+1

q
b2,0
2,0 ...q

b2,g2
2,g2

, . . . ,
qδ,gδ+1

q
bδ,0
δ,0 ...q

bδ,gδ
δ,gδ

, xδ+1, . . . , xd, x1, yl

)
belongs to k[x1, . . . , xd, yl]. Set αl,s := ν(xl,s), being xl,s the class of zl,s in OX′ ,
and Zl := {Zl,s;n}1≤s≤gl, 0≤n<eαl,s

. Then, from (d.2) and applying also the second
assertion in (22), we conclude that

Fl;0, . . . , Fl;eϵl−1 ∈ (Q∪ Zl)
2

 ∏
(j,r)∈J ∗

T
−1
j,r k[x1, . . . , xd, yl]∞


H0

where, if we consider h as an element of k(x1, . . . , xd), i.e. replace vj by
qj,gj+1

q
bj,0
j,0 ...q

bj,gj
j,gj

(resp. xj), for 1 ≤ j < δ (resp. δ+1 ≤ j ≤ d), thenH0 ∈
∏

(j,r)∈J ∗ T
−1
j,r k[x1, . . . , xd]∞

satisfiesH0 ≡ H0 mod PY
eE , as in 3.5. In particular, if L := H0 ·

∏
(j,r)∈J ∗ Qj,r;eβj,r

,

we obtain that Fl;0, . . . , Fl;eϵl−1 ∈ (Q ∪ Zl)
2 (k[x1, . . . , xd, yl]∞)L. Setting Gl =

L ·
∏gl

s=1 Zl,s;eαl,s
, and applying (25) and that Q is a regular system of parameters

of O
(Ad)∞,PAd

eE

, we have that (Q∪ Zl)(k[x1, . . . , xd, yl]∞)Gl
is a prime ideal.

Finally, applying (27) we conclude that

X ′ = Spec k[x1, . . . , xd, yd+1, . . . , yN ] / (fd+1, . . . , fN )

is a d-dimensional complete intersection scheme in AN
k containing X0 and satisfying

(i) to (iii) in (b). Besides, if we set G = L ·
∏N

l=d+1

∏gl
s=1 zl,s;αl,s

then we conclude
that (Q∪ Zl)(k[x1, . . . , xd, yd+1, . . . , yN ]∞)G is a prime ideal such that

(Q∪ Zl)OX′
∞,PX′

eE
= PX′

eEOX′
∞,PX′

eE
.

Thus, the the proposition is proved. �
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Remark 3.7. Keep the notation in prop. 3.6, and fix l, d + 1 ≤ l ≤ N .

Denote Y (l)
n := (Y1;n, . . . , Yd;n, Yl;n), n ≥ 0, and f ′l,j :=

∂fl
∂yj

, j ∈ {1, . . . , d, l}. Then,
applying Taylor’s formula it follows that, for n ≥ eϵl,

(30) Fl;n+eϵl+1 = Hl;n+eϵl+1 +
d∑

j=1

eϵl∑
i=0

F ′l,j;i Yj;n+eϵl+1−i +

eϵl∑
i=0

F ′l,l;i Yl;n+eϵl+1−i,

where Hl;n+e+1 ∈ k[Y
(l)
0 , . . . , Y (l)

n ] is the coefficient in tn+eϵl+1 of fl(
∑n

i=0 Y
(l)
i ti)

(see [Re1] proof of lemma 3.2). In particular, since ϵl := ν(Jac(fl)) = ν(∂fl∂yl
), it

follows that, for n ≥ eϵl,

∂Fl;n+eϵl+1

Yl;n+1
= F ′l,l;eϵl ̸∈ PeE

∂Fl;n+eϵl+1

Yl;n′+1
=

{
F ′l,l;eϵl−(n′−n) ∈ PeE for n+ 1 ≤ n′ ≤ n+ eϵl

0 for n+ eϵl < n′.

This idea, generalized to complete intersection schemes (see[Re2], proof of lemma
4.2) is a key point in the proof of [Re2], th. 4.1 (see 2.3 (vii) and (viii)). Proposition
3.6 is an improvement of the previous assertion to a similar property for 0 ≤ n ≤ eϵl.

Theorem 3.8. Assume that char k = 0. Let X be a reduced separated k-scheme
of finite type, let ν = νE be a divisorial valuation on an irreducible component X0

of X, and let e ∈ N. Then

(31) embdim O(X∞)red,PeE
= embdim ̂O(X∞)red,PeE

= e (k̂E + 1).

where k̂E is the Mather discrepancy of X with respect to E.
Moreover, if ρ : X → Ad

k, where d = dimX0, is a general projection, more pre-

cisely a projection that satisfies (9), and Q = {Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1
is a regular system of parameters of O

(Ad
k)∞,PAd

eE

, then Q is a minimal system of co-

ordinates of ((X∞)red, P
X
eE), that is, we have ♯Q = e (k̂E + 1) and

PX
eE O(X∞)red,PX

eE
= (Q)O(X∞)red,PX

eE
.

Proof. First recall that, since Q is a regular system of parameters of O
(Ad)∞,PAd

eE

([Re4], theorem 4.8) and ρ : X → Ad
k is a dominant morphism, we have

PX
eE

̂OX∞,PX
eE

= (Q) ̂OX∞,PX
eE

([Re3], prop. 4.5, see (xi)). From this and Nakayama’s lemma, the second assertion
of the theorem follows (see also (20)). Therefore, we only have to prove (31), or
equivalently, the independence of the elements of Q in PX

eE / (PX
eE)

2.

Let X̃ → X be an étale morphism such that each irreducible component of X̃ is

analytically irreducible. Let X̃0 be an irreducible component of X̃ whose image is

X0 and let ν̃ be a divisorial valuation on X̃0 extending ν. More precisely, if Y → X
is a resolution of singularities of X and E is a divisor on Y such that ν = νE then

Ỹ := Y ⊗X X̃ → X̃ is a resolution of singularities of X̃ and we may choose a divisor

Ẽ on Ỹ whose image on Ỹ is E, and take ν̃ = νẼ . Then OX̃∞,PeẼ
is étale over

OX∞,PeE and, since ΩX̃/X = 0 we have k̂Ẽ(X̃) = k̂E(X). Therefore, it suffices

to prove the theorem for X̃, equivalently, we may suppose that X0 is analytically
irreducible.
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So, let us assume that X0 is analytically irreducible. Then, we can apply
prop. 3.6. Let X ′ be the d-dimensional complete intersection scheme contain-
ing X0 defined in 3.6 and keep the notation in prop. 3.6. We have O(X∞)red,PeE

∼=
O(X′

∞)red,PX′
eE

and ̂O(X∞),PeE
∼= ̂O(X′

∞),PX′
eE

(see (ii) and (ix)). Therefore, in order to

prove (31) we may suppose that X = X ′. We will next describe the ring ̂OX∞,PeE
,

where X = X ′ and PeE = PX
eE . We will follow the ideas in example 2.7 (or corol.

4.6 in [Re3]), where an analogous description is made.

The residue field of PAd

eE is

κ(PAd

eE ) ∼= k

(
{X1;n}n>em1 ∪ {Xj;n} 2≤j≤d

n≥emj

)[
{Wj,r}(j,r)∈J ∗

]
/ J

where we set mj := 0 for δ + 1 ≤ j ≤ d (see (11)), Wj,r is the class of Qr,j;eβj,r
,

and J is the ideal generated by

(32) Pj,r,1

 µj,r,1(Wj,r)
nj,r

W
bj,0
1,0 · · ·W bj,r−1

j,r−1;

,
W2,g2+1

W
b2,0
1,0 · · ·W b2,g2

2,g2

, . . . ,
Wj−1,gj−1+1

W
bj−1,0

1,0 · · ·W
bj−1,gj−1

j−1,gj−1


(recall 3.3 and 3.4). From the property (14) satisfied by Pj,r,1 and Hensel’s lemma,

it follows that we can define an embedding κ(Ad
k) ↪→ ̂O

(Ad)∞,PAd
eE

sending Xj;n to

Xj;n ∈ ̂O
(Ad)∞,PAd

eE

, for j = 1, n > em1, and 2 ≤ j ≤ d, n ≥ emj , sending W1,0

to X1;em1 and, recursively, for (j, r) ∈ J ∗ \ {(1, 0)}, sending Wj,r to a root of the
polynomial obtained from (32) by replacing Wj′,r′ , (j

′, r′) < (j, r), by its image in
̂O

(Ad)∞,PAd
eE

; this root exists by Hensel’s lemma. Then we have

̂O
(Ad)∞,PAd

eE

∼= κ(PAd

eE )

[[
{Xj,r;n} (j,r)∈J

enj,r−1βj,r−1≤n<eβj,r

]]
where the image of Xj,r;n in ̂O

(Ad)∞,PAd
eE

is Qr,j;n. Besides ̂OX∞,PX
eE

is a quotient of

κ(PX
eE)

[[
{Xj,r;n} (j,r)∈J

enj,r−1βj,r−1≤n<eβj,r

]]
where the residue field κ(PX

eE) of P
X
eE is a

finite field extension of κ(PAd

eE ).

Now, fix l, d+ 1 ≤ l ≤ N . Arguing analogously we obtain that

κl := κ(PAd

eE ) [{Wl,s}gls=1] / Jl ↪→ κ(PX
eE).

where Wl,s is the class of Zl,s;eαl,s
and Jl is the ideal generated by the relations

on {Wl,s}gls=1 induced by G′
l,s;ν(f ′

l,s)−(βl,s−nl,s−1βl,s−1)
, 2 ≤ s ≤ gl (see (29)). Ap-

plying recursively Hensel’s lemma to these relations we can define an embedding

κl ↪→ ̂OX∞,PX
eE

sending Xj;n to Xj;n ∈ ̂OX∞,PX
eE
, for j = 1, n > em1, and

2 ≤ j ≤ d, n ≥ emj , and sending W1,0 to X1;em1 ∈ ̂OX∞,PX
eE
. In particular,

for each n ≥ 0 we have defined Y
(0)
l;n ∈ κl such that Yl;n − Y

(0)
l;n ∈ (Q∪ Zl). Ar-

guing recursively on m ≥ 1 and n ≥ 0, with the lexicographic order on (m,n),
from {Fl;eϵl+n}n≥0, applying property (ii) in prop. 3.6 (b) and Hensel’s lemma,
and reasoning as in corol. 5.6 in [Re3] it follows that, for m,n ≥ 0, there exists

Y
(m)
l;n ∈ κl[{Xj,r;n}(j,r)∈J ,enj,r−1βj,r−1≤n<eβj,r

] such that,

(33) Feϵl+n ≡ L(m,n)
eϵl

(Yl;n − Y
(m)
l;n ) mod (Q∪ Zl)

m

in the ring (k[x1, . . . , xd, yl]∞)(Q∪Zl)
where L

(m,n)
eϵl is a unit. More precisely, L

(m,n)
eϵl −

F ′l,l;eϵl ∈ (Q∪ Zl) where recall that f ′l,l :=
∂fl
∂yl

.
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Therefore, Y
(m)
l;n −Y

(m)
l;n ∈ (Q∪ Zl)

m
by (33), hence we have defined series Ỹl;n ∈

κl

[[
{Xj,r;n}(j,r)∈J ,enj,r−1βj,r−1≤n<eβj,r

]]
, Ỹl;n = limm Y

(m)
l;n and we conclude that

κ(PX
eE) = κ(PZ

eE)
[
{Wl,s}(l,s)∈L

] / N∑
l=d+1

Jl

and

(34) ̂OX∞,PX
eE

∼= κ(PX
eE)

[[
{Xj,r;n} (j,r)∈J

enj,r−1βj,r−1≤n<eβj,r

]] / (
{F̃l;n} d+1≤l≤N

0≤n≤eϵl−1

)
where, for d + 1 ≤ l ≤ N , 0 ≤ n ≤ eϵl − 1, F̃l;n is obtained from Fl;n by substi-

tuting Yl;n′ by Ỹl;n, 0 ≤ n′ ≤ n (see (25) in [Re3]). In fact, we have applied the

definition ̂OX∞,PX
eE

:= lim←m OX∞,PX
eE

/
(PX

eE)
m+1 and also that PX

eEOX∞,PX
eE

=

(Q∪ Z)OX∞,PX
eE

and OX∞ = k[x1, . . . , xd, yd+1, . . . yN ]∞ /({Fl;n}d+1≤l≤N,n≥0) .

Besides, if Z̃l,s;n denotes the series obtained from Zl,s;n by substituting Yl;n′ by

Ỹl;n, 0 ≤ n′ ≤ n, then we have

(35) Z̃l,s;n ∈

(
{Xj,r;n} (j,r)∈J

enj,r−1βj,r−1≤n<eβj,r

)
for d+ 1 ≤ l ≤ N, 0 ≤ n ≤ eαl,s.

Since Fl;0, . . . , Fl;eϵl−1 ∈ (Q∪Zl)
2 κ(PAd

eE )[[{Xj,r;n}(j,r)∈J ,enj,r−1βj,r−1≤n<eβj,r
]] by

(iii) in (b) in prop. 3.6, applying (35) we conclude that that

F̃l;n ∈

(
{Xj,r;n} (j,r)∈J

enj,r−1βj,r−1≤n<eβj,r

)2

for d+ 1 ≤ l ≤ N, 0 ≤ n ≤; e ϵl − 1.

Therefore, the images of {Xj,r;n}(j,r)∈J ,enj,r−1βj,r−1≤n<eβj,r
define a basis of

PX
eE

̂OX∞,PX
eE
/(PX

eE
̂OX∞,PX

eE
)2. Thus we obtain(31), and this finishes the proof. �

Remark 3.9. Let X be a reduced separated scheme of finite type over a
field k of characteristic zero. Let P be any stable point of X∞ and suppose that
X is nonsingular at the center P0 of P and that P0 is not the generic point of X.
There exists a birational and proper morphism π : Y → X such that the center of
νP on Y is a divisor E, and e ∈ N such that νP = eνE ([Re3], (vii) in prop. 3.7,
see (v)). Let PY ∈ Y∞ whose image by π∞ is P , let ρ : X → Ad

k be a general

projection and let PAd

be the image of P in (Ad
k)∞. Then kE(Ad) = k̂E where k̂E

is the Mather discrepancy of X with respect to E, and we have dimO
(Ad)∞,PAd =

e k̂E + dimOY∞,PY (see (xiii)). Recall that P ⊇ PX
eE , hence PAd ⊇ PAd

eE and, if
Q is a regular system of parameters of O

(Ad)∞,PAd
eE

, then Q ⊂ P . Note that, since

νP = eνE , the proof of prop. 3.6 extends to this case, and we obtain that the
complete intersection scheme X ′ and the set Z defined in proposition 3.6 for the
valuation νE and e also satisfy the properties obtained replacing PeE by P in (i) to
(iii) in prop 3.6 (b). Then, from the proof of theorem 3.8 it follows that

embdim O(X∞)red,P = embdim ̂O(X∞)red,P = e (k̂E + dimOY∞,PY ).
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4. A lower bound for the dimension

Recall that, given a divisorial valuation ν = νE on X, the Mather-Jacobian
log-discrepancy of X with respect to E is defined to be

aMJ (E;X) := k̂E − νE(JacX) + 1

where JacX is the Jacobian ideal of X (see [I]).

Theorem 4.1. Assume that char k = 0. Let X be a reduced separated k-scheme
of finite type, let ν = νE be a divisorial valuation on an irreducible component X0

of X, and let e ∈ N. Then we have

dim ̂OX∞,PX
eE

≥ e aMJ(E;X).

In particular, if X is normal and complete intersection then

dim ̂OX∞,PX
eE

≥ e (kE + 1).

Proof. It is always possible to embed X in a complete intersection scheme X ′ such

that k̂E(X) = k̂E(X
′) and νE(JacX) = νE(JacX′). Hence, since ̂O(X∞),PeE

∼=
̂O(X′

∞),PX′
eE

(see (ii) and (ix)), it suffices to prove the result for X ′. That is, we may

assume that X is a complete intersection, more precisely, we may suppose that

X = Spec k[x1, . . . , xN ]/(f1, . . . , fN−d).

We may also suppose that (9) holds, i.e.

(9) ordE π∗(dx1 ∧ . . . ∧ dxd) = k̂E .

For simplicity in the notation we will prove the result when e = 1; the proof when
e > 1 follows in the same way. Let ρ : X → Ad

k be the projection on the first d

coordinates, let η : Y → Ad
k be the composition η = ρ ◦ π, let PAd

E be the image of

PY
E by η∞ and let Q = {Qj,r;n}(j,r)∈J , nj,r−1βj,r−1≤n≤βj,r−1

be a regular system of

parameters of O
(Ad)∞,PAd

E

associated to {qj,r}(j,r)∈J , as in 3.5. So we have

(36) PX
E O(X∞)red,PX

E
=
(
{Qj,r;n}(j,r)∈J , nj,r−1βj,r−1≤n≤βj,r−1

)
O(X∞)red,PX

E
.

(theorem 3.8).

Let us consider the following (N − d) × (N − d)-matrix with coefficients in
k[x1, . . . , xN ]:

∆ :=

(
∂fi

∂xd+j

)
1≤i,j≤N−d

and let di1,...,irj1,...,jr
denote the determinant of the r×r- minor of ∆ defined by the rows

i1, . . . , ir and the columns j1, . . . , jr. After reordering {xd+j}N−dj=1 we may suppose
that

(37) νE

(
d1,...,i1,...,i

)
= inf

{
νE

(
d1,...,i−1,i1,...,i−1,j

)}N−d

j=i
for 1 ≤ i ≤ N − d.

For 1 ≤ i ≤ N − d set

δi := νE

(
d1,...,i1,...,i

)
ϵi := inf

{
νE

(
∂fi

∂xd+j

)}N−d

j=1

= inf
{
νE
(
dij
)}N−d

j=1

and note that δ1 = ϵ1 and δN−d := νE(JacX) by (9). It can be proved by recurrence
that, for 1 ≤ l ≤ N − d, l ≤ i, j ≤ N − d, we have

(38) d1,...,l−1,i1,...,l−1,j · d
1,...,l−2
1,...,l−2 = d1,...,l−2,i1,...,l−2,j · d

1,...,l−1
1,...,l−1 − d1,...,l−2,i1,...,l−2,l−1 · d

1,...,l−2,l−1
1,...,l−2,j .
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Let f ′1,i :=
∂f1
∂xi

, 1 ≤ i ≤ N , thus f ′1,d+i = d1i , 1 ≤ i ≤ N − d. Let
∑

n≥0 F
′
1,i;nt

n

(resp.
∑

n≥0 D
i1,...,ir
j1,...,jr;n

tn) denote the image of f ′1,i (resp. d
i1,...,ir
j1,...,jr

) in k[x1, . . . , xN ]∞.

Given a1 > ϵ1 and n > (a1−ϵ1), applying Taylor’s formula to f1(w0+tn−(a1−ϵ1)w1),

where w0 =
∑n−(a1−ϵ1)−1

i=0 xi t
i and w1 =

∑
i≥n−(a1−ϵ1) xi t

i−(n−(a1−ϵ1)), we obtain

that for n > n1 := 2a1 − ϵ1 (i.e. 2(n− (a1 − ϵ1)) > n+ ϵ1) we have

F1;ϵ1+n = H ′1;n(X0, . . . , Xn−(a1−ϵ1)−1) +
N∑
i=1

a1∑
r=0

F ′1,i;rXi;n+ϵ1−r

where H ′1,n ∈ k[X0, . . . , Xn−(a1−ϵ1)−1] (see [Re2], proof of theorem 4.1, or equality

(30) in remark 3.7, where the same argument is applied). Hence, there exists a

polynomial H1;n ∈ k

[
X0, . . . , Xn−(a1−ϵ1)−1, {Xj;n′} 1≤j≤d

n−(a1−ϵ1)≤n′≤n+ϵ1

]
such that

(39)

F1;ϵ1+n = H1;n(X0, . . . , Xn−(a1−ϵ1)−1, {Xj;n′} 1≤j≤d

n′≤n+ϵ1

) +

+

N−d∑
i=1

a1∑
r=ϵ1

D1
i;rXd+i;n+ϵ1−r mod

(
{D1

i;s}1≤i≤N−d

0≤s<ϵ1

)
.

It follows that, for n > n1 there exists

X
(1)
d+1;n ∈ k

[
{Xj;n′} 1≤j≤d

0≤n′≤n+ϵ1

∪ {Xd+1;n′}0≤n′≤n1 ∪ {Xd+i;n′}2≤i≤N−d

0≤n′≤n

]
D1

1;ϵ1

such that

F1;ϵ1+n = D1
1;ϵ1 (Xd+1;n −X

(1)
d+1;n) mod

(
{D1

i;s}1≤i≤N−d

0≤s<ϵ1

∪ {F1;ϵ1+n′}n1<n′<n

)
in the ring (k[x1, . . . , xN ]∞)D1

1;ϵ1

. Besides, it can be proved by recurrence that, for

n > n1 + a1 − ϵ1, 2 ≤ i ≤ N − d and 0 ≤ r ≤ a1 − ϵ1 we have

(40)
∂X

(1)
d+1;n

∂Xd+i;n−r
= −

r∑
s=0

D1
i;ϵ1+s

D1
1;ϵ1

B1
r−s mod

(
{D1

i;s}1≤i≤N−d

0≤s<ϵ1

)
.

where

B1
r−s :=

∑
k1,...,km,b1,...,bm

(−1)b
b!

b1! · · · bm!

(D1
1;ϵ1+k1

)b1 · · · (D1
1;ϵ1+km

)bm

(D1
1;ϵ1

)b
.

with k1, . . . , km, b1, . . . , bm runnig over all positive integers satisfying k1 < k2 <
. . . < km and

∑m
i=1 biki = r − s, and b :=

∑m
i=1 bi.

Analogously, taking a2 > ϵ2, applying Taylor’s formula to f2, and then replacing

Xd+1;n′ by X
(1)
d+1;n′ for n′ > n1, i.e. considering the image F

(1)
2;ϵ2+n of F2;ϵ2+n in

k

[
{Xj;n′} 1≤j≤d

0≤n′≤ϵ2+n
∪ {Xd+1;n′}0≤n′≤n1 ∪ {Xd+i;n′}2≤i≤N−d

0≤n′≤n

]
D1

1;ϵ1

, we obtain that

for n >> 0, 2 ≤ i ≤ N − d, 0 ≤ r ≤ inf{(a1 − ϵ1), (a2 − ϵ2)}, we have

(41)
∂F

(1)
2;ϵ2+n

∂Xd+i;n−r
=

r∑
s=0

D1,2
1,i;ϵ1+ϵ2+s

D1
1;ϵ1

B1
r−s mod ({D1

i;s}1≤i≤N−d

0≤s<ϵ1

∪{D2
i;s}1≤i≤N−d

0≤s<ϵ2

).

In fact, to conclude (41) we have to apply Taylor’s development as in (39) and also
the identities (40). Hence, if (a1 − ϵ1) and (a2 − ϵ2) are bigger than (δ2 − δ1 − ϵ2),
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for n >> 0, 0 ≤ r ≤ inf{(a1 − ϵ1) − (δ2 − δ1 − ϵ2), (a2 − ϵ2) − (δ2 − δ1 − ϵ2)} and
2 ≤ i ≤ N − d, we have

∂F
(1)
2;δ2−δ1+n

∂Xd+i,n−r
=

r∑
s=0

D1,2
1,i;δ2+s

D1
1;ϵ1

B1
r−s

mod

(
{D1

i;s}1≤i≤N−d

0≤s<ϵ1

∪ {D2
i;s}1≤i≤N−d

0≤s<ϵ2

∪ {D1,2
1,i;s}1≤i≤N−d

0≤s<δ2

)
.

In particular

∂F
(1)
2;δ2−δ1+n

∂Xd+i,n
≡

D1,2
1,i;δ2

D1
1;ϵ1

and
∂F

(1)
2;δ2−δ1+n

∂Xd+i,n′
≡ 0 for n′ > n.

This implies that there exists n2 such that for n > n2 there exists

X
(1)
d+2;n ∈ k

[
{Xj;n′} 1≤j≤d

n′≤n+δ2−δ1
∪ {Xd+i;n′}1≤i≤2

n′≤ni

∪ {Xd+i;n′}3≤i≤N−d

n′≤n

]
D1

1;ϵ1
·D1,2

1,2;δ2

such that

F2,δ2−δ1+n =
D1,2

1,2;δ2

D1
1;ϵ1

(Xd+2;n −X
(1)
d+2;n)

mod

{Dj
i;s1

, D1,2
1,i;s2

} 1≤i≤N−d
1≤j≤2

s1<δ1,s2<δ2

∪ {F1;ϵ1+n′}n+(δ2−δ1−ϵ2)
n′=n1+1 ∪ {F2;δ2−ϵ1+n′}n2<n′<n


in the ring (k[x1, . . . , xN ]∞)D1

1;ϵ1
·D1,2

1,2;δ2

and

∂X
(1)
d+2;n

∂Xd+i;n−r
= −

r∑
s=0

D1,2
1,i;δ2+s

D1,2
1,2;δ2

B2
r−s mod

{Dj
i;s}1≤i≤N−d

1≤j≤2
0≤s<ϵ1

∪ {D1,2
1,i;s}1≤i≤N−d

0≤s<δ2


for 2 ≤ i ≤ N−d and 0 ≤ r ≤ inf{(al−ϵl)−(δl−δl−1−ϵl)−. . .−(δ2−δ1−ϵ2)}1≤l≤2,
where we set δ0 := 0.

Now let

D := {Dj
i;s}1≤i,j≤N−d

0≤s<ϵj

∪ {D1,2
1,i;s}1≤i≤N−d

0≤s<δ2

∪ . . . ∪ {D1,2,...,N−d−1,N−d
1,2,...,N−d−1,i;s } 1≤i≤N−d

0≤s<δN−d

and D0 := D1
1;ϵ1 · D1,2

1,2;δ2
· · ·D1,2,...,N−d

1,2,...,N−d;δN−d
. Recall that, by (37) and since δi =

νE(d
1,...,i
1,...,i), we have that, for each element in D, its class in OX∞,PX

E
is in PX

E and

also that the class of D0 is a unit in OX∞,PX
E

. Following as before, we obtain that,

for 1 ≤ i ≤ N − d, given ai > ϵi, there exists ni such that for n > ni there exists

X
(1)
d+i;n ∈ k

[
{Xj;n′} 1≤j≤d

0≤n′≤n+δi−δi−1

∪ {Xd+j;n′} 1≤j≤i

0≤n′≤nj

∪ {Xd+j;n′}i+1≤j≤N−d

0≤n′≤n

]
D0

satisfying

(42)
Fi;δi−δi−1+n =

D1,...,i
1,...,i;δi

D1,...,i−1
1,...,i−1;δi−1

(Xd+i;n −X
(1)
d+i;n)

mod (D ∪ {Fj;δj−δj−1+n′} 1≤j<i

nj<n′<+n+(δi−δi−1−ϵi)
∪ {Fi;δi−δi−1+n′}ni<n′<n)

in the ring (k[x1, . . . , xN ]∞)D0
, and

(43)
∂X

(1)
d+i;n

∂Xd+j;n−r
= −

r∑
s=0

D1,...,i−1,i
1,...,i−1,j;δi+s

D1,...,i
1,...,i;δi

Bi
r−s mod (D)
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for i ≤ j ≤ N −d and r ≤ inf{(al− ϵl)− (δl− δl−1− ϵl)− . . .− (δi− δi−1− ϵi)}1≤l≤i
where

Bi
r−s :=

∑
k1,...,km,b1,...,bm

(−1)b
b!

b1! · · · bm!

(D1,...,i
1,...,i;δi+k1

)b1 · · · (D1,...,i
1,...,i;δi+km

)bm

(D1,...,i
1,...,i;δi

)b
.

k1, . . . , km, b1, . . . , bm running over all positive integers such that k1 < . . . < km
and

∑m
i=1 biki = r − s, and b :=

∑m
i=1 bi. Note that from (43) and applying the

equalities (38) it follows that for n >> 0, the image F
(1)
i+1;δi+1−δi+n of Fi+1;δi+1−δi+n

in k

[
{Xj;n′} 1≤j≤d

0≤n′≤ϵi+1+n
∪ {Xd+j;n′} 1≤j≤i

0≤n′≤nj

∪ {Xd+j;n′}i+1≤j≤N−d

0≤n′≤n

]
D0

satisfies

∂F
(1)
i+1;δi+1−δi+n

∂Xd+j,n−r
=

r∑
s=0

D1,...,i,i+1
1,...,i,j;δi+δi+1+s

D1,...,i
1,...,i;δi

Bi
r−s mod(D).

for i+1 ≤ j ≤ N−d and r ≤ inf{(al−ϵl)−(δl−δl−1−ϵl)−. . .−(δi+1−δi−ϵi)}1≤l≤i+1.
This is used in the recurrence reasoning. Therefore, taking al > ϵl + (δl − δl−1 −
ϵl) + . . . + (δN−d − δN−d−1 − ϵN−d) for 1 ≤ l ≤ N − d, we conclude the existence

of ni, 1 ≤ i ≤ N − d, and X
(1)
d+i;n, 1 ≤ i ≤ N − d, n > ni, satisfying (42) and (43).

From the previous discussion and arguing by recurrence on (m, i, n), m ≥ 1, 1 ≤
i ≤ N − d, n ≥ ni + 1, with the lexicographic order, we obtain

X
(m)
d+i;n ∈ k

[
{Xj;n′}1≤j≤d

n′≥0
∪ {Xd+j;n′}1≤j≤N−d

0≤n′≤nj

]
D0

satisfying

Fi;δi−δi−1+n =
D1,...,i

1,...,i;δi

D1,...,i−1
1,...,i−1;δi−1

(Xd+i;n −X
(m)
d+i;n)

mod (D)m +

(
{Fj;δj−δj−1+n′}1≤j≤N−d

nj<n′

)
in (k[x1, . . . , xN ]∞)D0

. Thus we have

X
(m+1)
d+i;n −X

(m)
d+i;n ∈ (D)m +

(
{Fj;δj−δj−1+n′}1≤j≤N−d

nj<n′

)
.

Recall (36) and that the image of D in OX∞,PX
E

is in PX
E . Fix an embedding

κ(PX
E ) ↪→ ̂OX∞,PX

E
sending Xj;n to Xj;n ∈ ̂OX∞,PX

E
, for 1 ≤ j ≤ d, n ≥ mj (see

the proof of theorem 3.8). Then, for 1 ≤ i ≤ N − d and n > ni, the polynomials

{X(m)
d+i;n}m≥1 define a series

X̃d+i;n ∈ κ(P )

[[
{Xj,r;n} (j,r)∈J

nj,r−1βj,r−1≤n<βj,r

∪ {Xd+j;n′ −Xd+j;n′}1≤j≤N−d

0≤n′≤nj

]]
where we identify Xj,r;n with Qj,r;n, as in the proof of th. 3.8, and where Xd+j;n′ ∈
̂OX∞,PX

E
is the image of the class of Xd+j;n′ in κ(PX

E ), for 1 ≤ j ≤ N −d, 0 ≤ n′ ≤
nj . Setting Yd+j;n′ := Xd+j;n′ −Xd+j;n′ , 1 ≤ j ≤ N − d, 0 ≤ n′ ≤ nj , we conclude

that ̂OX∞,PX
E

is isomorphic to

κ(PX
eE)

[[
{Xj,r;n} (j,r)∈J

nj,r−1βj,r−1≤n<βj,r

∪ {Yd+j;n′}1≤j≤N−d

n′≤nj

]] / (
{F̃j;n} 1≤j≤N−d

n≤δj−δj−1+nj

)
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where for 1 ≤ j ≤ N − d, 0 ≤ n ≤ δj − δj−1 + nj , F̃j;n is obtained from Fj;n by

substituting Xd+i;n′ by X̃d+i;n′ , for 1 ≤ i ≤ N − d and 0 ≤ n′ ≤ n, and Xd+j;n′ by

Xd+j;n′ + Yd+j;n′ for 1 ≤ j ≤ N − d, 0 ≤ n′ ≤ nj . Applying Krull’s theorem we
obtain that

dim ̂OX∞,PX
eE

≥ k̂E+1+
N−d∑
i=1

(ni+1)−
N−d∑
i=1

(δi−δi−1+ni+1) = k̂E+1−δN−d = aMJ(E).

Finally, if X is normal and complete intersection, we have aMJ(E) = kE +1 ([EM]
appendix). Hence we conclude the result. �

4.2. Recall that, given an extension of fields k ⊆ K, a K-wedge on X is a k-
morphism Spec K[[ξ, t]] → X; equivalently it is a K-arc on X∞ (see (3)). Given a
birational and proper k-morphism p : Y → X and a stable point P of X∞, we say
that p satisfies the property of lifting wedges centered at P if, for any field extension
K of the residue field κ(P ) of P in X∞, and for any K-wedge ϕ : Spec K[[ξ, t]] → X
on X whose special arc is P (i.e. P is the image in X∞ of the closed point of

Spec K[[ξ]]), there exists aK-wedge ϕ̃ : Spec K[[ξ, t]] → Y on Y such that p◦ϕ̃ = ϕ.

In [Re3], corol. 5.12, it is proved that, if ν = νE is an essential divisorial valuation
on X, then, the following are equivalent:

(i) dim ̂OX∞,PX
E

= 1 and Spec ̂OX∞,PX
E

is irreducible.

(ii) dimOX∞,PX
E

= 1.

(iii) For every resolution of singularities p : Y → X, p satisfies the property of
lifting wedges centered at PE .

(iii’) There exists a resolution of singularities p : Y → X that satisfies the
condition in (iii), and such that the center of ν on Y has codimension 1.

T. de Fernex and R. Docampo [dFD] have proved that, if νE is a terminal
valuation then condition (iii) above holds. In fact, this follows from the proof of
th.1.1 in [dFD], note that their statement in th.1.1 is weaker to condition (iii) (see
[Re2], th.5.1 or [Re3] section 5). Terminal valuations are the divisorial valuations
defined by the exceptional divisors of a minimal model ofX, hence they are essential
(see [dFD]).

From this and theorem 4.1 above, corollaries 4.3 and 4.4 below follow:

Corollary 4.3. Let X be a reduced separated scheme of finite type over a field k
of char k = 0. Let ν = νE be an essential divisorial valuation on an irreducible
component X0 of X. Consider the following conditions:

(1) νE is a terminal valuation.

(2) dim ̂OX∞,PX
E

= 1.

(3) aMJ(E;X) ≤ 1, in particular kE(X) ≤ 0 if X is normal and complete
intersection.

We have that (1) implies (2) and (2) implies (3).

The following example shows that (2) does not imply (1). It has been pointed
out to us by M. Mustata.

Remark 4.4. In [dFD], example 6.3, the toric variety X defined by the
cone σ in R3 spanned by the vectors (1, 0, 0), (0, 1, 0) and (1, 1, 2) is considered, and
the divisorial valuation νE defined by (1, 1, 1), which is not a terminal valuation.

It can be proved that dim ̂OX∞,PX
E

= 1. In this case we have k̂E(X) = 2 and

νE(JacX) = 3, hence aMJ (E;X) = 0.
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Corollary 4.5. Let X be a reduced separated scheme of finite type over a field k
of char k = 0. Suppose that X is normal and complete intersection. Let ν = νE be
an essential divisorial valuation on an irreducible component X0 of X and suppose
that kE ≥ 1. Then, for every resolution of singularities p : Y → X such that
the center of ν on Y has codimension 1, p does not satisfy the property of lifting
wedges centered at PE, i.e. there exist a field extension K of κ(PE) and a K-wedge
ϕ : Spec K[[ξ, t]] → X on X whose special arc is PE and which does not lift to Y .
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