ECM - Ecole Centrale de Marseille : UMR7279 (Pôle de l'étoile
Technopole de Château-Gombert
38 rue Frédéric Joliot-Curie
13013 Marseille, France - France)
ECM - Ecole Centrale de Marseille : UMR7373 (Pôle de l'étoile
Technopole de Château-Gombert
38 rue Frédéric Joliot-Curie
13013 Marseille, France - France)
Abstract : We study the complexity of signed majority cellular automata on the planar grid. We show that, depending on their symmetry and uniformity, they can simulate different types of logical circuitry under different modes. We use this to establish new bounds on their overall complexity, concretely: the uniform asymmetric and the non-uniform symmetric rules are Turing universal and have a P-complete prediction problem; the non-uniform asymmetric rule is in-trinsically universal; no symmetric rule can be intrinsically universal. We also show that the uniform asymmetric rules exhibit cycles of super-polynomial length, whereas symmetric ones are known to have bounded cycle length.
https://hal.archives-ouvertes.fr/hal-01472161
Contributeur : Guillaume Theyssier
<>
Soumis le : mercredi 9 janvier 2019 - 13:46:08
Dernière modification le : jeudi 7 février 2019 - 15:32:53
Eric Goles, Pedro Montealegre, Kévin Perrot, Guillaume Theyssier. On the complexity of two-dimensional signed majority cellular automata. Journal of Computer and System Sciences, Elsevier, 2018, 91, pp.1-32. 〈hal-01472161v2〉