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Abstract

In directional solidification of binary eutectics, it is often observed that two-phase lamellar growth

patterns grow tilted with respect to the direction z of the imposed temperature gradient. This

crystallographic effect depends on the orientation of the two crystal phases α and β with respect

to z. Recently, an approximate theory was formulated that predicts the lamellar tilt angle as a

function of the anisotropy of the free energy of the solid(α)-solid(β) interphase boundary. We

use two different numerical methods – phase-field (PF) and dynamic boundary-integral (BI) – to

simulate the growth of steady periodic patterns in two dimensions as a function of the angle θR

between z and a reference crystallographic axis for a fixed relative orientation of α and β crystals,

that is, for a given anisotropy function (Wulff plot) of the interphase boundary. For Wulff plots

without unstable interphase-boundary orientations, the two simulation methods are in excellent

agreement with each other, and confirm the general validity of the previously proposed theory.

In addition, a crystallographic “locking” of the lamellae onto a facet plane is well reproduced in

the simulations. When unstable orientations are present in the Wulff plot, it is expected that

two distinct values of the tilt angle can appear for the same crystal orientation over a finite θR

range. This bistable behavior, which has been observed experimentally, is well reproduced by BI

simulations, but not by the PF model. Possible reasons for this discrepancy are discussed.
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I. INTRODUCTION

The solidification of nonfaceted binary alloys of near-eutectic composition produces self-

organized composite materials, the microstructure of which results from the coupled growth

of two distinct crystal phases from the melt. In directional solidification – crystal growth at

constant velocity V in a fixed thermal gradient G – the two most frequent morphologies are

parallel lamellae (platelets) of the two phases and fibers (rods) of one phase dispersed in a

continuous matrix of the other phase. They are a trace left behind in the solid by the dynam-

ics of self-organized two-phase patterns at the solidification front. The diffusion-controlled

growth theory of these patterns is well established [1, 2]. More complex microstructures have

also been observed in experiments [3, 4], and further explored with the help of numerical

simulations using boundary-integral (BI) [5, 6] and phase-field (PF) methods [7–12], with

good agreement between experimental and numerical results.

There are, however, major experimental observations that cannot be accounted for by the

existing theories. Most importantly, it has been known for a long time that the solidification

dynamics of eutectic patterns may strongly depend on the crystal orientation of the two solid

phases [13]. Such crystallographic effects during eutectic growth have been neglected so far,

both in theories and models, in spite of their practical importance [14, 15]. We will focus here

on lamellar eutectics. In previous works [16, 17], a distinction has been made between two

types of eutectic grains. A eutectic grain is defined as a region of substantially uniform crystal

orientation of the two solid phases α and β, and thus with a constant orientation relationship

between the two crystals. On the one hand, in floating (eutectic) grains, the dynamics of

the lamellar solidification front patterns is well described by the standard theory of regular

eutectics. In particular, spatial inhomogeneities of the lamellar spacing are smoothed out

with time by a “spacing-diffusion” process [8, 9] generically present in out-of-equilibrium

pattern forming systems [18]. On the other hand, in locked grains, eutectic lamellae grow in

a direction that is essentially aligned to a certain crystallographic plane, and are inclined (or

tilted) with respect to the main growth axis z [17, 19]. The strength of this crystallographic

locking effect varies between different eutectic grains. In strongly locked grains, the spacing-

diffusion process is absent [16].
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a)#

b)#
FIG. 1: Lamellar eutectic patterns observed in situ during thin-sample directional

solidification (V = 0.5µms−1) of a eutectic transparent (CBr4-C2Cl6) model alloy. a)
Symmetric steady-state in a “floating” eutectic grain. b) Tilted lamellae in a “locked”

eutectic grain. The growth direction is vertical (liquid on top). Bar: 20 µm.

Examples of floating and locked eutectic patterns observed in thin-sample directional

solidification experiments are shown in Fig. 1. The corresponding schematic views of the

interfaces are depicted in Fig. 2. In the locked case, tilted lamellar microstructures are left

behind in the solid by a eutectic growth front pattern that drifts laterally at a constant

velocity Vd (the pattern is in a steady state in the traveling reference frame). The magnitude

of the drift velocity can be large, i.e. comparable to the pulling velocity, which leads to

the freezing of strongly tilted lamellae, as shown in Fig. 1b. In a steady-state condition,

the (lamellar) tilt angle θt is defined by tan θt = Vd/V . On the basis of in situ directional

solidification observations using thin samples of metallic and transparent organic eutectic

alloys, a conjecture was formulated recently that permits to relate the value of θt to the

anisotropy of the free energy of the interphase boundaries (interfacial anisotropy) [20, 21].

The main underlying hypotheses are that (i) only the solid-solid interfaces are anisotropic

(i.e., in a nonfaceted alloy, the anisotropy of the solid-liquid interfaces has a negligible effect

on the lamellar growth dynamics), and (ii) the solid-liquid interface keeps virtually the same

shape – with mirror symmetry about the mid-plane of a lamella – as for standard (non-

tilted) lamellae. The tilted pattern shown in Fig. 1b satisfies these conditions. In essence,

under this symmetric-pattern (SP) approximation, the conjectured theory states that the

Cahn-Hoffman surface tension vector ~σ (to be defined below) is aligned with z (Fig. 2b).
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FIG. 2: Schematic repeat units of lamellar eutectic patterns. a) Isotropic system. b)
System with an interfacial anisotropy of the interphase boundary in the symmetric-pattern

(SP) approximation. α, β: solid phases. L: liquid. z: growth direction parallel to the
thermal gradient. x: direction of the isotherms. θsp: SP-approximation lamellar tilt angle.

The lateral drift velocity is given by tan θsp = Vd/V , with V the pulling velocity. Other
symbols: see text.

The goal of the present work is to test the SP approximation by numerical simulations, in

which the anisotropy of the interphase boundaries can be freely chosen. We use two different

numerical models, in two dimensions. The first one is a sharp interface code, which uses the

dynamic boundary-integral (BI) formalism previously developed by Karma and Sarkissian

[6]. This method combines an evaluation of the solute diffusion field by the boundary-integral

method with an explicit front-tracking algorithm for the interface evolution. For simplicity,

the solid-liquid interfaces are assumed to be isotropic. The anisotropy of interphase bound-

aries is incorporated by changing the local equilibrium condition at the trijunctions from the

Young to the Young-Herring law. The second method is a multi-phase-field model, based on

recent grand-canonical formulations of alloy solidification [22, 23]. The interphase anisotropy

is directly introduced into the underlying free-energy functional.

We characterize a given eutectic grain by the anisotropy function, or Wulff plot (i.e.

the polar plot of the surface free energy) of the interphase boundary. It is important to

note that the details of this function depend solely on the relative orientation of the α and
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β crystals. In two dimensions, changing the in-plane orientation of a eutectic grain with

respect to the growth axis z while keeping the relative αβ orientation fixed is equivalent

to rotate the Wulff plot globally by a single angle θR. Our results can be classified into

two main categories, according to unstable orientations being absent or present in the Wulff

shape, respectively. For all the anisotropy functions that we have tested and that do not

exhibit unstable orientations, the two numerical methods give almost identical results for

the tilt angle θt as a function of the rotation angle θR. Importantly, the value of θt follows

quite closely the variation of θsp vs θR, where θsp is the tilt angle predicted by the SP-

approximation. In addition, a strong locking of the lamellae onto a certain direction is well

reproduced in both BI and PF simulations by using an anisotropy function with a peaked

minimum. Moreover, the tilt angle is found to be largely independent of the lamellar spacing

and the pulling velocity, in good agreement with the SP approximation. For anisotropies

that are large enough to create orientations that exhibit a Herring instability [24], the two

numerical methods give different results. In the BI simulations, a phenomenon of bistability

is observed, that is, for a finite range of eutectic-grain orientations, there are two stable

lamellar patterns with different tilt angles. Those two branches of steady-state solutions are

essentially the same as the ones predicted by the SP approximation. Manifestations of a

bistable behavior have indeed been observed in thin-sample solidification experiments [20].

In contrast, no such bistability is observed in the phase-field simulations.

The remainder of the article is structured as follows. In Sec. II, we recall some facts

about eutectic grains and anisotropic interfaces, present the equations of the eutectic growth

problem in the sharp-interface formulation and review the SP-conjecture for the prediction of

the tilt angle. In Sec. III, we briefly outline our simulation methods and specify how we have

incorporated the interface anisotropy in the existing models. In Sec. IV, we describe our

results for various choices of the anisotropy function. In Sec. V, we will discuss separately

(i) a way to estimate the accuracy of measurements of the interphase boundary Wulff plot

using experimental observations with the so-called rotating directional-solidification method

[21], and (ii) possible reasons for the absence of hysteretic behavior in the high-anisotropy

case in the PF simulations. Conclusions and perspectives are presented in Sec. VI.
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II. BACKGROUND

A. Sharp-interface problem

Consider the directional solidification of a binary eutectic alloy in an externally imposed

temperature gradient G along the z axis with a fixed pulling velocity V . We make the ap-

proximation that the temperature field is independent of the solid-liquid front shape (frozen-

temperature approximation), which is a good approximation for thin-sample solidification in

which heat conduction takes mainly place in the sample walls. In a two-dimensional system

(an appropriate model for thin-sample directional solidification) in which the temperature

gradient is directed along the z axis, the temperature field is hence given by

T (~x, t) = TE +G(z − V t), (1)

where we have chosen the origin of the z axis at the eutectic temperature TE at time t = 0,

and ~x is a position vector in the (x, z) plane.

A dimensionless concentration field u is introduced,

u(~x, t) =
C(~x, t)− CE
Cβ − Cα

, (2)

where C(~x, t) is the space- and time-dependent composition of the alloy, and CE, Cα, and

Cβ are the equilibrium compositions of the three phases (liquid, solid α and solid β) that

are in coexistence at T = TE. In the one-sided model of solidification, this field obeys the

diffusion equation in the liquid with the diffusivity D,

∂tu = D~∇2u, (3)

whereas no diffusion takes place in the solid. At the solid-liquid interfaces, the conservation

of solute implies

Vnuν = −Dn̂ · ~∇u, (4)

where Vn is the normal growth velocity of the interface, uν = (Cν − CE)/(Cβ − Cα) for ν =
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α, β, and n̂ is the unit normal vector to the interface pointing into the liquid. In writing down

this expression, we have made the simplifying assumption that the concentration differences

between the phases do not depend on temperature (parallel liquidus and solidus lines).

For isotropic interfaces, the classic problem of eutectic growth is completed by the local

equilibrium condition,

uint =

 −(ζ(x)− V t)/lαT − dα0κ, α-L interface

(ζ(x)− V t)/lβT + dβ0κ, β-L interface
(5)

Here, ζ(x) indicates the position of the solid-liquid interface in the z direction,

lνT =
G

|mν |(Cβ − Cα)
(6)

is the thermal length of phase ν, with mν being the liquidus slope at the eutectic point,

dν0 =
γνLTE

Lν |mν |(Cβ − Cα)
(7)

is the capillary length of phase ν, with Lν the latent heat of melting per unit volume and

γνL the surface free energy, and κ is the interface curvature, counted positive for a convex

solid.

At the trijunction point, local equilibrium implies the balance of surface tensions (Young’s

law). For isotropic interfaces,

γαLt̂αL + γβLt̂βL + γαβ t̂αβ = 0, (8)

where t̂µν are the unit vectors tangent to the µ-ν interface at the trijunction point, and

pointing away from the trijunction.
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B. Anisotropic interphase boundaries

A lamellar-eutectic solid consists of eutectic grains made of crystals of the solid phases α

and β with uniform orientations. A (eutectic) grain hence constitutes a heterophase bicrystal.

The relative orientation between the lattices of the two phases (constant within a grain)

determines the interphase boundary energy and its anisotropy, which may therefore vary

between grains. For a description of interphase configurations in directional solidification,

we need to specify the orientation of the bicrystal and that of the interphase boundary with

respect to the temperature gradient and the sample plane of the directional solidification

setup. In two dimensions, two angles with respect to the temperature gradient axis are

sufficient for a complete specification of these orientations.

Consider first a bicrystal in a fixed orientation with respect to the temperature gradient.

Let n̂ be the unit normal vector of the interphase boundary, and θ the angle between n̂ and

the x axis (we have nx = cos θ and nz = sin θ). Furthermore, let the anisotropic interphase

boundary energy be given by

γαβ(θ) = γ̄αβac(θ), (9)

where γ̄αβ is a constant and ac(θ) is a dimensionless function.

It may be useful for the following to recall a few standard definitions and well-known

facts. The vector tangent to the interface is given by t̂ = −dn̂(θ)/dθ. With this definition,

the angle between the interface direction and the z axis is also equal to θ (as depicted in

Fig. 2b). The Cahn-Hoffman ~ξ and ~σ vectors [25] are defined by

~ξ = γαβn̂− γ′αβ t̂ (10)

and

~σ = γαβ t̂+ γ′αβn̂, (11)

where γ′αβ = dγαβ(θ)/dθ. With their help, the equilibrium shape of a β inclusion inside an α

matrix and the anisotropic equilibrium condition at trijunction points can be obtained in a

simple way. The Wulff plot is defined by ~r(θ) = γαβ(θ)n̂. The minimum-energy shape (Wulff
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shape) is traced by plotting the vector ~ξ(θ). For low anisotropies that satisfy γαβ(θ)+γ′′αβ(θ) >

0 for all orientations, the Wulff shape is smooth. If the interface stiffness γαβ(θ) + γ′′αβ(θ)

becomes negative for a given value of θ, a flat interface of this orientation is unstable with

respect to the formation of a hill-and-valley structure (Herring instability [24]). In this case,

the plot of ~ξ as a function of θ has self-intersections, and the Wulff shape is given by the inner

convex part only. The other parts, often called “ears”, consist of three segments delimited by

turning points (see for example Ref. [26] for details and illustrations). The interface stiffness

is negative only on the middle segment, but all orientations located on the “ears” are missing

from the physically observable convex equilibrium shape.

When the bicrystal is rotated with respect to its reference configuration by an angle θR,

the interphase energy becomes

γαβ(θ) = γ̄αβac(θ − θR). (12)

We choose the reference configuration (θR = 0) such that an interphase orientation of min-

imal energy is aligned with the growth direction. Note that positive and negative θR thus

correspond to rotations to the left and to the right with respect to a minimum-energy di-

rection. Below, we will essentially test two types of anisotropy functions. The first one is of

the standard form used for the modeling of crystals with m-fold symmetry, namely,

am(θ) = 1− εm cosmθ , (13)

where εm is the m-fold anisotropy coefficient. It should be noted that for interphase bound-

aries, at which two centrosymmetric crystals meet, a 2-fold anisotropy is always expected

(since two opposite orientation vectors describe the same surface). The second type of

anisotropy function that we will study is motivated by the observation of strong locking of

growth directions onto certain crystallographic planes. This usually occurs when the two

solid phases exhibit an epitaxial orientation relationship [19]. In this case, the locking planes

correspond to sharp cusp-like minima in the γαβ(θ) function. In order to avoid the additional

difficulties related to the regularization of the cusp (see for example [27]), we prefer to use
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a deep and narrow, but smooth minimum, which we model by a Gaussian in the anisotropy

function, that is,

ag(θ) = 1− εg exp
[
−(θ/wg)

2
]
, (14)

where εg is the amplitude, and wg is the width of the Gaussian. For both types of anisotropy,

a finite range of forbidden orientations appears for large enough values of the anisotropy

coefficient. In our simulations, we also used linear combinations of the functions am (with

m = 2, 4) and ag,

ac(θ) = 1− εg exp
[
−(θ/wg)

2
]
− ε2 cos 2θ − ε4 cos 4θ (15)

with various values of the parameters εm, εg and wg. This form can reproduce well typ-

ical anisotropies that have been obtained from experiments [21] and molecular dynamics

simulations [28].

Let us comment on how the sharp-interface problem introduced previously needs to be

modified in order to take the interphase boundary anisotropy into account. Since we suppose

that the solid-liquid interfaces remain isotropic (which should be a good approximation for

nonfaceted substances), the Gibbs-Thomson conditions, Eq. (5), are unchanged. In addition,

since we still assume that there is no diffusion in the solid, we do not need to write a

local-equilibrium condition along the interphase boundaries. Therefore, the only change

that intervenes in the equations is a modification of the local-equilibrium condition at the

trijunction, which becomes a Young-Herring equation, that is,

γαLt̂αL + γβLt̂βL + ~σ = 0, (16)

with ~σ given by Eq. (11). Note that the ~σ vector is not parallel to the interphase boundary

(Fig. 3a).
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FIG. 3: a) Illustration of the Young-Herring equilibrium condition at the trijunction. ~n
and ~t: normal and tangent unit vectors of the interphase boundary. b) Definition of the tilt

angle θt and the angle δ between ~σ and z.

C. Theoretical predictions for the tilt angle

The SP approximation that allows us to obtain a prediction for the growth angle is based

on the experimental findings presented in Refs.[20, 21]. It was found that, even for lamellae

that grow at a large angle with respect to the temperature gradient, the shape of the solid-

liquid interface is close to the one observed for well-aligned lamellae. More precisely, the

“heads” of the lamellae are approximately mirror-symmetric with respect to the mid-plane

of the lamellae, which means that the contact angles of the solid-liquid interfaces at the

trijunctions are nearly the same on both sides of a lamella (to within the resolution of the

experiments). Considering the Young-Herring condition of Eq. (16), a strictly symmetric

shape is possible only if the vector ~σ is aligned with the z axis. Using the fact that t̂αβ =

(sin θ,− cos θ) and n̂αβ = (cosθ, sin θ) in the (x, z) plane, the condition that the x component

of ~σ is zero writes

γαβ(θ − θR) sin θ + γ′αβ(θ − θR) cos θ = 0. (17)

For a fixed orientation θR of the eutectic grain, this is a nonlinear equation for the interface

orientation θ, which can easily be solved numerically for arbitrary anisotropy functions ac(θ).

As long as the interface stiffness γαβ(θ) + γ′′αβ(θ) is positive for all angles, this equation has

a unique solution. For negative stiffness, there are ranges of θR for which there exist three

solutions, of which one corresponds to an orientation that is present on the equilibrium

shape, one to an unstable orientation, and the third to a metastable orientation with positive

stiffness that is missing on the equilibrium shape (belonging to an “ear”). This is the
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prediction against which we will compare our numerical results. As mentioned, we will note

θsp the value of θ, solution of Eq. (17), which is predicted by the SP approximation.

As will be seen below, a steady state with tilted lamellae obtained from our simulations

generally does not follow exactly the prediction of Eq. (17). The departure from the conjec-

ture can be quantified by the value of the angle between the ~σ vector and the z axis, which

we will denote by δ in the following, as illustrated in Fig. 3b. The SP approximation predicts

δ = 0.

III. METHODS

A. Boundary-integral method

For our BI calculations, we have adapted the method developed by Karma and Sarkissian

[6]. In the quasistationary approximation, valid for slow growth velocities, the solute diffusion

equation, Eq. (3) can be replaced by the Laplace equation, ~∇2u = 0. The use of Green’s

function techniques then permits to transform this partial differential equation together with

the boundary conditions at the interface into a single integro-differential equation along the

solid-liquid front. The numerical procedure to calculate the time evolution of the growth

front is as follows. The interfaces are discretized with the help of marker points that are

uniformly spaced along the interface. The gradient of the concentration field u, and thus

the interface velocity from Eq. (4), is obtained from the boundary-integral equation for each

interface point except for the trijunction points. After having moved forward the interface

points, the new position of the trijunction point is found by solving Eq. (8), with the new

positions of the first point on each interface taken as input, and the position of the trijunction

as unknown. This equation is solved by a relaxation scheme. More details can be found in

Ref. [6].

Since, under our hypotheses, the solid-liquid interfaces remain isotropic, the only change

that is necessary to incorporate the solid-solid interfacial anisotropy in this model is in the

calculation of the trijunction positions. We have replaced Eq. (8) by Eq. (16); in other words,

we have replaced the vector γαβ t̂αβ by the vector ~σ in the routine that calculates the new
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trijunction positions.

B. Phase-field model

We have used a grand-canonical multi-phase-field model with a multi-obstacle potential,

developed and validated recently by Choudhury and Nestler [23]. In this model, accurate

simulation results can be obtained with the help of a quantitative thin-interface analysis and

an antitrapping current adapted to the obstacle potential. For the solidification of a binary

eutectic alloy, we will work with N = 3 phase fields (denoted by φl, φα and φβ for liquid, α

solid and β solid, respectively) that obey the sum constraint φl+φα+φβ = 1, and a diffusion

potential µ that is conjugate to the dimensionless concentration field u.

The starting point of the model is the (grand-canonical) free-energy functional

Ω =

∫
V

ωint(φ, ~∇φ) + ωb(T, µ, φ), (18)

where ωint and ωb are the contributions of interfaces and bulk, respectively. The interface

part is given by

ωint = εa(φ, ~∇φ) +
1

ε
W(φ), (19)

where ε is proportional to the numerical interface thickness. For isotropic interfaces, the

gradient energy a(φ, ~∇φ) and the multi-obstacle potential W(φ) are given by

a(φ, ~∇φ) =
N∑
i<j

γij|~qij|2 (20)

with ~qij = φi~∇φj − φj ~∇φi (a vector that is normal to the ij interface), and

W(φ) =


16
π2

∑N
i<j γijφiφj +

∑
i<j<k γijkφiφjφk if φ ∈ Σ

∞ elsewhere.
(21)

The simplex Σ is bounded by φi ≥ 0 ∀ i and
∑N

i=1 φν ≤ 1. The first sums in Eqs. (20) and

(21) run over all pairs of distinct phases, with γij denoting the isotropic ij surface energy;

14



γijk is a third order potential term which prevents the appearance of any “foreign” phases

in the binary interfaces.

To define the bulk part of the functional, we start from the Helmholtz free energies of

each phase, which we approximate by parabolas as in Ref. [10],

fi(u, T ) = Aiu
2 +Bi(T )u+ Ei(T ) (i = α, β, l). (22)

We define the Legendre transforms

ωi(µ, T ) = fi(u, T )− µu µ = ∂fi/∂u, (23)

which are functions of µ and T . The bulk part of the energy functional is then given by

ωb(µ, T, φ) =
N∑
i=1

ωi(µ, T )hi(φ), (24)

where hi(φ) = φ2
i (3− 2φi) + 2φiφjφk are weight functions which interpolate between phases

and satisfy
∑N

i=1 hi = 1.

For our simulations, we have chosen Aα = Aβ = Al ≡ A, which leads to parallel liquidus

and solidus lines [10]. With this choice, the capillary lengths for the α-liquid and β-liquid

interfaces are given by

dν0 =
γνL

∂2fl/∂u2
=
γνL
2A

. (25)

The equivalence between the two definitions of dν0, Eqs. (7) and (25), can be established with

the help of a Clausius-Clapeyron relationship for the solid-liquid coexistence line and the

definition of u, Eq. (2).

Surface tension anisotropy can be incorporated directly into the interface part of this

functional. Since both the gradient and potential parts, Eqs. (20) and (21), are sums over

the different interfaces, it is straightforward to control the anisotropy of each interface inde-

pendently. Here, we have modified only the contribution of the α-β interface by multiplying

the corresponding gradient and/or potential terms with the function ac(θ). We have tested

different ways to implement this anisotropy. The technical details, as well as the equa-
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tions of motion of the model, which are derived from the functional following the lines of

Refs. [22, 23], can be found in Appendix A.

C. Parameters

We have chosen as a convenient test case a model eutectic alloy with symmetric phase

diagram and properties, that is, mα = −mβ, uβ = −uα, and γαL = γβL. In the following,

we will therefore drop the phase indices of all parameters (capillary and thermal lengths)

for simplicity. We also choose the average value of the solid-solid interface free energy to be

equal to the solid-liquid one (γ̄αβ = γαL), which would yield trijunction angles of 120◦ for

isotropic interfaces. We will specify the simulation parameters using dimensionless ratios,

normalizing all lengths with the diffusion length

lD =
D

V
. (26)

We work at the eutectic composition and in the limit of slow velocities and low temperature

gradients, which implies d0/lD � 1, d0/lT � 1, and the Péclet number Pe = λ/lD � 1,

where λ is the lamellar spacing. It may be useful to mention that the value of the Jackson-

Hunt minimum undercooling spacing λm under these conditions is given by

λm ≈ 3.844
√
d0lD. (27)

As we shall see below, in the regime that we have investigated, the results depend very little

on the detailed choice of the parameters.

IV. RESULTS

A. General remarks

Our standard simulation procedure is as follows: we start from a pre-existing pair of

lamellae (usually taken from a previous steady-state calculation) and slightly change the
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rotation angle θR at a predetermined time step. Immediately after the change in θR (within

a solidification distance of less than one lamellar spacing), the lamellae select a new tilt

angle (Figs. 4 and 5). With the model Wulff plots that we have implemented, and in the

range of control parameters that we have used, the calculations always converged toward a

steady-state pattern. We let the system evolve for typically 3–10 lamellar spacings before

we measure the steady-state tilt angle θt of the interphase boundary. In BI simulations,

the inclination of the interphase boundary (and those of the tangents to the solid-liquid

interfaces at the trijunctions, as well as the ~σ vector) is automatically given as output data

of the simulation. In PF simulations, θt is measured at a distance from the trijunction of

several times the interface thickness, as imposed by the diffuse nature of the trijunction. It

was, however, not possible, with our PF method, to extract numerically the contact angles

in the moving anisotropic trijunction with a reasonable accuracy. The same is true for the

angle δ that quantifies the departure from the SP approximation.

a) 

b) 

c) 

FIG. 4: Steady-state lamellar patterns (BI simulations). a) Symmetric pattern without
anisotropy. b) Tilted pattern with anisotropic interphase boundaries (anisotropy function
given by Eq. (14); εg = 0.2 ; wg = 0.1; θR = 3π/48 ≈ 11.25◦ ; Pe = 0.024 ; θt = 11.0◦). c)
Spatio-temporal diagram showing the steady-state dynamics corresponding to a) and b),

successively, and the brief transient after the anisotropy was turned on.

In Figs. 4 and 5, we show illustrative examples of drifting patterns calculated with the BI

and the PF codes, respectively. In both cases, we chose anisotropy functions with a peaked

minimum, which can produce locked lamellar patterns for a certain θR range. The relation
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FIG. 5: Drifting lamellar patterns in the PF model; the anisotropy function is given by
Eq. (15) with εg = 0.2, wg = 0.1, ε2 = 0.0854, and ε4 = 0.0221 (the same function as in

Fig. 10 below): (a) “locked” tilted state (θt = 29◦, θR = 30◦), (b) transition from a locked
to an unlocked tilted state upon change of θR from 30◦ to 40◦, (c) unlocked tilted state

(θt = 10.8◦, θR = 50◦). Other parameters: d0/lD = 7.9× 10−3, lT/lD = 3.167.

between the shape of the anisotropy function and the tilt angles will be detailed below. For

the time being, let us comment on some general features of tilted lamellar growth patterns.

First, the selection of a new steady-state tilt angle after a change of the rotation angle

θR occurs very rapidly (over a solidification distance of less than λ), so that the interphase

boundary left behind in the solid exhibits a sharp bend, see Figs. 4c and 5b. Second, in

tilted patterns, the shape ζ(x) of the solid-liquid interfaces most often looks “flatter” than

in the fully isotropic case (Fig. 4a,b), in agreement with experimental observations. This

results from the fact that the modulus of σ is smaller than the isotropic reference value of

the surface free energy, and hence the dihedral angle between the two solid-liquid interfaces

at a trijunction is larger than in the isotropic case. Third, the solid-liquid interfaces exhibit

a certain degree of asymmetry, a quantitative measure of which can be given by the ratio

[ζ(x)− ζ(−x)]/ζ0, with ζ0 the amplitude of the solid-liquid cap (and x being centered in the

middle of a lamella). In the case of Fig. 4b, that quantity is of about 5%. This is equivalent

to stating that (as shown by the BI simulations) the value of δ is not zero. The sign of δ

is opposite to that of θt, which indicates that the diffusion field tends to oppose the lateral

drift of the lamellar pattern (as could be expected given the stability of non-tilted lamellar

pattern for λ close to λm in the absence of anisotropy).

Before studying the dynamics of tilted-lamellar solidification patterns by varying the

18



characteristics of the αβ Wulff plot, we have tested the influence of two control parameters,

namely, the lamellar spacing λ, and the Péclet number Pe, on the tilt angle, for a given

crystallographic configuration. Figure 6 shows the variation of θt as a function of λ/λm for

given values of the other control parameters and for a fixed Wulff plot (BI simulations). In the

scanned λ/λm range, the variations of θt are very small (a fraction of a degree). Moreover, the

angle δ, which characterizes the departure from the SP approximation remains smaller than

1 degree (in absolute value). This indicates that the steady-state tilt angle θt is smaller than,

but close to the SP-approximation value θsp. It can be seen that for small lamellar spacings,

δ tends towards zero and θt towards θsp with decreasing λ. The Jackson-Hunt analysis

predicts that for λ = λm, the contributions of the interface curvature and the diffusion field

to the front undercooling are of equal magnitude, whereas for smaller spacings capillarity

dominates over the composition variations due to diffusion. Since the SP approximation

takes into account only capillary phenomena, it is not surprising to see that it becomes more

accurate in the small-spacing limit. It should also be mentioned that those small spacings are

subject to a lamella-elimination instability for isotropic systems [9]. The value λ ≈ 1.75λm at

which θt passes through a minimum (and −δ through a maximum) more or less corresponds

to a change of the shape of the solid-liquid interface, which, for the larger λ values, exhibits a

concave part in the center of each lamella (it may also be noted that, for isotropic interfaces,

the lamellar pattern undergoes an oscillatory instability for λ ≈ 2.2λm [6]).

Figure 7 shows the variation of θt with the Péclet number Pe, calculated with the PF

method by varying the diffusion coefficient D in the liquid (this is equivalent to varying the

velocity V ), at fixed λ, d0, and lT . The graph shows a decreasing, essentially linear variation

of θt with Pe. This indicates that the effect of the diffusion field increases when Pe increases,

and, again, that it is in opposition to the lateral drifting motion of the pattern. A linear fit

of the data indicates that the value of θt extrapolated to Pe = 0 remains slightly smaller

than the SP-approximation value (θsp = 9.07◦). Nevertheless, the variation of θt remains

very small over the (relatively large) range of scanned Pe values.

In conclusion, the anisotropy-driven lamellar tilt angle is very little sensitive to the exact

values of λ and Pe provided that λ is close to λm and Pe � 1. Therefore, simulations

performed at a fixed λ value close to λm, and Pe significantly less than unity are fully
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FIG. 6: Steady-state tilt angle θt obtained from BI simulations as a function of the
reduced lamellar spacing λ/λm, at constant G and V (d0/lD = 1.9531× 10−5, lT/lD = 4).

The angle −δ is also plotted (δ is the angle between ~σ and z). Anisotropy function
ac(θ) = 1− 0.05 cos[2(θ − θR)] ; θR = π/3 (θsp = 5.3◦).
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FIG. 7: Lamellar tilt angle vs Péclet number at constant λ/d0 = 20.25,
d0/lT = 2.496× 10−3; ac = 1 + 0.04 cos[4(θ − θR)], θR = 15◦ (θsp = 9.07◦).

representative of the behavior of the system over a large, experimentally relevant range of

the main control parameters. In the following, the BI simulations were performed with

Pe = 0.024, d0/lD = 1.9531 × 10−5, lT/lD = 4, and the PF simulations with Pe = 0.16,

d0/lD = 7.9× 10−3, lT/lD = 3.167. In both cases, γα = γβ = γ̄αβ = 1.

20



B. Anisotropy functions without missing orientations

Figure 8 shows the variation of θt as a function of the rotation angle θR, calculated by

both BI and PF, for a simple two-fold anisotropy (m = 2) given by Eq. (13). Temperature

gradient, growth velocity, and lamellar spacing were held constant. The results of both

simulation methods follow quite closely the SP approximation, up to differences that do

not exceed a degree. As expected, we find symmetric, non-tilted patterns when either the

minimum or the maximum of γ is aligned with z. Somewhere in between these orientations,

the value of θt passes thus through a maximum for an orientation that depends on the

anisotropy function. We checked that this maximum increases when the anisotropy coefficient

is increased. Overall, however, the tilt angle remains much smaller than θR over a full rotation

range. In other words, a weak crystallographic anisotropy, though it has a clearly detectable

effect on the dynamics of lamellar eutectic patterns, is not sufficient to induce a significant

locking (θt ≈ θR). For convenience, we will call “unlocked patterns” such weakly anisotropic

tilted lamellar patterns. Let us mention again that the values of d0/lD, lT/lD and Pe are

actually different for BI and PF ; the results thus demonstrate once more that the influence

of all of these parameters is weak in realistic conditions.

θsp#####

##}#
#

θs#
PF#

BI  "

FIG. 8: Lamellar tilt angle as a function of the rotation angle θR. Weak, two-fold
symmetry anisotropy of the interphase boundary (ac = 1− 0.05 cos[2(θ − θR)]). The

SP-approximation angle θsp, and the steady-state angle θt obtained with the BI and PF
simulations are both shown. In this graph, as well as in the following, the represented θR

range is limited to [0, π/2] for obvious symmetry reasons.

Next, we have investigated a situation in which a mild lamellar locking takes place. We

use an anisotropy function according to Eq. (15), with εg = 0.05, wg = 0.195, ε2 = 0.0854,
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ε4 = 0.0221 (Fig. 9). This function was chosen so as to smoothly reproduce the Wulff plot

extracted (assuming the SP approximation) from the experimental data of Figure 7 of Ref.

[21] (see discussion below). The corresponding Wulff shape is an oval with markedly flattened

sides (but without straight facets, and without forbidden orientations). The variation of θsp

with θR is continuous and univalued. The simulation results for θt nicely follow the SP-

approximation curve.
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FIG. 9: a) Lamellar tilt angle as a function of the rotation angle θR. Mild lamellar locking
effect caused by a shallow, smooth local minimum in the Wulff plot of the interphase
boundary (see text). Same symbols as in Fig. 8. Dashed line: slope 1. b) Wulff shape

(θR = 0). c) Partial view of the Wulff shape (dash-dotted line) and the shape reconstructed
from the θt data of Fig. 9 under the SP approximation (thin line).

Let us analyze the graph in Fig. 9 in more details. The variation of θt is essentially linear

for θR ranging from 0 to about 20 degrees (we recall that for θR = 0, the interphase boundary

plane of minimum energy is aligned with the temperature gradient). However, the slope is

substantially less than 1 [a linear best fit yields a slope of about 0.76 for θsp, 0.73 for θt(BI)

and 0.72 for θt(PF)]. In other words, in this regime, the inclination angle of the interphase

boundary remains close to, but departs by a measurable amount from the minimum-energy
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plane, which defines a mild locking effect. For rotation angles larger than, say, 45 degrees

in Fig. 9, the lamellar growth dynamics escapes the influence of the Gaussian minimum of

the Wulff plot. In this unlocked-pattern region, the value of θt is solely determined by the

cos 2θ and cos 4θ terms in the ac function (in this θR range, we checked that θt remains

equal to 0, as it should, when ε2 and ε4 are set to 0). In an intermediate θR interval, there

is a steep, but smooth transition between a nearly-locked and an unlocked behavior. In this

crossover range, the departure of θt from the SP approximation is larger than in the rest of

the graph. The value of the angle δ as it is given by BI simulations more or less follows the

same variation as θt as a function of θR (not shown). It reaches a maximum (of about 2◦) in

the crossover region, but this maximum remains small as compared to the corresponding θt

value (≈18◦).

C. Anisotropy with missing orientations

A strong lamellar-locking effect (Fig. 10a) can be reproduced by using an anisotropy

function of the same form as that of Fig. 9, but with a deeper and sharper Gaussian (εg = 0.2

and wg = 0.1 ; see Eq. 14). This modification of the Wulff plot entails the appearance of

two (quasi) facets, and four ”ears” with long metastable branches and sharp-edge junctions

in the Wulff shape of the interphase boundary (see inset in Fig. 10a). Let θu and θl, where

θu < θl, be the tilt angle values at which γ + γ′′ = 0 on the interval [0, π/2] (θu ≈25◦ and

θl ≈ 70◦ in the example shown in Fig. 10). The SP approximation predicts three distinct

parts in the θsp vs θR curve: (i) an essentially linear strongly locked branch with a slope close

to 1, which runs from θR = 0 to θR = θl; (ii) an unlocked, although (weakly) anisotropic,

branch for θR ranging from θu to π/2; (iii) an intermediate branch, which connects the end

points of the locked and unlocked branches, and is, presumably, not observable given that

the interface boundary is unstable (γ+γ′′ < 0) along its entire length. In the [θu, θl] interval,

two (locked and unlocked) values of the lamellar tilt angle are possible for a given eutectic-

grain orientation. In this bistable range, there is a value θe of the rotation angle (here,

approximately 45.3◦) at which σ has the same value for both branches – this corresponds to

a sharp edge in the convex equilibrium shape.
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FIG. 10: a) Lamellar tilt angle as a function of the rotation angle θR. Strong lamellar
locking effect with a sharp local minimum in the Wulff plot (see text). Same symbols as in

Fig. 8. Inset: Wulff plot (thin line) and Wulff shape (thick line). Dashed lines: unstable
branches. b) Angle δ of ~σ with z as a function of θR (BI simulations). c) Shape of the

lamellar pattern with the largest θt value (≈ 48◦) simulated with the BI code.

Both BI and PF simulations reproduce the two separate locked and unlocked branches

(Fig. 10a). They demonstrate, in particular, the existence of a strong locking effect over a

large orientation range, as predicted by the SP approximation. The two methods exhibit,

however, a somewhat different behavior in the bistable interval. In the BI simulations,

starting from the situation where the facet is aligned with the temperature gradient (θR = 0),

the system closely follows the locked branch upon increasing θR, up to a limit angle at which

it jumps abruptly to the unlocked branch. The jump occurs well before the turning point θl,

at a value of θR which is close to 45◦. This point can be only attained if θR is successively

increased along the locked branch, and the maximum value of θt depends on the step size

in θR. It is thus clearly initial-condition dependent and has no obvious connection with

the sharp-edge angle θe. This limit value of θt in the simulations is also compatible with

previous in situ observations of tilted lamellar patterns. Reversely, when θR is decreased

stepwise starting from θR = π/2, the system describes the whole unlocked branch, within
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numerical accuracy. This hysteresis is expected for a bistable system. It should be noted

that the approach of the limit tilt angle along the locked branch also corresponds to a

steep, apparently diverging increase of the δ angle (Fig. 10b). This indicates that, at

large tilt angles, the SP approximation, while it still correctly predicts the values of the

tilt angle, becomes inaccurate with regards to other aspects of the dynamics. For instance,

in contradiction with its basic assumption, the shape of the solid-liquid interface becomes

markedly asymmetric at large tilt angles, as can be seen in Fig. 10c.

In contrast with the BI simulations, no hysteresis is observed in the PF simulations. More

precisely, no states on the locked branch have been observed for rotation angles larger than

about 35◦: when θR is increased beyond that value, the lamellae switch to the unlocked

state. The opposite jump from the unlocked to the locked state was found to occur at the

same value of θR (with an uncertainty of about 1◦) in runs that were started on the unlocked

branch and in which the rotation angle was successively decreased. A refinement of the grid

and a decrease in the interface thickness by a factor of two produced a change in this critical

value that did not exceed two to three degrees. In contrast, an increase of the amplitude εg of

the Gaussian in the anisotropy function led to a marked increase of the discontinuous-jump

angle.

V. DISCUSSION

A. Reconstructing the anisotropy function

A practical aim of the present study was to give a numerical support to a recent ex-

perimental work based on a rotating directional solidification (RDS) method [20, 21]. The

RDS method uses a standard thin-sample directional solidification setup, and permits, in

addition, to rotate the sample at constant angular speed about an axis perpendicular to the

(two-dimensional) sample. Under a few, not very restrictive, conditions (zero translation

speed, center of rotation placed on the eutectic isotherm, quasi-two-dimensional and qua-

sistatic nature of the front pattern dynamics), this is equivalent to continuously varying the

rotation angle θR of a given eutectic grain with respect to the thermal gradient axis, as we
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have done in the above calculations. More precisely, the lamellar tilt angle θrds observed

over time during a correctly set-up RDS experiment is equal to the steady-state tilt angle

θt at the current value of θR. Moreover, in the SP approximation, this entails that the RDS

trajectories of the trijunction points are centrosymmetric closed curves homothetic to the

section of the Wulff shape of the interphase boundaries by the sample plane, from which a

two-dimensional anisotropy function of the interphase interface can be derived (see Ref. [20]).

The anisotropy function used in Fig. 9 was derived from the RDS pattern of a nearly locked

grain by this method. As a test for the accuracy of this method, we have reconstructed the

Wulff shape from the calculated θt(θR) points under the SP assumption. The two shapes are

identical to within experimental error (a few percents of the position vector), as can be seen

in Inset 2 of Fig. 9. In conclusion, the errors due to the SP approximation are generally not

larger than the experimental uncertainties, which validates the use of the SP approximation

in the exploitation of the RDS patterns.

B. Bistability in the numerical simulations

The most important difference between the results of BI and PF simulations is the absence

of bistability in the θt(θR) curves obtained with the PF code. As discussed previously, such

a bistable behavior should follow from the existence of states of positive stiffness on the

“ears” of the Wulff plot. In addition, there is clear evidence of bistabilty in experimentally

observed RDS patterns of strongly locked grains, as illustrated in Figure 11 (also see Ref.

[21]). Therefore, the BI method seems to be in better agreement both with the SP theory

and with experiments.

Whereas quantitative differences between phase-field and sharp-interface models have of-

ten been reported, such a strong qualitative difference between the two methods is a striking

finding. Let us first discuss – and, actually, rule out – one possible source for this differ-

ence. It is well known that PF models need to be regularized for anisotropy functions that

generate missing orientations. Indeed, for orientations with negative stiffness, the evolution

equations for the phase fields become ill-posed. This corresponds, in the free-boundary prob-

lem, to unstable growth modes with arbitrarily high growth rates in the limit of vanishing
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FIG. 11: Experimental observation of a coexistence of eutectic-growth domains with two
different tilt angles in a single eutectic grain. Rotating directional solidification of a thin

(10-µm thick) sample of a eutectic CBr4-C2Cl6 alloy. Horizontal dimension: 450 µm.

wavelengths (absence of stabilization by capillarity). This behavior can be regularized by a

convexification of the polar plot of 1/γ [29], or by the addition of higher-order derivatives

in the free-energy functional [30, 31]. Since the former method requires a re-calculation of

the convexification for each new choice of anisotropy function, we have preferred to use the

latter by following Torabi et al. [31], who have added to the free energy the square of the

mean interface curvature. For our model we used the linearized form, which amounts to

adding to the functional of Eq. (18) a new term of the form,

γ̄αβ
β

2

∫
V

(ε∇ · (~qαβ))2 , (28)

where β is a length scale over which the sharp corners of the equilibrium shape are smoothed

out.

As expected, with the help of this regularization, we have obtained the correct equilib-

rium shape for a β inclusion inside an α matrix, even for anisotropy functions with missing

orientations such as the example used for generating Fig. 10. However, this modification did

not appreciably alter the results for lamellar growth: still no bistable behavior was observed

in the PF model, and the value of the angle at which the “jump” from the locked to the

unlocked branch occurs was not appreciably modified.

We believe that the origin of the difference between BI and PF results is the behavior of the

diffuse trijunctions in the PF model. Indeed, in Ref. [10], it was found by direct comparison

between PF and BI simulations that the dynamics of diffuse trijunctions deviates from the

predictions of sharp-interface models: since the solute diffusivity remains non-zero within the
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diffuse interfaces, the solid-solid interface can actually move close to the trijunction point,

contrary to the assumptions made in the one-sided model of solidification, in which the

diffusivity becomes zero immediately behind the (sharp) interface. Moreover, a rotation of

the trijunction point by a finite angle was observed that persisted even in the sharp-interface

limit [10]. Since such effects are present even for isotropic interfaces, one may expect them to

be even more important here, where the anisotropic surface energy creates strong “Herring

torques”. Indeed, we have observed in our simulations that the solid-solid interface tends

to slightly change its orientation upon approaching the trijunction region. Therefore, it is

possible that the PF model explores a wider range of orientations within the trijunction

region than the BI model, which could facilitate the switching between different solution

branches.

It should also be noted that the regularization outlined above was developed and validated

only for simple interfaces between two phases, and may therefore not be complete in the

vicinity of trijunction points. It is possible that the bistable behavior observed in the BI

simulations could be recovered by a PF model with correctly regularized trijunction points.

However, since the analytic understanding of trijunction points currently is very limited, it

is not clear how such a regularization should be carried out. For all these reasons, a more

detailed study of moving diffuse trijunctions certainly is an interesting subject for future

work.

VI. CONCLUSIONS AND PERSPECTIVES

We have investigated lamellar eutectic growth with anisotropic solid-solid interphase

boundaries, using two different numerical methods: a dynamic boundary-integral and a

phase-field code. We have obtained good agreement between our numerical results and the

prediction of a recent approximate theory for the growth direction as a function of anisotropy

and orientation of the growing bicrystal, which uses the symmetric pattern approximation.

For smooth anisotropy functions (no missing orientations), the two methods are in excellent

agreement. If the anisotropy is strong enough to induce missing orientations around a deep

minimum in the γ plot, BI exhibits a bistable regime that is in agreement with theoretical
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predictions and experimental observation, but is not found in the PF model.

The numerical simulations demonstrate that the real growth shapes are not exactly sym-

metric, but that this departure from the hypothesis that underlies the SP theory leads only

to small differences in the steady-state tilt angle, for various choices of anisotropy functions.

Moreover, these differences are virtually independent of the growth velocity and local spac-

ing, at least in the regime of slow growth (small Peclet numbers) and for spacings close to

the minimum-undercooling spacing. Since these conditions are found in many experiments,

these results firmly establish the SP theory as a useful tool for predicting the growth angles

of lamellar eutectics. In particular, experiments with the rotating directional solidification

setup can be used to obtain quantitative information on anisotropy functions, as discussed

in Sec. V. It should be noted that in the present numerical study we have limited ourselves

to a symmetric phase diagram and to growth at the eutectic composition; however, since

the tilt angle is mainly fixed by the (anisotropic) capillary effects, we do not expect major

differences for other phase diagrams or compositions.

The important qualitative difference between the predictions of BI and PF simulations

is an interesting finding in itself, since correctly designed PF models are usually a faithful

representation of the corresponding free-boundary problems. While we have not succeeded

in pinpointing the exact origin of the difference between PF and sharp-interface models, we

believe that the key point is the dynamic behavior of diffuse anisotropic trijunctions. This

is an interesting subject for further studies.

Despite this open problem, in the regime of low anisotropy (without missing orienta-

tions), BI and PF simulations show an excellent agreement. This implies that these models

can be used to explore the behavior of anisotropic eutectics beyond steady-state growth. In

particular, it would be interesting to address the effect of anisotropy on the various insta-

bilities that are known to occur in lamellar eutectics: short-wavelength oscillations [3, 6],

spacing diffusion [8, 9], and the zig-zag instability [4, 11]. Without any doubt, the stability

boundaries will depend on the strength of the anisotropy, but it seems difficult to predict in

which way without the help of numerical simulations. Finally, it is straightforward to im-

plement anisotropic PF models in three dimensions, which opens the possibility to explore

numerically the anisotropy effects on eutectic growth in bulk samples.
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Appendix A: Phase-field model: technical details

Here, we will discuss in more detail several technical points about our phase-field model;

these are mostly known facts, but it seems useful to recall them briefly here. We will start

with the implementation of the anisotropy, and then give the equations of motion for our

model.

Consider a two-phase system characterized by a single phase field φ, with an interfacial

free-energy functional of double-obstacle type

Ω =

∫ [
K
(
~∇φ
)2

+Hφ(1− φ)

]
dV (A1)

where K and H are constants and φ is restricted to the interval [0, 1]. The equilibrium

interface profile is given by

φ(x) =


0 x/W < −π/2
1
2

+ 1
2

sin
(
x
W

)
−π/2 ≤ x/W ≤ π/2

1 x/W > π/2

(A2)

for an interface normal to the x direction centered at the origin, with

W =

√
K

H
. (A3)

Furthermore, the standard evaluation of the surface excess free energy (the additional energy

created by the presence of an interface) yields

γ =
π

4

√
KH. (A4)
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Equations (A3) and (A4) can be inverted to express the constants K and H in terms of the

surface free energy γ and the length scale ε = 4W/π:

K = γε, (A5)

H =
16γ

π2ε
. (A6)

It can easily be verified that this calculation remains valid for a binary interface (an interface

between phases i and j along which φi + φj = 1 and all other phase fields are zero) in the

multi-phase-field setting; therefore, the parameters γij in Eqs. (20) and (21) are directly the

surface free energies of the respective interfaces.

In order to generate a surface free energy that depends on the interface orientation ac-

cording to Eq. (9), Eq. (A4) can still be used, but the coefficients K and/or H need to

be orientation-dependent. The “standard” procedure (see for example [32]) is to keep H

constant and to write K(θ) = K̄a2c(θ). According to Eq. A3, this creates variations in the

interface thickness W , which becomes proportional to ac. This can be avoided by letting

K(θ) = K̄ac(θ) and H(θ) = H̄ac(θ). Finally, it is also possible to keep the gradient energy

coefficient constant and to write H(θ) = H̄a2c(θ), which leads to W ∼ 1/ac(θ).

It should be noted that each of these choices generates different equations of motion for the

phase field. The functional derivative, for any functional of the form F =
∫
V
f(φ,∇φ,∇2φ)

is explicitly given by

δF

δφ
=
∂f

∂φ
−
∑
i=x,y,z

∂i
∂f

∂(∂iφ)
+

∑
i,j=x,y,z

∂2ij
∂f

∂(∂2ijφ)
, (A7)

where ∂iφ denote the Cartesian components of ∇φ. Since the interface orientation θ can

be expressed as a function of ∇φ, the second term on the right-hand-side acts on any θ-

dependent term in the functional. We have implemented the evolution equations corre-

sponding to the three possibilities outlined above, and have compared the results for a few

selected examples. We have found no significant differences. The results presented in the

main text are obtained with the anisotropy function in the square gradient term only. In
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order to treat crystals that are rotated with respect to the temperature gradient (labora-

tory frame), we use coordinate transformations involving rotation matrices, as discussed in

appendix B below.

The equations of motion for all the fields in our multi-phase-field model are obtained from

the functional Ω by the procedures detailed in Refs. [22, 23]. The chemical potential obeys

a diffusion equation with source term,

χ(φ, µ)
∂µ

∂t
= ~∇ ·

(
M(φ)~∇µ− ~Jat

)
+
∑
ν=α,β

(
∂2ων
∂µ∂φ

)
T

∂φ

∂t
+
∑
ν=α,β

(
∂2ων
∂µ∂T

)
φ

∂T

∂t
hν(φ), (A8)

where χ(φ, µ) = −∂2ωb(φ, µ)/∂µ2 is a generalized susceptibility; for our choice of ωb,

χ(φ, µ) ≡ 1/2A. Additionally, this choice leads to equal slopes of the liquidus and solidus

lines, which renders

(
∂2ων
∂µ∂φ

)
T

= −uν
∂hν (φ)

∂φ
and

(
∂2ων
∂µ∂T

)
φ

= 0. For an imposed temper-

ature gradient G translated at a given velocity V ,
∂T

∂t
= −GV from Eq. (1). Furthermore,

M(φ) is the atomic mobility of the solute, which is assumed to be zero in the solid and finite

in the liquid. Using the standard relationship between mobility and diffusion coefficient,

D = M∂2f/∂u2, we can write

M(φ) =
φlD

2A
. (A9)

Finally, ~Jat is the antitrapping current that is added to counteract spurious solute trapping

effects and guarantee the correct thin-interface limit [33]. Here, we combine the appropri-

ate expression for the double-obstacle potential of Ref. [23] with the interpolation between

multiple growing phases developed in Ref. [10].

The time evolution of the phase-fields follows a relaxation equation,

∂φν
∂t

= − 1

τε

[
δΩ

δφν
− Λ

]
, (A10)

where δΩ/δφ denotes a functional derivative, and Λ is a Lagrange multiplier that is added to

ensure
∑N

ν=1 φν = 1 throughout the system. The relaxation coefficient τ may vary between
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the different interfaces,

τ =

∑N
i,j=1 τijφiφj∑N
i,j=1 φiφj

; (A11)

the values τij for each interface are chosen such as to make the interface kinetics vanish [23];

the interfaces thus obey the local equilibrium condition of Eq. (5).

Appendix B: Rotation matrix representation of Anisotropy

In two dimensions, the interface orientation θ can be obtained for an i-j interface from the

Cartesian components of the vector ~qij = φi~∇φj −φj ~∇φi. Some simple anisotropy functions

ac(θ) can also be directly expressed in terms of the components of ~qij instead of θ.

If the growing crystal is rotated, in two dimensions the anisotropy function is changed

from ac(θ) to ac(θ − θR). We wish to use an implementation that can easily be extended

to three dimensions and arbitrary rotations. In order to achieve this, we directly work with

the components of the interface normal vector and transform the equations to the reference

system of the crystal with the help of the appropriate rotation matrix.

Consider an α-β interface and let the vector ~q = φα~∇φβ − φβ ~∇φα (we drop the phase

indices for ease of notation), with qx and qy being its Cartesian components in the laboratory

frame. We rotate this vector by an angle θR, which brings it into the reference frame of the

crystal,

~q′ =

q′x
q′y

 = R

qx
qy

 (B1)

where R is the rotation matrix

R(θR) =

cos θR − sin θR

sin θR cos θR

 =

Rxx Rxy

Ryx Ryy

 . (B2)

In the reference frame of the crystal, the anisotropy can be expressed in the “primed” vector

components, independently of the rotation angle. For example, a simple cubic anisotropy
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function is given by

ac(~q
′) = 1− ε4

[
3− 4

(
q′x

4 + q′y
4

|q′|4

)]
, (B3)

where ε4 is the anisotropy strength; a two-fold anisotropy is generated by

ac(~q
′) = 1− ε2

(
q′x

2 − q′y
2

|q′|2

)
(B4)

for an arbitrary function ac(θ), we may use that tan θ = q′y/q
′
x.

In order to calculate the functional derivative in Eq. (A10), repeated use of the chain rule

is made. For instance, we have

∂ac(~q
′)

∂φα
=
∂ac
∂q′x
· ∂q

′
x

∂φα
+
∂ac
∂q′y
·
∂q′y
∂φα

=
[
∂ac
∂q′x

∂ac
∂q′y

]
R

∂xφβ
∂yφβ

 . (B5)

Similarly, we find

 ∂ac(~q′)
∂(∂xφα)

∂ac(~q′)
∂(∂yφα)

 =

∂ac∂q′x
Rxx

∂qx
∂(∂xφα)

+ ∂ac
∂q′y
Ryx

∂qx
∂(∂xφα)

∂ac
∂q′x
Rxy

∂qy
∂(∂yφα)

+ ∂ac
∂q′y
Ryy

∂qy
∂(∂yφα)

 = −φβ

∂ac∂q′x
Rxx + ∂ac

∂q′y
Ryx

∂ac
∂q′x
Rxy + ∂ac

∂q′y
Ryy

 . (B6)
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