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Abstract. This paper proposes an ownership model that permits to
combine both a deep-copy and migration semantics within one consis-
tent message-oriented programming model for Java. We argue that both
semantics are necessary to cover the complete spectrum of application
patterns. We also argue that one memory isolation mechanism is enough
to provide strict memory isolation (isolate style) and message-oriented
isolation suited for concurrent programming (actor style). Our proposal
combines strict memory isolation, modeled on Java isolates (JSR 121),
and a message passing that can send unconstrained object graphs, either
migrating or deep-copying them. To our knowledge, our ownership model
is the only model that does not specialize classes for their use in mes-
sages and still enables fast migration of unconstrained object graphs.
Our performances show that the technology is suitable for interpreted
virtual machines and are strong evidence that it is also suited for high-
performance virtual machine based on JIT compilation.

1 Introduction

Memory isolation is traditionally provided by operating systems through the
concept of processes, whereby real memory is virtualized into virtual address
spaces. Recently, the concept of Software Isolated Processes (SIPs) has gained
popularity amongst researchers. The idea is to rely on software mechanisms
rather than hardware mechanisms to enforce memory isolation; the goal be-
ing to provide fine-grain memory isolation. To reach that goal, a large family
of systems [12,17,5,15,6,18] rely on virtualization and more specifically on an
object-oriented safe instruction set. By safe, we mean that memory references
cannot be forged. The Java Virtual Machine (JVM) from Sun MicroSystems
or the Common Language Runtime (CLR) from Microsoft are two examples of
such virtual machines. Both provide an object-oriented instruction set, where
object references are capabilities—an object is only reachable to those given its
reference to.

The safe instruction set must be completed by a safe Inter Process Commu-
nication. A safe IPC, based on message passing between two software-isolated
processes, maintains memory isolation. Current approaches [5,15,6,18] maintains
memory isolation through deep copy, thereby preventing the creation of cross-
boundary references, but for the controlled references on message queues. In



the Java world, the reference is the isolation API (JSR 121) first introduced in
the Multitasking Virtual Machine (MVM) [5]. The MVM introduces the iso-
late and link concepts to Java. An isolate, constructed as an instance of the
Isolate class, ensures a strict isolation between applications or software compo-
nents. Furthermore, isolates guarantee a clean and robust termination, leaving
the Java Runtime Environment in a consistent state. A Link provides a low-level
communication layer designed for synchronous message passing. In [15], the mes-
sage passing between isolates has been extended with a Cross-Isolate Method
Invocation (XIMI), modeled on regular RMI.

An essential design point regarding isolation is the message passing model
and if it preserves the object-oriented programming model or not. The isolate
model and many others rely on a costly deep copy because it is the only existing
existing mechanism that fully respects the object-oriented programming model.
Some other solutions [12,17] argue for message passing based on a more efficient
migration mechanism, but they are limited to messages that are tree structures.
Furthermore, such approaches rely on static analysis that requires the introduc-
tion of new keywords, annotations, or other changes to the type system. Hence,
classes are specialized for their use within messages, not only hindering their
reuse but often introducing hidden copies because of the impedance mistmach
introduced between regular data structures and messages. This means that when-
ever an existing object-oriented structure needs sending, it has to be translated
and therefore copied into a message format. Since object-orientation encourages
encapsulation and reuse, most developers will be unaware of the implementation
nature of the data structures they use. Not knowing if internally they are graphs
or trees, developers will be forced into translating most data structure they send.

In this paper, we propose a message passing model that combines the best of
both worlds. The first contribution of this work is an ownership model based on
first reachibility that provides the necessary knowledge of which objects are part
of a message and which are not. The second contribution is a message frame-
work based on our ownership model that allows to either migrate or deep-copy
messages containing unconstrained object graphs. We argue that both semantics
must be available to support the full range of application patterns. The third
contribution of this paper is a simple and efficient design for message passing in
the context of strict memory isolation.

Our proposal combines the isolate concept that provides lightweight memory
isolation and the actor concept that provides featherweight concurrency based
on message passing. In our proposal, each actor has its own isolate. Communi-
cations between isolates solely happen through message passing. Each actor has
one or more message queues but one message queue belongs to only one actor.
Actors are the unit of concurrency with one logical thread per actor, reacting
to delivered messages, Erlang style. Each reaction runs to completion, follow-
ing a traditional event-driven programming style. Logical threads carrying out
reactions are multiplexed onto kernel threads.

Messages may contain unconstrained object graphs, captured by our own-
ership model. Our ownership model is based on first reachibility from roots of



ownership. Newly created objects are created free, that is, without an owner.
Roots of ownership are actor objects and message objects, that is, an actor or a
message is created as owning itself. The first time a free object becomes reach-
able from a owned object, the ownership is propagated. Notice that ownership
propagation is therefore transitive. Hence, by the time a message has been con-
structed and is about to be sent, all the objects that must be sent along with
the message are owned by that message.

Messages are always sent asynchronously, with either a deep-copy or a mi-
gration semantics. Both semantics are natively implemented in the Jam virtual
machine (JamVM [14]), an open-source Java Virtual Machine with a state of the
art threaded interpreted but no Just-In-Time (JIT) compilation. However, our
technology is not interpreter specific in any way, adatping it to a JIT-based JVM
requires changing the JIT to include read and write barriers for the few byte-
codes manipulating object references. This barrier requirement is the downside
of our proposal since the associated overhead is paid by all applications, that
they use message passing or not. It is therefore paramount that the barrier over-
head be low. We evaluated our barrier overhead on the SpecJVM98 benchmark,
a benchmark that does not use message passing at all. Our overhead varies be-
tween 1.2% and 3.9%, with an average at 2.9%. We consider this overhead quite
acceptable considering the robustness benefits of actor-based programming and
our preserved ability to migrate unconstrained graphs. Furthermore, the pres-
ence of a JIT helps lowering even further the overhead of both read and write
barriers. As reported in [2], the overhead of barriers is less than 6% and typically
around 2% in high-performance virtual machines.

Our deep copy has comparable performance to other optimized deep-copy ap-
proaches such as MVM [15] and JX operating system [6]. It achieves an eight-fold
improvement over standard RMI in the local case, that is, between actors within
the same address space. We further optimized our message passing between
actors spread across address spaces when micro-kernel technology is available.
Tailoring our message passing to use the low-level IPC of microkernels, we are
able to maintain an four-fold improvement across address spaces compared to
RMI in the local case.

Our migration consistently beats our deep copy, whenever a migration se-
mantics is appropriate. Our migration overhead on message-intensive applica-
tions remains between 2.1% and 7.6% of regular Java, that is, the same Java
program without isolation. This is to compare to the overhead of a deep-copy
approach that already suffers an overhead over 40% for medium-size messages
such as a linked list of one hundred small objects.

This paper is structured as follows. In section 2, we introduce our program-
ming model based on actors and isolates. In section 3, we discuss the details
of our ownership mechanism. In section 4, we present our object migration. In
section 5, we presents experimental results. In section 6, we discuss related work.
We finally conclude in section 7.



2 Strictly-isolated Actors

Actors fulfill a dual purpose. One is to guarantee strict memory isolation, within
a single Java Virtual Machine (JVM). To achieve this, an actor is created within
its own isolate. Our isolates are semantically equivalent to MVM isolates [5].
Therefore, actors can be dynamically created, started, and stopped. When an
actor is stopped, its isolate is terminated. Since isolate termination is guaran-
teed to leave the JVM in a consistent state, actor termination enjoys the same
guarantee.
public class Actor {
public Actor(String args[]);
public void start(Queue queues[]);
public void stop();
public void react(Message msg);
}

To protect actors against malignous interference [15], actors have disjoint
object graphs, sharing being completely prohibited but for controlled message
queues. In particular, actors do not share class objects, meaning that each actor
has its own version of static variables for each class it uses. Since we do not
rely on any static analysis at compile or load time, we support dynamic class
loading through class loaders, like any regular JVM or the MVM. For efficiency,
the JVM implements as much sharing as possible across actors and the classes
they uses. In particular, the low-level code of methods is shared. Hence, actors,
like the MVM isolates, are lightweight isolation domains that share dynamically
loaded code.
final public class Queue {

public Queue(Actor actor);
public void migrate(Message msg, long delay);
public void copy(Message msg, long delay);

}

public class Message {
public Message();
public Queue getQueue();
public int addObject(Object object);
public Object getObjectAt(int index);
public Queue getQueueAt(int index);

}

Message queues provide one-way communication channels between actors, as
illustrated by the definition of the corresponding classes above. Notice that a
message queue belongs to one and only actor but an actor may contain one or
more message queues. A message is an ordered list of objects that can be either
deep-copied or migrate to a message queue. When a message is received on a
queue, it is delivered to the corresponding actor through its react() method.

Listing 1 provides an example of a simple time server. Notice that we have
adopted a callback-oriented style, typical of Finite State Machines. Per actor,
we cooperatively schedule message reactions on one logical thread. When sched-
uled, an invocation of the react() method on an actor runs to completion. For
featherweight actors, we felt it was important to avoid the overhead and com-
plexities associated with Java monitors and thread race conditions. Identically to



public class Client extends Isolate {
String clientName;
Date date;
Queue wakeupQueue = new Queue();
Queue replyQueue = new Queue();
Queue serverQueue;

public void start(Queue args[]) {
serverQueue = args[0];

}
public void react(Message msg) {

Queue queue = msg.getQueue();
if (queue==wakeupQueue) {

Message msg = new Message();
msg.addObject(clientName.clone());
msg.addObject(replyQueue);
serverQueue.migrate(msg);
msg = new Message();
// check time again in one minute
wakeupQueue.migrate(msg,60000);

} else if (queue==replyQueue) {
date = (Date)msg.getObjectAt(1);

}
}
}

public class TimeServer extends Isolate {
String serverName;
Queue serverQueue = new Queue();

public void start(Queue args[]) {
...

}
public void react(Message msg) {

long time = System.currentTimeMillis();
String clientName = msg.getObjectAt(0);
// log client request
log(clientName,time);
Queue replyQueue;
// extract reply queue
replyQueue = msg.getQueueAt(1);
// send back the current time
msg = new Message();
msg.addObject(serverName.clone());
msg.addObject(new Date(time));
replyQueue.migrate(msg);

}

...
}

Fig. 1. Time Server Example

Kilim [17], we argue that better multi-core scalability is obtained by multiplexing
logical threads on kernel threads.

3 Ownership

Before a message can be migrated, the very first challenge is to know which
objects need to migrate. Rather than splitting the type system and/or requiring
source annotation like [12,17], we advocate a new approach based on dynamic
ownership, which we claim is rather natural for object-oriented developers. Our
ownership is a runtime technology, totally dynamic and entirely automated.
When applied to messages, it unambiguously tells which objects belong to which
message.

Our ownership is defined as follows. Within each actor, new objects are cre-
ated free and remain free until they are owned. Ownership propagates by reach-
ability through references. A free object becomes owned as soon as it becomes
reachable from a owned object. In other words, when an object L, owned by
an object O, first refers to a free object R, the ownership propagates from L to
R. Once owned, an object remains owned by the same object until it becomes
garbage.

It is important to point out that propagating ownership does not entail any
object copy. It is similar to coloring but instead of propagating a color, we
propagate the identity of the owner object. The simplest implementation is to
have an extra hidden reference per object, called the owner reference. When the
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object is free, that owner reference is null. When the object is owned, that owner
reference refers to the owner object.

We define only two roots of ownership, the Actor and Message classes. When
an actor object is created, it is created as its own owner. The same is true for
message objects. Therefore, any newly created object will remain free as long as
it is used through local variables. However, as soon as it becomes transitively
reachable from an actor object, it becomes owned by that actor. If it becomes
transitively reachable from a message object first, it becomes owned by that
message instead. Using first reachibility is quite natural in object-oriented pro-
gramming where objects are created and first referenced from the data structure
managing them and then shared with other data structures.

To implement our ownership, we introduce a write-barrier in the JVM on
the instructions supporting the assignment of references, such as PUTFIELD and
AASTORE bytecodes. PUTFIELD stores an object reference in an object field where
AASTORE stores an object reference in an array object. Assuming a field f of an
object L is assigned with the reference of an object R:

L.f = R; (1)

The write barrier works as follows:

1. The object L is free, in which case there is no ownership to propagate.
If the object R was free, it remains free. If it was owned, its owner remains
unchanged.

2. The objects L and R are owned, nothing happens. If L and R are owned
by the same owner, nothing needs to happen. If L and R are owned by two
different owners, nothing happens since the owner of an object never changes
through the lifetime of that object.

3. Object L is owned and R is free. When a free object is first referenced
by an owned object, we propagate the ownership.

It is important to point that the JVM propagates ownership transitively, re-
cursively applying the same write barrier on all encountered references. Indeed,



in the last case above, despite the fact that R is free, the graph of objects reach-
able from R might be composed of either owned or free objects. All reachable
free objects will become owned; already owned objects will keep their owner.

Figure 2 illustrates an example of ownership propagation. On this left hand
side, we have an actor with its logical thread and a message M , already created.
There is also a free object A, reachable from the thread stack. Notice that the
object A is an object graph, holding a reference to an object already owned
by the actor. Going to the right hand side, we are adding the object A to the
message M , which propagates the ownership of the message M onto the object
A and those reachable from A. Notice that this propagation stops on objects
already owned, such as the object B.

4 Migration

With the ownership in place, we know what to migrate when a message is sent.
This section discusses how we achieve migration, strictly preserving memory
isolation although all actors hosted in a single virtual machine share a single
object heap, managed by a single garbage collector. In other words, objects
owned by different actors are intermixed within that single object heap, along
with objects owned by messages. This means that actors do not have private
memory pages or segments; the structure of the object heap is solely dictated by
allocation and garbage collection considerations, not by isolation considerations.
Therefore, preserving strict memory isolation in the presence of message passing
requires to maintain the following two invariants:

– The sending actor does not retain references upon migrated objects.
– Migrated objects do not retain references in the sending actor.

A naive solution is to search for such references and nullify them. We would
need to scan the thread stack of the sending actor as well as all free objects
reachable from that stack—cutting references on objects owned by the message
being sent. We would also need to scan all objects owned by the sending actor
and apply the same cutting rule. Additionally, we need to scan the message for
outgoing references. The most likely case is the finding of references of message
queues within messages. Since we do not restrict the programming model, other
references may be found as well and must also be cut. This is equivalent to a
garbage collection at the granularity of the sending actor, which we call a scan-
and-cut process. This scan-and-cut process needs to happen for each message
send, which is obviously not a practical solution in the general case.

Existing appoaches for message passing avoid this scan-and-cut process as
follows. With a deep-copy approach, the scan-and-cut process is unnecessary
since objects are recursively copied across isolate boundaries, which cannot cre-
ate cross-isolate references. The tradeoff, copy versus scan, works well for small
messages for which it is cheaper to deep copy messages than scan-and-cut the en-
tire actor sending that message. Unfortunately, the copy overhead grows rapidly
as the size of messages grows. Furthermore, for message intensive applications,



the copy process stresses the garbage collector, adding to the global overhead
of a deep-copy approach. In contrast, migration solutions achieve a zero-copy
overhead and guarantee that the scan-and-cut process is unnecessary through
static analysis. The price to pay here is that messages must be tree structures
(no aliasing) and that hidden copies are likely.

Given our goals, migrate unconstrained graphs and high level concurrency
through featherweight actors, we have to craft a new and efficient runtime so-
lution. The key idea of our solution ressembles the tail-recursion optimization
applied to message passing. Tail recursion can optimize out deep recursive calls
on a stack if the recursive call happens to be the last instruction of each call.
For message passing, if the send instruction happens to be the last instruction
of a reaction, the stack is empty and there is no free object still alive within the
sending actor. Therefore, with a tail-send pattern, the scan-and-cut process is
unnecessary for the stack and free objects.

It is interesting to notice that a tail-send pattern does not have to impose
that the send instruction be syntactically the last instruction. With asynchronous
message passing, the send instruction may appear anywhere in the code and the
actual sending may actually be delayed until the end of the reaction. This point
is important to preserve a natural programming model, without compromising
performance. This leaves us with optimizing the scan-and-cut process on objects
owned by the sending actor, which can be done through the introduction of
remembered and revocable indirections.

Agent
in

out

Agent Message

Indirections:

Fig. 3. Introducing Indirections

As depicted in Figure 3, we introduce a revokable indirection whenever a
reference crosses an ownership boundary. Such indirections are introduced by a
write barrier. In fact, we only need to slightly extend the write barrier already
in place that propagates ownership. Each owner remembers both incoming and
outgoing indirections, which enables a fast revocation process upon message
passing. It is worth mentioning that special care is necessary for outgoing ref-
erences on message queues since it is legal to embed a message queue reference
within a message.



5 Evaluation

We implemented our actor technology by modifying the JamVM, an open-source
Java Virtual Machine. We compiled the JamVM with GCC version 4.1.2, with
O3 optimization turned on. All experiments were conducted on an Intel Core 2,
dual core, at 2.2Ghz and 2GB of memory.

The JamVM has no Just-In-Time (JIT) compiler but rather relies on a
threaded interpreter that rewrites Java bytecodes into a more effective inter-
nal representation, mostly saving branch instructions and most of the overhead
of decoding operands. It is important to point out that there is nothing in our
design and implementation that is specific to an interpreted approach. Using
a virtual machine with a JIT, one can expect an improvement of the overall
performance, but we argue that we would reach the same conclusions regarding
message passing; a thesis that we will defend throughout this section.

5.1 Barrier overhead

The first facet of our design to evaluate is the intrinsic cost of our barriers (read
and write). This is important since applications pay these barrier overheads
even though they are not using message passing. The write barrier propagates
ownership and create indirections across ownership boundaries; the read barrier
eagerly skips indirections.

In the JamVM, we changed the rewriting of the four bytecodes concerned
with reading or writing references to and from objects (including arrays). The
instruction GETFIELD (resp. PUTFIELD) allows to read (resp. write) an instance
variable. The instruction AALOAD (resp. AASTORE) allows to read (resp. write)
an element of an array. The instruction GETSTATIC (resp. PUTSTATIC) allows to
read (resp. write) class variable. The read and write barriers only need to be
added when such instructions apply to a reference field.

To evaluate the barrier overhead when message passing is not used, we ran
the SpecJVM98 with and without our barrier runtime checks. Figure 4 gives the
overall results, showing that our barrier is inexpensive. The smallest overhead
is as low as 1.2% and stay below 3.9%, with an average at 2.9%. Although
counter intuitive, the fact that the JamVM is interpreted makes this overhead
actually higher than it ought to be. First, Java compilers produce notoriously
unoptimized code, expecting the JIT to optimize out redundant object accesses.
Hence, an interpreter pays an extra barrier for every redundant object access.
Also, JIT compilers typically reduce the overall number of barriers compared to
object accesses. This is consistent with barrier overheads well below 6% and as
low as 2% in high performance virtual machines as reported in [2].

5.2 Message-passing overhead

To measure the overhead of message passing, we use a straightforward client-
server interaction where a client actor sends a message to a server actor that
responds by recreating the very same message and sends it back. Throughout
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the experiments, we vary the nature and size of messages, capturing the overhead
of different facets of our design. For each shape of message, we ran eleven times
the experiment with ten thousand client-server interactions per run. First, we
averaged over the ten thousand interactions to get the time of sending a message,
from which we computed the median over the values for the eleven runs. We
considered the following shapes of messages:

– Empty message. This message is an empty message, that is, a single object,
instance of the Message class.

– Singleton message. This message carries a single data object, so we are in
fact sending two objects (the data one and the Message instance).

– int[100] message. This message carries an array of one hundred integers.
– Object[50] and Object[100]. This message carries an array of objects,

instances of the class Object. We vary the length of the array, either fifty or
one hundred.

– List[50] and List[100]. This message carries a graph, instance of the Java
collection LinkedList (java.util package). We vary the size of the list, either
fifty or one hundred elements, instances of the class Object. In the standard
implementation of the LinkedList, the overall number of objects is about
twice the size of the list.

Our first experiment compares both our migration and deep-copy technology
against regular Java without memory isolation. By regular Java, we mean that
we only removed the memory isolation property, everything else remaining the
same. We still have two actors creating the same messages. Message passing
still happens through the message queues but messages are simply passed by
reference, with no extra check. In other words, the overhead for message creation
as well as thread scheduling are the same.
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The results are given in Figure 5. All our experiments were ran with garbage
collection disabled, thereby ignoring the extra pressure put on garbage collec-
tion by a deep copy approach. Our deep-copy mechanism is similar to the one
advocated by JX kernel [7,6]. Similarly to both XIMI [15] and JX kernel [7,6],
we report at least a ten-fold improvement over standard RMI in the local case,
that is, messages exchanged across actors within the same virtual machine. We
therefore consider that our deep-copy mechanism is state of the art.

Nevertheless, our migration mechanism consistently beats our deep-copy mech-
anism in this experiment. In fact, migration incurs only a small overhead com-
pared to regular Java, between 2.1% and 7.6%. This performance delta is there-
fore the intrinsic measure of the overhead of our migration technology that
enforces strict memory isolation. Figure 6 shows that overhead, isolated from
the overhead of creating messages (but still including thread scheduling). The
strength of migration is apparent with an almost constant overhead irrespective
of the size of the message.

The exact overhead of migration is however dependent on the number of
indirections to scan and cut; an overhead illustrated in Figure 7. In this exper-
iment, we again used the client-server interaction discussed above, but we only
exchanged linked list. Both sides (client and server actors) iterate over the list
included in the message, simulating a search filter. Depending on how we iterate
over the list, we create indirections are not. If we iterate over the list using only
local variables, no indirections are created. If we iterate over the list using an
instance field of an object owned by the actor, there are as many indirections cre-
ated as there are elements in the list. As expected, migration introduces minimal
overhead when used properly. It still outperforms a deep copy when poorly used,
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but the overhead can become rapidly significant if poor programming practices
are used.

To pursue our comparison between migration and deep copy, we designed the
next experiment to illustrate that migration and deep copy are in fact comple-
mentary semantics. The sweet spot of deep-copying messages is sending existing
objects that are to be kept by the sending actor. The complementary sweet spot
of migrating messages is when sending objects that allocated for the sole purpose
of constructing messages. The experiment is designed as follows. We have a set
of objects that we want to sort on some criteria and remove doublons of. The
sorted objects are then to be sent using a linked list. One simple approach to
achieve this has the following steps. A message is first created and a linked list
added to it. A hash map is then created and filled with objects from the set, this
step removing doublons. Then, the hash map is iterated over and its elements
are sorted while being inserted in the linked list. Finally, the message is sent.

The important point with respect to comparing migration and deep copy is
the origin of the object set. Figure 8 illustrates the results. No matter what the
origin is, a deep-copy semantics can be used to send the message with a constant
overhead of 9.5%. In contrast, the use of a migration semantics requires to know
if the objects in the set are already owned by the sending actor or not. If they are
free objects, migration can be used as usual with an overhead as small as 0.9%,
clearly outperforming a deep-copy approach. However, if the objects are already
owned, adding them to a message will not produce the expected result. Doing
so would only create out-going indirections that would be nullified upon sending
the message. The result would be sending a linked list with null references as
elements. This is a typical case of hidden copies. To have the desired message
passing, the already owned objects have to be cloned manually before they are
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inserted in the message. This is not only cumbersome but results in poorer
performance than a deep copy semantics.

One last point is important to discuss about this overall comparison of migra-
tion versus deep copy: would our conclusions remain valid in a high-performance
JIT-enabled virtual machine? We argue that not only our conclusions remain
valid but the importance of offering an efficient migration in order to limit the
overhead of message passing increases. While the presence of a JIT improves the
overall performance of Java code, it will have no effect on the effectiveness of
message passing since it is implemented in C. Therefore, the overhead of message
passing, as a percentage, will increase as the overall execution time of Java code
decreases. This only makes the issue of adopting a migration semantics whenever
meaningful more pressing.

5.3 Cross-address-space overhead

Additionally to evaluate messaging between actors within a single address space,
we also evaluated messaging between actors across address spaces. In this case,
the usual approach is to use standard RMI over standard sockets. To maintain
better overall performance, in an homogeneous environment, we experimented
with optimizing our deep-copy mechanism using the efficient low-level IPC pro-
vided by microkernels.

Figure 9 depicts our architecture on the XNU-1228.15.4 kernel that is part
of the Mac OS X, introducing how we map actors and Java virtual machines
onto tasks and threads. We map one JVM per kernel task, multiplexing actors
per JVM and therefore per task. All actors hosted by one JVM share the same
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Fig. 8. Migration versus Deep Copy

object heap and the same garbage collector. We use one single kernel thread per
task, using it to multiplex the reactions of actors.

Of course, we expected lower performance in the inter-task case than in the
intra-task case; nevertheless we expected to be able to leverage the micro-kernel
IPC and deliver better performance than standard RMI. Our results, given in
Figure 10, confirm our intuition. While RMI is about ten times slower than a
deep copy [15], our messaging across a task boundary is a little over twice the
cost of a deep copy—so about five time faster than local RMI. The benchmark
is exactly the same as the one underlying the results given in Figure 5, adding
the inter-task performance figures.

The ratio between the deep-copy messaging and the inter-task messaging is
easily explained. If we consider the last figures, we send by deep copy the linked
list of one hundred elements in 131.80 microseconds, while we send the same
message across tasks in 285.35 microseconds, with a ratio of 2.16. When sending
across tasks, we actually incur two deep copies. The first deep copy happens on
the sender side, when we deep copy the objects owned by the message into the
buffer for the micro-kernel IPC. The second deep copy happens on the receiving
side, when we deep copy out of the buffer into the object heap of the receiving
task. The remaining time, above these two copies, is the time it takes for the
micro-kernel to actually make the IPC happen.

Our implementation is a straight-forward use of the micro-kernel IPC. We
use one single IPC per message we send across two tasks. Each IPC is composed
of two out-of-band buffers. One buffer receives the deep-copied objects owned by
the message we are sending. The other buffer receives the class names of these
objects. Using two separate buffers allow us to send each class name only once,
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irrespective of how many instances of actually deep-copied. Sending the class
names is mandatory to know how to recreate the objects on the receiving side.

6 Related Work

This section describes related systems that provide memory isolation through
software mechanisms. Three main categories may be considered. The first cate-
gory leaves the Java type system untouched, either relying on Java serialization
([16,8,18]) or on deep copy mechanisms ([4,5,7,6]). Compared to these solutions,
our work improves data exchanges through a zero-copy mechanism that preserves
the isolation property. The second category ([9,1]) extends the type system, de
facto limiting class reuse as well as changing developers’ habits. In contrast, our
solution does not requires any change to the type system. The third category
([12,13,11,17]) relies on static type checking to improve the efficiency of inter-
domain communications. However, unlike our solution, these systems are limited
to sending tree-based messages.

6.1 Copy-based solutions

The isolate API [16] allows to define Java programs that can run isolated in the
same JVM. An isolate can be associated with one or more Java threads. Iso-
lates communicate by message or remote method invokation (RMI). Objects are
passed across isolate boundaries by serialization. The MVM[4,5] is an extension
of the JVM that integrates the notion of isolate. The particularity of the MVM
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is to provide a cross-isolate method invokation (XIMI [15]) that passes objects
by deep copy rather than by serialization.

The JX system [7,6] is a Single Address Space Operating System (SASOS [3,10]).
The notion of domain represents the unit of concurency. Domains are written in
Java and rely on the language safety to ensure memory isolation. Each domain
has its own heap, garbage collector, and threads. Domains communicate through
portals which are the only way to call methods on remote objects. Portals are
the only objects passed by reference, all other data are passed by-value using a
deep-copy mechanism similar to the one used by the MVM.

In the case of J-Kernel[8,18] the protection system is based on protection
domains, software capabilities, and inter-domain communications. A protection
domain constitutes a closed memory space with its own classloader and threads.
Multiple protection domains run inside the same JVM process. Software capa-
bilities are used to control object sharing between domains. A capability is the
only way to access a resource and can be revoked at anytime by the system.
The use of a revoked capability inside a domain throws an exception. Capability
protection is also based on the Java language safety. When a domain terminates,
all its capabilities are revoked and all its allocated memory is freed. Inter-domain
communications are achieved through method calls on capabilities. Capabilities
are passed by reference whereas other objects are passed by value using the Java
serialization. J-Kernel does not require any modifications of the JVM.

6.2 Type-based Solutions

The Luna system[9] is similar to J-Kernel except that it extends the Java Type
system with the concept of remote pointer instead of J-Kernel capabilities. This
solution improves inter-domain comunication as it enables protection domain to



share directly well-identified objects in the system. To ensure domain isolation, a
local pointer cannot be assigned in the field corresponding to a remote objects or
used during a remote method invokation. Remote pointer can be revoked at any
time by the system. However with this solution, shared objects must have been
identified by the programmer (e.g., String for a local type and String˜ for a shared
type). This specializes classes and thereby limits their reuse. It is interesting to
note that shared types do not imply the exclusive ownership of shared objects.

KaffeOS[1] extends the JVM with the notion of processes and level of priv-
iledges (supervisor and user). In particular each process owns its private heap
and cannot reference objects inside other heaps. To ensure this property, Kaf-
feOS uses the notion of write barrier [19]. Each time a new reference is written in
a heap, the runtime check if it is authorized and throws an exception if not. As
J-Kernel, each process has its own classloader and garbage collector. KaffeOS
processes can communicate through shared heaps. This particular kind of heap
contains only system classes and specific shared classes. A shared class must
be part of the shared.* package and its instances, called shared objects, cannot
reference non-shared objects inside the private heaps of processes. The use of a
special shared package is a serious limitation, unnecessarily fragmenting the type
system—a simple String or Java collection may therefore not be shared.

6.3 Static checking for zero-copy messaging

Singularity[12,13,11] is composed of a microkernel and a set of SIPs that run
in a single address space (SASOS design). A SIP may contain multiple threads.
Software isolation is based on a safe programming language, Sing# that extends
C#. A SIP is associated with a set of memory pages containing code and data.
SIPs are closed object spaces, they cannot share writable memory with other
SIPs and the code within a SIP is sealed at execution time. Communications
occur using a message passing mechanism through channels. Messages and com-
munication protocols exchanged through channels are specified using statically
verifiable contracts. Data exchanges go through a special memory zone called the
exchange heap that allows a safe-zero copy exchange of tree-like data structure.
Unlike our solution, Singularity induces no runtime barriers since it is based on
static checking. However only tree-shape objects can be exchanged between SIPs
which is not the case with our solution.

Kilim[17] is a Java framework that provides the notion of Actors. Actors only
communicate through message passing, with isolation being statically enforced.
Messages are limited to tree-shaped data structures that can only contain prim-
itive values, messages, and arrays of primitive values or messages. In Kilim, a
message is reachable from only one field at any point in time and therefore be-
longs to a unique actor. Static analysis enforces that a sender of messages does
not retain references to objects within sent messages. From static analysis, Kilim
weaves at load-time the necessary code to ensure safe manipulation of messages.
Therefore, Kilim does not require any modifications of the JVM.



7 Conclusion

This paper proposed an ownership model that permits to combine both a deep-
copy and migration semantics within one consistent message-oriented program-
ming model. We made the case that both migration and deep-copy semantics are
necessary to cover application needs. We also argued that it is crucial to preserve
the object-oriented programming model to avoid hindering class reuse and avoid
hidden copies. To our knowledge, our ownership model is the only model that
does not specialize classes for their use in messages and still enables fast migra-
tion of unconstrained object graphs. Our performances show that the technology
is suitable for interpreted virtual machines and are strong evidence that it is also
suited for high-performance virtual machine based on JIT compilation.

Acknowledgement: We wish to thank Laurent Daynès from Sun Research for
his comments on this work and valuable insights on the MVM and XIMI.
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