M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors???I. The deficiency zero and deficiency one theorems, Chemical Engineering Science, vol.42, issue.10, pp.2229-2268, 1987.
DOI : 10.1016/0009-2509(87)80099-4

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

C. Kuttler, C. Lhoussaine, and M. Nebut, Rule-based modeling of transcriptional attenuation at the tryptophan operon, In Transactions on Computational Systems Biology, pp.199-228, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00445566

C. Chaouiya, Petri net modelling of biological networks, Briefings in Bioinformatics, vol.8, issue.4, pp.210-219, 2007.
DOI : 10.1093/bib/bbm029

L. Novère, N. Laibe, C. Chelliah, and V. , BioModels: Content, Features, Functionality and Use. CPT: Pharmacometrics & Systems Pharmacology, pp.55-68, 2015.

U. Mäder, A. G. Schmeisky, L. A. Flórez, and J. Stülke, SubtiWiki--a comprehensive community resource for the model organism Bacillus subtilis, Nucleic Acids Research, vol.40, issue.D1, pp.1278-1287, 2012.
DOI : 10.1093/nar/gkr923

J. Niehren, M. John, C. Versari, F. Coutte, and P. Jacques, Qualitative Reasoning for Reaction Networks with Partial Kinetic Information, Computational Methods for Systems Biology Lecture Notes in Computer Science, vol.9308, pp.157-169, 2015.
DOI : 10.1007/978-3-319-23401-4_14

O. Radulescu, A. N. Gorban, A. Zinovyev, and V. Noel, Reduction of dynamical biochemical reactions networks in computational biology, Die kinetik der invertinwirkung, pp.352-363, 1913.
DOI : 10.3389/fgene.2012.00131

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bulletin of Mathematical Biology, vol.50, issue.6, pp.579-593, 1988.
DOI : 10.1016/S0092-8240(88)80057-0

F. Heineken and H. Tsuchiya, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Mathematical Biosciences, vol.1, issue.1, pp.95-113, 1967.
DOI : 10.1016/0025-5564(67)90029-6

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: a case study in perturbation. SIAM review, pp.446-477, 1989.

E. L. King and C. Altman, A schematic method of deriving the rate laws for enzyme-catalyzed reactions. The Journal of physical chemistry, pp.1375-1378, 1956.

C. Kuo-chen and S. Forsen, Graphical rules of steady-state reaction systems, Canadian Journal of Chemistry, vol.59, issue.4, pp.737-755, 1981.
DOI : 10.1139/v81-107

F. Fages, S. Gay, and S. Soliman, Inferring reaction systems from ordinary differential equations, Theoretical Computer Science, vol.599, pp.64-78, 2015.
DOI : 10.1016/j.tcs.2014.07.032

URL : https://hal.archives-ouvertes.fr/hal-01103692

M. Sáez, C. Wiuf, and E. Feliu, Graphical reduction of reaction networks by linear elimination of species, Journal of Mathematical Biology, vol.40, issue.73, pp.1-43, 2016.
DOI : 10.1021/ed069p544

G. Madelaine, C. Lhoussaine, and J. Niehren, Attractor Equivalence: An Observational Semantics for Reaction Networks, In Formal Methods in Macro-Biology, 2014.
DOI : 10.1007/978-3-319-10398-3_7

URL : https://hal.archives-ouvertes.fr/hal-00990924

M. Schmidt-schauss, D. Sabel, J. Niehren, and J. Schwinghammer, Observational program calculi and the correctness of translations, Theoretical Computer Science, vol.577, issue.577, pp.98-124
DOI : 10.1016/j.tcs.2015.02.027

URL : https://hal.archives-ouvertes.fr/hal-00824349

J. Gagneur and S. Klamt, Computation of elementary modes: a unifying framework and the new binary approach, BMC Bioinformatics, vol.5, issue.1, pp.175-197, 2004.
DOI : 10.1186/1471-2105-5-175

G. Madelaine, C. Lhoussaine, J. Niehren, and E. Tonello, Structural simplification of chemical reaction networks in partial steady states modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system, Proceedings of the National Academy of Sciences, pp.6608-6613, 2008.