, Moore's conjecture [1], which states that the Pred for the majority rule is in NC (all positive weights), is not true for non-uniform signed majority

, However, if the conjecture is true for the majority rule, then it will be for all uniform symmetric signed majority rules. We think that this work calls for the following future research or questions: ? look for other widgets, especially in anti-symmetric rules where we have few results

, ? use decreasing energy or potential techniques to prove structural results on the kind of configurations that can embed computation

, ? use communication complexity to possibly prove upper bounds on some rules that would contradict the existence of a specific circuit simulation

, ? what is the prediction complexity of the symmetric majority rule? is it Turing universal in at least some weak sense?

, Acknowledgements Some of the authors would like to thank CONICYT-Chile under the grants FONDECYT 1140090

C. Moore, Majority-vote cellular automata, ising dynamics, and pcompleteness, Journal of Statistical Physics, vol.88, pp.795-805, 1996.

D. Regnault, N. Schabanel, and E. Thierry, Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority, Theoretical Computer Science, vol.410, pp.4844-4855, 2009.

I. Bieche, R. Maynard, R. Rammal, and J. Uhry, On the ground state of the frustration model of a spin glass by a matching method of graph theory, J. Phys. A: Math Gen, vol.13, pp.2553-2576, 1980.

F. Barahona, On the computational complexity of Ising glass models, J. Phys. A: Math. Gen, vol.15, pp.3241-3253, 1982.

J. Chalupa, P. Leath, and G. Reich, Bootstrap percolation on a Bhete lattice, J. Phys. C:Solid State Phys, vol.12, pp.31-35, 1979.

E. Goles-chacc, F. Fogelman-soulie, and D. Pellegrin, Decreasing energy functions as a tool for studying threshold networks, Discrete Applied Mathematics, vol.12, issue.3, pp.261-277, 1985.

R. Shingai, Maximun Period of 2-dimensional Uniform Neural Networks, Information and Control, vol.41, pp.324-341, 1979.

R. Shingai, The maximum period realized in 1-dimensional uniform neural networks, Trans. IECE Japan, vol.61, pp.804-808, 1978.

E. G. Ch, P. Montealegre-barba, and I. Todinca, The complexity of the bootstraping percolation and other problems, Theor. Comput. Sci, vol.504, pp.73-82, 2013.

E. Goles and P. Montealegre, The complexity of the majority rule on planar graphs, Adv. Appl. Math, vol.64, issue.C, pp.111-123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01315322

B. Durand and Z. Róka, The game of life:universality revisited, Cellular Automata: a Parallel Model, vol.460, pp.51-74, 1999.

E. R. Banks, Universality in cellular automata, Eleventh Annual Symposium on Switching and Automata Theory, 1970.
DOI : 10.1109/swat.1970.27

N. Ollinger, Universalities in cellular automata, Handbook of Natural Computing, pp.189-229, 2012.
DOI : 10.1007/978-3-540-92910-9_6

URL : https://hal.archives-ouvertes.fr/hal-00980362

M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier, Bulking II: classifications of cellular automata, Theor. Comput. Sci, vol.412, issue.30, pp.3881-3905, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00980377

E. Goles and J. Olivos, Periodic behaviour of generalized threshold functions, Discrete Mathematics, vol.30, issue.2, pp.90121-90122, 1980.
DOI : 10.1016/0012-365x(80)90121-1

URL : https://doi.org/10.1016/0012-365x(80)90121-1

E. G. Ch, Threshold networks and generalizations, LITP Spring School on Theoretical Computer Science, pp.42-52, 1986.

E. G. Ch, P. Meunier, I. Rapaport, and G. Theyssier, Communication complexity and intrinsic universality in cellular automata, Theor. Comput. Sci, vol.412, issue.1-2, pp.2-21, 2011.

C. Moore, Quasilinear cellular automata, Physica D: Nonlinear Phenomena, vol.103, issue.14, pp.100-132, 1997.
DOI : 10.1016/s0167-2789(96)00255-2

URL : http://arxiv.org/pdf/adap-org/9701001v1.pdf

M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier, Bulking I: an abstract theory of bulking, Theor. Comput. Sci, vol.412, issue.30, pp.3866-3880, 2011.
DOI : 10.1016/j.tcs.2011.02.023

URL : https://hal.archives-ouvertes.fr/hal-00980376

N. Ollinger and G. Richard, Four states are enough!, Theor. Comput. Sci, vol.412, issue.1-2, pp.22-32, 2011.
DOI : 10.1016/j.tcs.2010.08.018

URL : https://hal.archives-ouvertes.fr/hal-00469841

L. Boyer and G. Theyssier, On local symmetries and universality in cellular automata, STACS 2009 Proceedings, pp.195-206, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00359174

D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers et al., The tile assembly model is intrinsically universal, FOCS 2012 Proceedings, pp.302-310, 2012.
DOI : 10.1109/focs.2012.76

URL : http://arxiv.org/pdf/1111.3097

E. D. Demaine, M. J. Patitz, T. A. Rogers, R. T. Schweller, and S. M. , Summers, D. Woods, The two-handed tile assembly model is not intrinsically universal, ICALP 2013 Proceedings, Part I, pp.400-412, 2013.

P. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier, A. Winslow et al., Intrinsic universality in tile self-assembly requires cooperation, SODA 2014 Proceedings, pp.752-771, 2014.
DOI : 10.1137/1.9781611973402.56

URL : https://hal.archives-ouvertes.fr/hal-00943802

D. A. Barrington, C. Lu, P. B. Miltersen, and S. Skyum, On monotone planar circuits, Comput. Compl, 1999.
DOI : 10.1109/ccc.1999.766259

E. Allender, D. A. Barrington, T. Chakraborty, S. Datta, and S. Roy, Planar and grid graph reachability problems, Theory of Computing Systems, vol.45, issue.4, pp.675-723, 2009.
DOI : 10.1007/s00224-009-9172-z

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to parallel computation: P-completeness theory, 1995.

T. Neary and D. Woods, P-completeness of cellular automaton rule 110, ICALP 2006 Proceedings, Part I, pp.132-143, 2006.
DOI : 10.1007/11786986_13

E. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways : For your mathematical plays. 2. , games in particular, 1982.

D. Kozen, Theory of Computation, Texts in Computer Science, 2006.

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 1960.