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Pierre et Marie Curie, UMR 7607, Tour 66, 4 Place Jussieu, Case 162, 75252, Paris Cédex 05, France
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A modification of the wave-propagation algorithm is used as a tool for deter-
mining contact quantities in a finite-volume scheme for the numerical simulation 
of two-dimensional thermoelastic wave propagation in inhomogeneous media. The 
modification is needed to provide the satisfaction of the thermodynamic consistency 
conditions between adjacent elements. It appears that the algorithm is thermodynam-
ically consistent except for the limiter functions. Therefore, a composite scheme is 
used where the Godunov step is applied after each three second-order Lax–Wendroff 
steps. Elimination of source terms is made following the method of balancing source 
terms after independent solution of the heat conduction equation.

Key Words: thermoelastic waves; finite-volume methods; discrete systems; com-
posite schemes.

1. INTRODUCTION

The question of conceiving an accurate numerical scheme for thermoelasticity was raised
recently in conjunctionwith the problemof the simulation of the progress of phase-transition
fronts in crystalline substances. The latter is a free boundary problem which involves rapid
localized changes in the field solution. It is with this problem in mind that the authors
have developed a numerical scheme dealing first with the case of materially inhomoge-
neous thermoelastic conductors with smooth or abrupt property variations but no phase
changes.
It should be noted that there are many possibilities for the numerical solution of hyper-

bolic systems of equations. However, certain assumptions about the smoothness of solution
are typically used to approximate derivatives in standard finite-difference methods. These
approximations are not valid near discontinuities in the material parameters. Therefore,
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standard methods often fail completely if the parameters vary drastically on the grid size.
By contrast, the recently developed wave-propagation algorithm [1] has been found quite
natural for the modeling of wave propagation in rapidly varying heterogeneous media [2].
This algorithm combines high resolution with multidimensional wave propagation. Special
limiter functions are applied to reduce spurious oscillations near discontinuities. As a result,
sharp resolution of shocks along with nearly second-order accuracy of smooth solutions is
obtained.
However, the application of limiters depends on the considered problem [2] and still

seems to be more of an art than a science. Moreover, the fulfilling of thermodynamic
consistency conditions cannot be immediately controlled by using nonlinear wave limiters.
The thermodynamic consistency conditions are extremely important for the modeling of
phase transitions in solids. It seems, therefore, that the recently proposed composite schemes
[3] are more convenient for our purposes, because of the use of filters that are consistent
with differential equations. In the present paper, necessary modifications are introduced for
the conservation of the thermodynamic consistency of the numerical scheme.
The system of equations for thermoelastic wave propagation, given in the second section,

is represented in an integral form which is appropriate for a finite-volume scheme. Contact
quantities that appear in this formulation are determined by means of the two-dimensional
wave-propagation algorithm [1] as it is briefly described in the fourth section in the ex-
ample of elastic waves. A thermodynamically consistent composite scheme is obtained by
application of the Godunov step after each three second-order Lax–Wendroff steps. In the
fifth section, the elimination of source terms in the equations of thermoelasticity is made
following the method of balancing source terms [4] after independent solution of the heat
conduction equation. Results of computation for certain test problems show the efficiency
and physical consistency of the algorithm.

2. BASIC EQUATIONS OF THERMOELASTICITY

We shall consider the classical thermoelasticity of heat conductors.When the geometrical
nonlinearities are neglected, themain two equations of thermoelasticity are the local balance
of momentum at each regular material point (in the absence of body force) [5], [6],

ρ0
∂vi

∂t
− ∂σi j

∂x j
= 0, (1)

and the heat conduction equation (in the absence of body force and anelasticity),

T
∂S
∂t

+ ∇ · q = 0, (2)

where ρ0 = ρ̄0(x), S is the entropy, T is the absolute temperature, q is the heat flux vector,
and v and σ are the velocity and Cauchy stress tensor, respectively. Here σ, S, and q are
given by

σi j = ∂W̄
∂εi j

, S = −∂W̄
∂T

,

qi = q̄i

(
∂T
∂x j

, εkl , T ; x
)

,
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with a free energy per unit volume given by

W = W̄ (εi j , T ; x),
(3)

εi j = 1
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
,

if the ui are the Cartesian components of the elastic displacement. The indicated explicit
dependence on the point x means that the body is materially inhomogeneous in general.
For the sake of example, we more particularly consider linear isotropic thermoelasticity for
which

W = W el + W th + W te, (4)

where the three different contributions that relate to elastic energy, thermal energy, and
thermoelastic interaction energy, respectively, are given by

W el = 1
2
(
λ(x)ε2kk + 2μ(x)εi jεi j

)
,

W th = −C(x)
2T0

(T − T0)2,

W te = m(x)(T − T0)εkk .

Here T0 is a spatially uniform reference temperature and only small deviations from it are
envisaged. Simultaneously, we assume the Fourier law of heat conduction,

qi = −k(x)
∂T
∂xi

. (5)

The more usual dilatation coefficient α is related to the thermoelastic coefficient m, and
the Lamé coefficients λ and μ by m = −α(3λ + 2μ). We can then rewrite the relevant
bulk equations of inhomogeneous linear isotropic thermoelasticity as the following three
equations of which the second one is none other than the time derivative of the Duhamel–
Neumann thermoelastic constitutive equation,

∂(ρ̄0(x)vi )

∂t
− ∂σi j

∂x j
= 0, (6)

∂σi j

∂t
= λ(x)

∂vk

∂xk
δi j + μ(x)

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ m(x)

∂T
∂t

δi j , (7)

∂(C(x)T )

∂t
= ∂

∂xi

(
k(x)

∂T
∂xi

)
+ m(x)

∂vk

∂xk
. (8)

From the mathematical viewpoint, the problem is to find a solution to the system (6)–(8)
of equations with corresponding initial and boundary conditions. This is conceivably diffi-
cult in general; therefore an efficient and robust numerical method is required. Obviously,
numerical schemes deal with discrete elements representing the continuous body. The for-
mulation (6)–(8) paves the way for a reformulation of the governing equations in terms of
parameters related to the discrete elements. It happens that the latter can be viewed from
both numerical and thermodynamic viewpoints.
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3. FINITE-VOLUMEMETHOD AND THE THERMODYNAMICS
OF DISCRETE SYSTEMS

It is salient to remind the reader of the notion of discrete systems in thermodynamics
(Schottky [7], Muschik [8]). In such thermodynamics, the thermodynamic state space is
extended by means of contact quantities in order to describe nonequilibrium states. In this
perspective a discrete system is a domain G ofR3, which is separated from its environment
G∗ by a partition ∂G. The interaction between G and G∗ is described by contact quantities.
In a Schottky system per se, this interaction consists of heat, work, and mass exchanges. For
instance, considering heat exchange Q̇, the contact temperature is defined by the inequality

Q̇
(
1
	

− 1
T ∗

)
≥ 0 (9)

for vanishing work and mass exchange rates. Here T ∗ is the thermostatic temperature of the
equilibrium environment. From Eq. (9) it follows that Q̇ and the term in brackets always
have the same sign. If we now suppose that exactly one equilibrium environment exists
for each arbitrary discrete system for which the net heat exchange between them vanishes,
then the defining inequality (9) determines the contact temperature 	 of the system as
the thermostatic temperature T ∗ of the system’s environment for which this net exchange
vanishes. The dynamic pressure, p, and the dynamic chemical potential, μ, are defined
analogously by

V̇ (p − p∗) ≥ 0, Ṁ(μ∗ − μ) ≥ 0. (10)

The contact quantities so definedprovide a complete thermodynamic description of nonequi-
librium states of a separated discrete system. Note, however, that the values of the defined
contact quantities differ from the values of usual bulk parameters of the case of local equilib-
rium. For interacting elements, which are the case in our study, the values of bulk and contact
quantities of adjacent elements are additionally connected by thermodynamic consistency
conditions [9].
In the required extension of the concepts of the thermodynamics of discrete systems to

the thermoelastic case, we divide the body in a finite number of identical elements. This
is also the strategy of the numerical method of finite volumes. The state of each element
is then identified with the thermodynamic state of a discrete system associated with that
element; each element is assumed to be in local equilibrium. In thermoelasticity, in addition
to	 and the defining inequality (9), which governs heat exchange, we must define a contact
dynamic stress tensor 
i j since the state space includes the deformation. Analogously to
(9), which holds for ε̇i j = 0, we have thus

∂εi j

∂t
(
i j − σ ∗

i j ) ≥ 0, (Q̇ = 0), (11)

an inequality that reminds us of theHill–Mandel principle ofmaximal dissipation [10]. Here
σ ∗

i j is the Cauchy stress tensor in the environment. Now it remains to make the connection
between the bulk quantities that appear in Eqs. (6)–(8) and the contact quantities. This is
achieved as follows. The contact stress tensor 
i j is defined at the boundary ∂V of the
volume element V and Vi denoting, by duality, the contact deformation velocity at that
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boundary of unit outward normal ni . The integration over the finite-volume element of
Eqs. (6)–(8) and the definition of the strain rate yields the following set of integral forms
when contact quantities are substituted for bulk ones,

∂

∂t

∫
V

ρ0vi dV =
∫

∂V

i j n j d A, (12)

∂

∂t

∫
V

εi j dV =
∫

∂V
Hi jknk d A, (13)

∂

∂t

∫
V

σi j dV =
∫

∂V
(2μHi jknk + λδi j Vknk) d A + ϕi j , (14)

∂

∂t

∫
V

CT dV =
∫

∂V
(k(n · ∇)θ + mVknk) d A + ϕinh, (15)

where Hi jk = 1/2(δik Vj + δ jk Vi ) and source terms resulting frommaterial inhomogeneities
(labeled “inh”) and thermoelastic couplings (labeled “te”) are given by

ϕi j = ϕte
i j + ϕinh

i j , ϕte
i j =

∫
V

mδi j
∂T
∂t

dV,

ϕinh
i j = −

∫
V

(
vk

∂λ

∂xk
δi j + vi

∂μ

∂x j
+ v j

∂μ

∂xi

)
dV,

ϕinh = −
∫

V
vk

∂m
∂xk

dV .

Equation (13) follows from the last of (3) by taking the time derivative and integrating over
volume V .
As m here does not depend on time, the contribution ϕte

i j could possibly be rewritten
as a time derivative and grouped with the left-hand side of Eq. (14), leaving only terms
originating from material inhomogeneities as source terms. However, we keep the above
formalism in order to distinguish between the purely elastic and thermoelastic cases. The
reason for this is that in “classical” thermoelasticity, the thermoelastic coupling in Eq. (8)
is usually considered small and hence negligible, leaving from (8) an equation determining
temperature independently of other fields (cf. [5], [6]), even in inhomogeneous materials,
that is in that “thermal stress” approximation (15) is reduced to

∂

∂t

∫
V

CT dV =
∫

∂V
k(n · ∇)θ d A. (16)

Equations (12)–(15)—or (16)—are in a form suitable for a numerical approach by the
method of finite volumes. It remains, however, to relate bulk and contact quantities (e.g., qi
and 
i j ). For that purpose, noting that volume elements are cells, thermodynamic consis-
tency conditions have been established [9] (subscripts 1 and 2 denote adjacent cells),

(
∂
(
E1 + Eint

1
)

∂εi j

)
θ

=
(

∂
(
E2 + Eint

2
)

∂εi j

)
θ

, (17)

where E is the internal energy per unit volume, and the energy of interaction Eint is undeter-
mined yet. These conditions provide the control for updating rules for the state of adjacent
cells.
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4. TWO-DIMENSIONAL ELASTIC WAVES

The connection between bulk and contact quantities in the elastic case will be established
bymeans of thewave-propagation algorithm [1]. The general form for the integral equations
(12)–(16) in the considered case is

∂

∂t

∫
V

q dV =
∫

∂V
Q · n d A + ϕ. (18)

A finite-volume scheme corresponding to these equations in two space dimensions can be
represented in the form (the source term disappears for each locally homogeneous elemen-
tary volume)

qk+1
i j = qk

i j − 
t

x

(AQ+
i j − AQ−

i j ) − 
t

y

(BQ+
i j + BQ−

i j ), (19)

where AQ± and BQ± are the contact quantities in the horizontal and vertical directions,
respectively.
At the same time, the system of equations of linear elasticity can be presented in the form

of conservation laws. In an inhomogeneous medium in two space dimensions this system
of equations is considered in a matrix form

∂q
∂t

+ A(x, y)
∂q
∂x

+ B(x, y)
∂q
∂y

= 0. (20)

The wave-propagation algorithm for the solution of these equations is based on solving
Riemann problems at the interface between grid cells [1] . The fluctuations arising from
Riemann problems in the x- and y-directions, respectively, are determined exactly

A−
qi j =
∑
p=1

α
(p−)
i j W (p−) A+
qi j =

∑
p=1

α
(p+)
i j W (p+),

B−
qi j =
∑
p=1

β
(p−)
i j w(p−), B+
qi j =

∑
p=1

β
(p+)
i j w(p+).

Here α
(p)
i j and β

(p)
i j are eigenvalues of matrices Ai j and Bi j , where coefficients depend

on the state of the cell (i j); W (p) and w(p) are horizontal and vertical waves corresponding
to the local Riemann problem; superscripts “+” and “−” denote positive and negative
eigenvalues.
The construction of the wave propagation algorithm begins with establishing the first-

order Godunov scheme in terms of these fluctuations [1]:

qk+1
i j = qk

i j − 
t

x

(A+
qi j + A−
qi+1 j ) − 
t

y

(B+
qi j + B−
qi j+1). (21)

It is easy to see that the connection between fluctuations and contact quantities can be
established in a very simple way:

AQ+
i j = A−
qi+1 j , AQ−

i j = −A+
qi j ,
(22)

BQ+
i j = B−
qi j+1, BQ−

i = −B+
qi j .
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Using this connection, we can exploit almost all advantages of the wave-propagation
algorithm, namely, high-resolution and multidimensional motion.
In the thermoelastic case, the thermodynamic derivative in the conditions (17) can be

expressed in terms of stress components as

(
∂E
∂εi j

)
θ

= −θ

(
∂σi j

∂θ

)
εi j

+ σi j , (23)

where i and j are fixed. It is supposed that the introduced contact quantities (capital letters)
are connected with the energy of interaction in an analogous way:

(
∂Eint

∂εi j

)
θ

= −	

(
∂
i j

∂θ

)
εi j

+ 
i j . (24)

Therefore, the thermodynamic consistency conditions for two cells numbered 1 and 2
and separated by a coordinate line are

σ
(1)
i j + 


(1)
i j − T (1)

(
∂σ

(1)
i j

∂T

)
ε

− 	(1)

(
∂


(1)
i j

∂T

)
ε

= σ
(2)
i j + 


(2)
i j − T (2)

(
∂σ

(2)
i j

∂T

)
ε

− 	(2)

(
∂


(2)
i j

∂T

)
ε

. (25)

It should be noted that values of the contact stresses, determined by means of (22), satisfy
the thermodynamic consistency conditions (25) in their isothermal form.
The Godunov’s method is extended to a high-resolution method by adding correction

terms [1]. The form of the extended method is

qk+1
i j = qk

i j + 

up
i j − 
t


x
(
F̄k

i+1 j − F̄k
i j
) − 
t


y
(
Ḡk

i j+1 − Ḡk
i j
)
, (26)

where 

up
i j is the update for a first-order upwind Godunov method. The second-order cor-

rection terms take the form [1]

F̄k
i j = 1

2

4∑
p=1

∣∣α(p)
i j

∣∣(1− 
t

x

∣∣α(p)
i j

∣∣)W (p),

Ḡk
i j = 1

2

4∑
p=1

∣∣β(p)
i j

∣∣(1− 
t

x

∣∣β(p)
i j

∣∣)w(p)

and provide second-order accuracy. The obtained algorithm is a variant of the well-known
Lax–Wendroff method [11]. The thermodynamic consistency conditions (25) remain satis-
fied in this case.
The multidimensional motion is accomplished by splitting each fluctuation A∗
qi j and

B∗
qi j into two transverse fluctuations [1], which will be called B+A∗
qi j (the up-going
transverse fluctuation),B−A∗
qi j (the down-going transverse fluctuation),A+B∗
qi j (the
right-going transverse fluctuation), and A−B∗
qi j (the left-going transverse fluctuation).
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The total effect of vertical transverse propagation at the interface between cells (i − 1 j)
and (i j) is determined as

Gk
i j = 
t

2
x
(B−A+
qk

i j + B+A+
qk
i j−1 + B+A−
qk

i+1 j−1 + B−A−
qk
i+1 j

)
. (27)

Analogously, the total effect of horizontal transverse propagation at the interface between
cells (i j − 1) and (i j) is

Fk
i j = 
t

2
y
(A−B−
qk

i j+1 + A+B−
qk
i−1 j+1 + A−B+
qk

i j + A+B+
qk
i−1 j

)
. (28)

The introduction of the transverse fluctuations improves the stability limit up to Courant
number 1 and fulfills the thermodynamic consistency conditions.
The whole algorithm is implemented in the form

qk+1
i j = qk

i j + 

up
i j + 
trans

i j − 
t

x

(
F̄k

i+1 j − F̄k
i j
) − 
t


y
(
Ḡk

i j+1 − Ḡk
i j
)
, (29)

where 

up
i j is the update for the first-order upwind Godunov method, and 
trans

i j represents
the effect of transverse fluctuations,


trans
i j = − 
t


x
(
Fk

i+1 j − Fk
i j
) − 
t


y
(
Gk

i j+1 − Gk
i j
)
.

It is well known that the Lax–Wendroff scheme produces oscillations behind disconti-
nuities [3]. The usual way to reduce spurious oscillations is to introduce limiter functions
to modify the second-order corrections near discontinuities. Here, instead of limiters, the
recent idea of using filters that are consistent with differential equations [3] is applied to
provide the satisfaction of thermodynamic consistency conditions.
The corresponding composite scheme is obtained by application of theGodunov step after

each three second-order Lax–Wendroff steps. Obviously, the thermodynamic consistency
conditions remain satisfied at each step.

4.1. Boundary Conditions

Boundary conditions are specified in terms of bulk quantities for boundary elements. For
stress-free boundaries, the bulk stresses are set equal to zero. The contact quantities are not
specified at the outer boundaries.

4.2. Numerical Tests

We have performed a number of simulations to estimate the correctness and capabilities
of the algorithm. They include, in particular, the following:

• Elastic wavefronts from point source at the boundary of a homogeneous medium;
• Elastic wave propagation in a layered medium;
• Elastic waves in a medium with periodically and randomly distributed inclusions.

All calculations were performed by means of the composite Lax–Wendroff–Godunov
scheme with the Courant number equal to 1. Waves were excited by the prescription of

8



FIG. 1. Contour plot of elastic wavefronts from a point source in homogeneous medium, Courant number
1.0, 50 time steps.

nonzero normal component of the stress tensor within a finite aperture at the boundary for
a short time.
As the first example, a short-time symmetrical excitation in the middle of a boundary

of a homogeneous rectangular domain by sinusoidal normal stress is considered. All other
boundaries are stress-free. Physical parameters for aluminium were used in the calculation:
cp = 6420 m/s, cs = 3040 m/s, ρ0 = 2700 kg/m3.
Figures 1 and 2 represent snapshots of wavefronts after 50 and 250 time steps, respec-

tively, in terms of total displacement. It seems that the proposed algorithm gives a good
correspondence with the almost classical situation. Figure 3 shows a snapshot of the prop-
agation of elastic wave, which is excited at a part of the bottom boundary with linear
retardation, in a layered medium (corresponding density distribution is shown in Fig. 4). In
the inhomogeneous case, we need to prescribe additionally the physical parameters for cop-
per: cp = 4560 m/s, cs = 2600 m/s, ρ0 = 8960 kg/m3. The picture is asymmetric because
of asymmetric loading at the boundary. The samemedium is used for the performing of stan-
dard experiment with refining of the spatial grid. The results of calculations are presented
in Fig. 5 in terms of normal stress distribution along the centerline. The density distribution
is also shown schematically. One can see that refining the grid gives more detailed stress
distribution but does not change the qualitative results. Figures 6 and 7 represent an elastic

FIG. 2. Contour plot of elastic wavefronts from a point source in homogeneous medium, Courant number
1.0, 250 time steps.
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FIG. 3. Contour plot of elastic wave propagation in a layered medium, Courant number 1.0, 100 time steps.

wave in amediumwith periodically distributed inclusions of anothermaterial. For randomly
distributed inclusions, as shown in Fig. 8, we have to start with a more asymmetric picture,
but then some regularity appears with the larger part of the signal finally propagating quite
symmetrically and practically aligned with the initial source, as can be seen in Fig. 9. This
is typical of the “isotropic averaging effect” of random distributions.

5. THERMOELASTIC WAVES

In the thermoelastic case, the equation for the temperature in two dimensions,

∂T
∂t

= ∂

∂x

(
k(x, y)

∂T
∂x

)
+ ∂

∂y

(
(k(x, y)

∂T
∂y

)
, (30)

FIG. 4. Density distribution in a layered medium.

10



FIG. 5. Normalized normal stress distribution along the centerline of a layered medium, Courant number 1.0,
100 time steps.

is solved by means of a simple algorithm for the heat conductivity equation in an inhomo-
geneous medium [12],

T k+1
i j = ki j
t

4(
x)2

αi+1 j Bi+1 j T k
i+1 j + αi−1 j Bi−1 j T k

i−1 j − 2αi j Bi j T k
i j

αi j Bi j
(31)

+ ki j
t
4(
y)2

αi j+1Bi j+1T k
i j+1 + αi j−1Bi j−1T k

i j−1 − 2αi j Bi j T k
i j .

αi j Bi j
, (32)

where B = λ + 2/3μ is the bulk modulus.

FIG. 6. Density distribution in a periodic medium.
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FIG. 7. Contour plot of elastic wave propagation in a periodic medium, Courant number 1.0, 100 time steps.

FIG. 8. Density distribution in a random medium.

FIG. 9. Contour plot of elastic wave propagation in a random medium, Courant number 1.0, 100 time steps.

260
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According to the method of balancing source terms [4], the modified bulk velocities in
both x- and y-directions,

(v1)
±
i j = (v1)i j ± αi j (3λi j + 2μi j )

2(λi j + 2μi j )

(
∂T
∂t

)
i j

x,

(v2)
±
i j = (v2)i j ± αi j (3λi j + 2μi j )

2(λi j + 2μi j )

(
∂T
∂t

)
i j

y,

are used for the calculation of normal dynamic stresses and corresponding contact velocities,
which allows us to eliminate the source terms.
The computational derivative for the temperature is calculated as(

∂T
∂t

)k

i j
= T k+1

i j − T k
i j


t
.

When the contact temperatures are defined as

(	r )k
i j = αi+1 j (3λi+1 j + 2μi+1 j )T k

i+1 j − αi j (3λi j + 2μi j )T k
i j

2αi j (3λi j + 2μi j )
,

(	l)k
i j = −αi j (3λi j + 2μi j )T k

i j − αi−1 j (3λi−1 j + 2μi−1 j )T k
i−1 j

2αi j (3λi j + 2μi j )
,

(	u)k
i j = αi j+1(3λi j+1 + 2μi j+1T k

i j+1 − αi j (3λi j + 2μi j )T k
i j

2αi j (3λi j + 2μi j )
,

(	d)k
i j = −αi j (3λi j + 2μi j )T k

i j − αi j−1(3λi j−1 + 2μi j−1)T k
i j−1

2αi j (3λi j + 2μi j )
,

where superscripts “r,” “l,” “u,” and “d“ denote left, right, up, and down boundaries, respec-
tively, we can fulfill the thermodynamic consistency conditions (25).
The first-order Godunov method as well as transverse propagation, second-order correc-

tion, and composition are then applied as above.
Results of simulation for thermoelastic wave propagation in inhomogeneous media are

presented in Figs. 10–13. Figure 11 represents the interaction of a thermoelastic wave

FIG. 10. Step-wise distribution of material properties inside the computational domain.
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FIG. 11. Interaction of a thermoelastic wave with an interface between two distinct media, Courant number
1.0, 70 time steps.

FIG. 12. Continuous variation of material properties inside the computational domain.

FIG. 13. Thermoelastic wave propagation inside a medium with laterally varying properties, Courant number
1.0, 70 time steps.

14



with an interface between two distinct, but otherwise spatially homogeneous, thermoe-
lastic materials (copper and aluminium). The step-wise distribution of material proper-
ties is shown in Fig. 10. The wave was excited by a purely thermal shock at a part of
the bottom boundary, as shown by a narrow black rectangle in Fig. 10; all other bound-
aries are stress free. Figure 11 shows the first time the wave hits the interface. Figure 13
shows snapshots of the mechanical trace (normal stress) of a thermoelastic wave in-
side a medium with laterally continuously varying properties (as in Fig. 12). The ini-
tial excitation is the same as for the previous case. The wave front curves as it propa-
gates, because of lateral inhomogeneity. Animated pictures can be obtained via e-mail by
request.

6. CONCLUDING REMARKS

The concept of contact quantities which was introduced for the thermodynamic descrip-
tion of the nonequilibrium state of elements in the thermodynamics of discrete systems [8] is
successfully used for the construction of a finite-volume numerical scheme for thermoelatic
wave propagation in inhomogeneous media. The contact quantities appeared naturally in
the integral balance laws for thermoelasticity; the laws serve as a basis for the formulation
of the finite-volume algorithm. At the same time, these quantities can be easily placed in
correspondence with the fluctuations that appear in the formulation of thewave-propagation
algorithm [1]. This allows us to transform the wave-propagation algorithm into a thermody-
namically consistent schemeusing the idea of composition proposed in [3]. Themodification
obtained conserves practically all advantages of the wave-propagation algorithm, namely,
high resolution, multidimensional motion, and stability up to a Courant number equal to
unity.
We assumed that the energy of interaction is connected with contact quantities in the

same way as the usual elastic energy and bulk quantities are connected, because only elas-
tic interactions are considered. The thermodynamic consistency conditions introduced for
adjacent elements provide the equivalence of the thermodynamic description at each level
of refinement of the mesh. In the present paper, the conditions are fulfilled automatically
for the composite scheme used, because no entropy production at interfaces appears in
the case of linear thermoelastic waves. Within the composite wave-propagation algorithm,
every discontinuity in parameters is taken into account by solving the Riemann problem at
each interface between elements. The reflection and transmission of waves at each inter-
face are handled automatically for the inhomogeneous media considered (without entropy
production at these interfaces). In fact, it is shown that the algorithm is thermodynamically
consistent.
The thermodynamic consistency conditions also allow extension of the proposed algo-

rithm to inhomogeneities such as moving phase transition fronts where entropy production
takes place. In such a case—with dissipative phase transition fronts—the conditions men-
tioned above cannot be fulfilled automatically (especially in their combination that provides
the criterion of progress of the fronts), and they are then used as additional relations at the
interface. In such more complex situations, both the entropy balance equation and the
expression for the driving force, which follows from the balance equation for the pseudo-
momentum, must be used. However, this extension is presently beyond the scope of the
paper. It corresponds to work still in progress.
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