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Abstract
In 1994, Long and Moody gave a construction on representations of braid groups which associates a represen-

tation of Bn with a representation of Bn+1. In this paper, we prove that this construction is functorial and can be
extended: it inspires endofunctors, called Long-Moody functors, between the category of functors from Quillen’s
bracket construction associated with the braid groupoid to a module category. Then we study the effect of Long-
Moody functors on strong polynomial functors: we prove that they increase by one the degree of very strong
polynomiality.

Introduction

Linear representations of the Artin braid group on n strands Bn is a rich subject which appears in diverse contexts
in mathematics (see for example [5] or [19] for an overview). Even if braid groups are of wild representation type,
any new result which allows us to gain a better understanding of them is a useful contribution.

In 1994, as a result of a collaboration with Moody in [17], Long gave a method to construct from a linear
representation ρ : Bn+1 → GL (V) a new linear representation LM (ρ) : Bn → GL (V⊕n) of Bn (see [17, Theorem
2.1]). Moreover, the construction complicates in a sense the initial representation. For example, applying it to a one
dimensional representation of Bn+1, the construction gives a mild variant of the unreduced Burau representation
of Bn. This method was in fact already implicitly present in two previous articles of Long dated 1989 (see [15, 16]).
In the article [3] dating from 2008, Bigelow and Tian consider the Long-Moody construction from a matricial point
of view. They give alternative and purely algebraic proofs of some results of [17], and they slightly extend some
of them. In a survey on braid groups (see the Open Problem 7 in [5]), Birman and Brendle underline the fact that
the Long-Moody construction should be studied in greater detail.

Our work focuses on the study of the Long-Moody construction LM from a functorial point of view. More
precisely, we consider the category Uβ associated with braid groups. This category is an example of a general
construction due to Quillen (see [9]) on the braid groupoid β. In particular, the category Uβ has natural numbers
N as objects. For each natural number n, the automorphism group AutUβ (n) is the braid group Bn. Let K-Mod be
the category of K-modules, with K a commutative ring, and Fct (Uβ, K-Mod) be the category of the functors from
Uβ to K-Mod. An object M of Fct (Uβ, K-Mod) gives by evaluation a family of representations of braid groups
{Mn : Bn → GL (M (n))}n∈N, which satisfies some compatibility properties (see Section 1.1). Randal-Williams
and Wahl use the category Uβ in [20] to construct a general framework to prove homological stability for braid
groups with twisted coefficients. Namely, they obtain the stability for twisted coefficients given by objects of
Fct (Uβ, K-Mod).

In Proposition 2.21, we prove that a version of the Long-Moody construction is functorial. We fix two fami-
lies of morphisms {an : Bn → Aut (Fn)}n∈N and {ςn : Fn → Bn+1}n∈N, satisfying some coherence properties (see
Section 2.1). Once this framework set, we show:

Theorem A (Proposition 2.21) . There is a functor LMa,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod), called the Long-
Moody functor with respect to coherent families of morphisms {an}n∈N and {ςn}n∈N, which satisfies for σ ∈ Bn and
M ∈ Obj (Fct (Uβ, K-Mod))

LMa,ς (M) (σ) = LM (Mn) (σ) .
Accepted for publication in Annales de l’Institut Fourier.
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Among the objects in the category Fct (Uβ, K-Mod) the strong polynomial functors play a key role. This notion
extends the classical one of polynomial functors, which were first defined by Eilenberg and Mac Lane in [8] for
functors on module categories, using cross effects. This definition can also be applied to monoidal categories
where the monoidal unit is a null object. Djament and Vespa introduce in [7] the definition of strong polynomial
functors for symmetric monoidal categories with the monoidal unit being an initial object. Here, the category
Uβ is neither symmetric, nor braided, but pre-braided in the sense of [20]. However, we show that the notion of
strong polynomial functor extends to the wider context of pre-braided monoidal categories (see Definition 3.4).
We also introduce the notion of very strong polynomial functor (see Definition 3.16). Strong polynomial functors
turn out inter alia to be very useful for homological stability problems. For example, in [20], Randal-Williams and
Wahl prove their homological stability results for twisted coefficients given by a specific kind of strong polynomial
functors, namely coefficient systems of finite degree (see [20, Section 4.4]).

We investigate the effects of Long-Moody functors on very strong polynomial functors. We establish the fol-
lowing theorem, under some mild additional conditions (introduced in Section 4.1.1) on the families of morphisms
{an}n∈N and {ςn}n∈N, which are then said to be reliable.

Theorem B (Corollary 4.27) . Let M be a very strong polynomial functor of Fct (Uβ, K-Mod) of degree n and let {an}n∈N

and {ςn}n∈N be coherent reliable families of morphisms. Then, considering the Long-Moody functor LMa,ς with respect to
the morphisms {an}n∈N and {ςn}n∈N, LMa,ς (M) is a very strong polynomial functor of degree n + 1.

Thus, iterating the Long-Moody functor on a very strong polynomial functor of Fct (Uβ, K-Mod) of degree d,
we generate polynomial functors of Fct (Uβ, K-Mod), of any degree bigger than d. For instance, Randal-Williams
and Wahl define in [20, Example 4.3] a functor Burt : Uβ → C

[
t±1] -Mod encoding the unreduced Burau repre-

sentations. Similarly, we introduce a functor TYMt : Uβ → C
[
t±1] -Mod corresponding to the representations

considered by Tong, Yang and Ma in [22]. These functors Burt and TYMt are very strong polynomial of degree
one (see Proposition 3.25), and moreover, we prove that the functor Burt is equivalent to a functor obtained by
applying the Long-Moody construction. Thus, the Long-Moody functors will provide new examples of twisted
coefficients corresponding to the framework of [20].

This construction is extended in the forthcoming work [21] for other families of groups, such as automorphism
groups of free groups, braid groups of surfaces, mapping class groups of orientable and non-orientable surfaces
or mapping class groups of 3-manifolds. The results proved here for (very) strong polynomial functors will also
hold in the adapted categorical framework for these different families of groups.

The paper is organized as follows. Following [20], Section 1 introduces the category Uβ and gives first examples
of objects of Fct (Uβ, K-Mod). Then, in Section 2, we introduce the Long-Moody functors, prove Theorem A and
give some of their properties. In Section 3, we review the notion of strong polynomial functors and extend the
framework of [7] to pre-braided monoidal categories. Finally, Section 4 is devoted to the proof of Theorem B and
to some other properties of these functors. In particular, we tackle the Open Problem 7 of [5].

Notation 0.1. We will consider a commutative ring K throughout this work. We denote by K-Mod the category of
K-modules. We denote by Gr the category of groups.

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation Obj (C) to
denote the objects of C. For D a category, we denote by Fct (C,D) the category of functors from C to D. If 0 is
initial object in the category C, then we denote by ιA : 0 → A the unique morphism from 0 to A. The maximal
subgroupoid G r (C) is the subcategory of C which has the same objects as C and of which the morphisms are
the isomorphisms of C. We denote by G r : Cat → Cat the functor which associates to a category its maximal
subgroupoid.

Acknowledgement. The author wishes to thank most sincerely his PhD advisor Christine Vespa, and Geoffrey Pow-
ell, for their careful reading, corrections, valuable help and expert advice. He would also especially like to thank
Aurélien Djament, Nariya Kawazumi, Martin Palmer, Vladimir Verchinine and Nathalie Wahl for the attention
they have paid to his work, their comments, suggestions and helpful discussions. Additionally, he would like to
thank the anonymous referee for his reading of this paper.
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1 The category Uβ

The aim of this section is to describe the category Uβ associated with braid groups that is central to this paper.
On the one hand, we recall some notions and properties about Quillen’s construction from a monoidal groupoid
and pre-braided monoidal categories introduced by Randal-Williams and Wahl in [20]. On the other hand, we
introduce examples of functors over the category Uβ.

We recall that the braid group on n ≥ 2 strands denoted by Bn is the group generated by σ1, ..., σn−1 satisfying
the relations:

• ∀i ∈ {1, . . . , n− 2}, σiσi+1σi = σi+1σiσi+1;

• ∀i, j ∈ {1, . . . , n− 1} such that | i− j |≥ 2, σiσj = σjσi.

B0 and B1 both are the trivial group. The family of braid groups is associated with the following groupoid.

Definition 1.1. The braid groupoid β is the groupoid with objects the natural numbers n ∈N and morphisms (for
n, m ∈N):

Homβ (n, m) =

{
Bn if n = m
∅ if n 6= m.

Remark 1.2. The composition of morphisms ◦ in the groupoid β corresponds to the group operation of the braid
groups. So we will abuse the notation throughout this work, identifying σ ◦ σ′ = σσ′ for all elements σ and σ′ of
Bn with n ∈N (with the convention that we read from the right to the left for the group operation).

1.1 Quillen’s bracket construction associated with the groupoid β

This section focuses on the presentation and the study of Quillen’s bracket construction Uβ (see [9, p.219]) on
the braid groupoid β. It associates to β a monoidal category whose unit is initial. The category Uβ has further
properties: Quillen’s bracket construction on β is a pre-braided monoidal category (see Section 1.1.2) and β is its
maximal subgroupoid. For an introduction to (braided) strict monoidal categories, we refer to [18, Chapter XI].
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Notation 1.3. A strict monoidal category will be denoted by (C, \, 0), where C is the category, \ is the monoidal
product and 0 is the monoidal unit.

1.1.1 Generalities

In [20], Randal-Williams and Wahl study a construction due to Quillen in [9, p.219], for a monoidal category S
acting on a category X in the case S = X = G where G is a groupoid. It is called Quillen’s bracket construction.
Our study here is based on [20, Section 1] taking G = β.

Definition 1.4. [18, Chapter XI, Section 4] A monoidal product \ : β× β −→ β is defined by the usual addition for
the objects and laying two braids side by side for the morphisms. The object 0 is the unit of this monoidal product.
The strict monoidal groupoid (β, \, 0) is braided, its braiding is denoted by bβ

−,−. Namely, the braiding is defined
for all natural numbers n and m such that n + m ≥ 2 by:

bβ
n,m = (σm ◦ · · · ◦ σ2 ◦ σ1) ◦ · · · ◦ (σn+m−2 ◦ · · · ◦ σn ◦ σn−1) ◦ (σn+m−1 ◦ · · · ◦ σn+1 ◦ σn)

where {σi}i∈{1,...,n+m−1} denote the Artin generators of the braid group Bn+m.

We consider the strict monoidal groupoid (β, \, 0) throughout this section.

Definition 1.5. [20, Section 1.1] Quillen’s bracket construction on the groupoid β, denoted by Uβ, is the category
defined by:

• Objects: Obj (Uβ) = Obj (β) = N;

• Morphisms: for n and n′ two objects of β, the morphisms from n to n′ in the category Uβ are given by:

HomUβ

(
n, n′

)
= colim

β

[
Homβ

(
−\n, n′

)]
.

In other words, a morphism from n to n′ in the category Uβ, denoted by [n′ − n, f ] : n→ n′, is an equivalence
class of pairs (n′ − n, f ) where n′− n is an object of β, f : (n′ − n) \n→ n′ is a morphism of β, in other words
an element of Bn′ . The equivalence relation∼ is defined by (n′ − n, f ) ∼ (n′ − n, f ′) if and only if there exists
an automorphism g ∈ Autβ (n′ − n) such that the following diagram commutes.

(n′ − n) \n

g\idn
��

f // n′

(n′ − n) \n
f ′

::

• For all objects n of Uβ, the identity morphism in the category Uβ is given by [0, idn] : n→ n.

• Let [n′ − n, f ] : n → n′ and [n′′ − n′, g] : n′ → n′′ be two morphisms in the category Uβ. Then, the composi-
tion in the category Uβ is defined by:[

n′′ − n′, g
]
◦
[
n′ − n, f

]
=
[
n′′ − n, g ◦ (idn′−n\ f )

]
.

The relationship between the automorphisms of the groupoid β and those of its associated Quillen’s construc-
tion Uβ is actually clear. First, let us recall the following notion.

Definition 1.6. Let (G, \, 0) be a strict monoidal category. It has no zero divisors if for all objects A and B of G,
A\B ∼= 0 if and only if A ∼= B ∼= 0.

The braid groupoid (β, \, 0) has no zero divisors. Moreover, by Definition 1.1, Autβ(0) = {id0}. Hence, we
deduce the following property from [20, Proposition 1.7].

Proposition 1.7. The groupoid β is the maximal subgroupoid of Uβ.
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In addition, Uβ has the additional useful property.

Proposition 1.8. [20, Proposition 1.8 (i)] The unit 0 of the monoidal structure of the groupoid (β, \, 0) is an initial object in
the category Uβ.

Remark 1.9. Let n be a natural number and φ ∈ Autβ (n). Then, as an element of HomUβ (n, n), we will abuse the
notation φ = [0, φ]. This comes from the canonical functor:

β → Uβ

φ ∈ Autβ (n) 7→ [0, φ] .

Finally, we are interested in a way to extend an object of Fct (β, K-Mod) to an object of Fct (Uβ, K-Mod). This
amounts to studying the image of the restriction Fct (Uβ, K-Mod)→ Fct (β, K-Mod).

Proposition 1.10. Let M be an object of Fct (β, K-Mod). Assume that for all n, n′, n′′ ∈ N such that n′′ ≥ n′ ≥ n, there
exists an assignment M ([n′ − n, idn′ ]) : M (n)→ M (n′) such that:

M
([

n′′ − n′, idn′′
])
◦M

([
n′ − n, idn′

])
= M

([
n′′ − n, idn′′

])
(1)

Then, we define a functor M : Uβ→ K-Mod (assigning M ([n′ − n, σ]) = M (σ) ◦M ([n′ − n, idn′ ]) for all [n′ − n, σ] ∈
HomUβ (n, n′)) if and only if for all n, n′ ∈N such that n′ ≥ n:

M
([

n′ − n, idn′
])
◦M (σ) = M (ψ\σ) ◦M

([
n′ − n, idn′

])
(2)

for all σ ∈ Bn and all ψ ∈ Bn′−n.

Remark 1.11. Note that for n′ = n, M ([n′ − n, idn′ ]) = IdM(n).

Proof of Proposition 1.10. Let us assume that relation (2) is satisfied. We have to show that the assignment on mor-
phisms is well-defined with respect to Uβ. First, let us prove that our assignment conforms with the defining equiv-
alence relation of Uβ (see Definition 1.5). For n and n′ natural numbers such that n′ ≥ n, let us consider [n′ − n, σ]
and [n′ − n, σ′] in HomUβ (n, n′) such that there exists ψ ∈ Bn′−n so that σ′ ◦ (ψ\idn) = σ. Since M is a functor over
β, M ([n′ − n, σ]) = M (σ′) ◦ (M (ψ\idn) ◦M ([n′ − n, idn′ ])). According to the relation (2) and since M satisfies the
identity axiom, we deduce that M ([n′ − n, σ]) = M (σ′) ◦M (ψ\idn) ◦M ([n′ − n, idn′ ]) = M ([n′ − n, σ′]).

Now, we have to check the composition axiom. Let n, n′ and n′′ be natural numbers such that n′′ ≥ n′ ≥ n,
let ([n′ − n, σ]) and ([n′′ − n′, σ′]) be morphisms respectively in HomUβ (n, n′) and in HomUβ (n′, n′′). By our
assignment and composition in Uβ (see Definition 1.5) we have that:

M
([

n′′ − n′, σ′
])
◦M

([
n′ − n, σ

])
= M

(
σ′
)
◦
(

M
([

n′′ − n′, idn′′
])
◦M (σ)

)
◦M

([
n′ − n, idn′

])
.

According to the relation (2), we deduce that:

M
([

n′′ − n′, σ′
])
◦M

([
n′ − n, σ

])
= M

(
σ′
)
◦
(

M
([

n′′ − n′, idn′′
])
◦M (σ)

)
◦M

([
n′ − n, idn′

])
.

= M
(
σ′
)
◦
(

M (idn′′−n′\σ) ◦M
([

n′′ − n′, idn′′
]))
◦M

([
n′ − n, idn′

])
.

Hence, it follows from relation (1) that:

M
([

n′′ − n′, σ′
])
◦M

([
n′ − n, σ

])
= M

(
σ′ ◦ (idn′′−n′\σ)

)
◦M

([
n′′ − n, idn

])
= M

([
n′′ − n′, σ′

]
◦
[
n′ − n, σ

])
.

Conversely, assume that the functor M : Uβ→ K-Mod is well-defined. In particular, composition axiom in Uβ
is satisfied and implies that for all n, n′ ∈N such that n′ ≥ n, for all σ ∈ Bn:

M
([

n′ − n, idn′
])
◦M (σ) = M

([
n′ − n, idn′−n\σ

])
.

It follows from the defining equivalence relation of Uβ (see Definition (1.5)) that for all ψ ∈ Bn′−n:

M
([

n′ − n, idn′
])
◦M (σ) = M

([
n′ − n, ψ\σ

])
.

We deduce from the composition axiom that relation (2) is satisfied.
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Figure 1: Failure of the braiding property

Proposition 1.12. Let M and M′ be objects of Fct (Uβ, K-Mod) and η : M→ M′ a natural transformation in the category
Fct (β, K-Mod). Then, η is a natural transformation in the category Fct (Uβ, K-Mod) if and only if for all n, n′ ∈ N such
that n′ ≥ n:

ηn′ ◦M
([

n′ − n, idn′
])

= M′
([

n′ − n, idn′
])
◦ ηn. (3)

Proof. The natural transformation η extends to the category Fct (Uβ, K-Mod) if and only if for all n, n′ ∈ N such
that n′ ≥ n, for all [n′ − n, σ] ∈ HomUβ (n, n′):

M′
([

n′ − n, σ
])
◦ ηn = ηn′ ◦M

([
n′ − n, σ

])
.

Since η is a natural transformation in the category Fct (β, K-Mod), we already have ηn′ ◦ M (σ) = M′ (σ) ◦ ηn′ .
Hence, this implies that the necessary and sufficient relation to satisfy is relation (3).

1.1.2 Pre-braided monoidal category

We present the notion of a pre-braided category, introduced by Randal-Williams and Wahl in [20]. This is a gener-
alization of that of a braided monoidal category.

Definition 1.13. [20, Definition 1.5] Let (C, \, 0) be a strict monoidal category such that the unit 0 is initial. We say
that the monoidal category (C, \, 0) is pre-braided if:

• The maximal subgroupoid G r (C, \, 0) is a braided monoidal category, where the monoidal structure is in-
duced by that of (C, \, 0).

• For all objects A and B of C, the braiding associated with the maximal subgroupoid bCA,B : A\B −→ B\A
satisfies:

bCA,B ◦ (idA\ιB) = ιB\idA : A −→ B\A.

Recall that the notation ιB : 0→ B was introduced in Notation 0.1.

Since the groupoid (β, \, 0) is braided monoidal and it has no zero divisors, we deduce from [20, Proposition 1.8]
the following properties.
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Proposition 1.14. The category Uβ is pre-braided monoidal. The monoidal structure (Uβ, \, 0) is defined on objects as that
of (β, \, 0) and defined on morphisms letting for [n′ − n, f ] ∈ HomUβ (n, n′) and [m′ −m, g] ∈ HomUβ (m, m′):

[
m′ −m, g

]
\
[
n′ − n, f

]
=

[(
m′ −m

)
\
(
n′ − n

)
, (g\ f ) ◦

(
idm′−m\

(
bβ

m,n′−n

)−1
\idn

)]
.

In particular, the canonical functor β→ Uβ is monoidal.

Remark 1.15. The category (Uβ, \, 0) is pre-braided monoidal, but not braided. Indeed, as Figure 1 shows, the pre-
braiding defined on Uβ is not a braiding: Figure 1 shows that bβ

1,2 ◦ (ι1\id2) 6= id2\ι1 whereas these two morphisms

should be equal if bβ
−,− were a braiding.

1.2 Examples of functors associated with braid representations

Different families of representations of braid groups can be used to form functors over the pre-braided category
Uβ to the category K-Mod. Namely, considering {Mn : Bn → K-Mod}n∈N representations of braid groups, or
equivalently an object M of Fct (β, K-Mod), we are interested in the situations where Proposition 1.10 applies so
as to define an object of Fct (Uβ, K-Mod).

Tong-Yang-Ma results In 1996, in the article [22], Tong, Yang and Ma investigated the representations of Bn
where the i-th generator is sent to a matrix of the form Idi−1⊕ T⊕ Idn−i−1, with T a m×m non-singular matrix and
m ≥ 2. In particular, for m = 2, they prove that there exist up to equivalence only two non trivial representations of
this type. We give here their result and an interpretation of their work from a functorial point of view, considering
the representations over the ring of Laurent polynomials in one variable C

[
t±1].

Notation 1.16. Let gr denote the full subcategory of Gr of finitely generated free groups. The free product ∗ :
gr× gr→ gr defines a monoidal structure over gr, with 0 the unit, denoted by (gr, ∗, 0).

Let (N,≤) denote the category of natural numbers (natural means non-negative) considered as a poset. For
all natural numbers n, we denote by γn the unique element of Hom(N,≤) (n, n + 1). For all natural numbers n
and n′ such that n′ ≥ n, we denote by γn,n′ : n → n′ the unique element of Hom(N,≤) (n, n′), composition of the
morphisms γn′−1 ◦ γn′−2 ◦ · · · ◦ γn+1 ◦ γn. The addition defines a strict monoidal structure on (N,≤), denoted by
((N,≤) ,+, 0).

Definition 1.17. Let B− : (N,≤)→ Gr and GL− : (N,≤)→ Gr be the functors defined by:

• Objects: for all natural numbers n, B− (n) = Bn the braid group on n strands and GL− (n) = GLn
(
C
[
t±1])

the general linear group of degree n.

• Morphisms: let n be a natural number. We define B− (γn) = id1\− : Bn ↪→ Bn+1 (where \ is the monoidal
product introduced in Example 1.4). We define GL− (γn) : GLn

(
C
[
t±1]) ↪→ GLn+1

(
C
[
t±1]) assigning

GL− (γn) (ϕ) = id1 ⊕ ϕ for all ϕ ∈ GLn
(
C
[
t±1]).

Notation 1.18. For all natural numbers n ≥ 2, for all i ∈ {1, . . . , n− 1}, we denote by incln
i : B2 ∼= Z ↪→ Bn the

inclusion morphism induced by:
incln

i (σ1) = σi.

Theorem 1.19. [22, Part II] Let η : B− −→ GL− be a natural transformation. Assume that for all natural numbers n ≥ 2,
for all i ∈ {1, . . . , n− 1}, the following diagram is commutative:

Bn
ηn // GLn

(
C
[
t±1])

B2 η2
//

incln
i

OO

GL2
(
C
[
t±1]) .

idi−1⊕−⊕idn−i−1

OO

Two such natural transformations η and η′ are equivalent if there exists a natural equivalence µ : GL− −→ GL− such that
µ ◦ η = η′. Then, η is equivalent to one of the following natural transformations.
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1. The trivial natural transformation, denoted by id: for every generator σi of Bn, idn (σi) = IdGLn(C[t±1]).

2. The unreduced Burau natural transformation, denoted by bur: for all generators σi of Bn,

burn,t (σi) = Idi−1 ⊕ B (t)⊕ Idn−i−1,

with B (t) =
[

1− t t
1 0

]
.

3. The natural transformation denoted by tym: for every generator σi of Bn if n ≥ 2,

tymn,t (σi) = Idi−1 ⊕ TYM (t)⊕ Idn−i−1,

with TYM (t) =
[

0 t
1 0

]
. We call it the Tong-Yang-Ma representation.

The unreduced Burau representation (see [11, Section 3.1] or [5, Section 4.2] for more details about this fam-
ily of representations) is reducible but indecomposable, whereas the Tong-Yang-Ma representation is irreducible
(see [22, Part II]). We can also consider a natural transformation using the family of reduced Burau representa-
tions (see [11, Section 3.3] for more details about the associated family of representations): these are irreducible
subrepresentations of the unreduced Burau representations.

Definition 1.20. Let GL− -1 : (N,≤)→ Gr be the functor defined by:

• Objects: for all natural numbers n, GL− -1 (n) = GLn−1
(
C
[
t±1]) the general linear group of degree n− 1.

• Morphisms: let n be a natural number. We define GL− -1 (γn) : GLn−1
(
C
[
t±1]) ↪→ GLn

(
C
[
t±1]) assigning

GL− (γn) (ϕ) = id1 ⊕ ϕ for all ϕ ∈ GLn−1
(
C
[
t±1]).

Definition 1.21. The reduced Burau natural transformation, denoted by bur : B− → GL− -1 is defined by:

• For n = 2, one assigns bur (σ1) = −t.

• For all natural numbers n ≥ 3, we define for every Artin generator σi of Bn with i ∈ {2, . . . , n− 2}:

burn,t (σi) = Idi−2 ⊕ B (t)⊕ Idn−i−2

with

B (t) =

 1 t 0
0 −t 0
0 1 1


and

burn,t (σ1) =

[
−t 0
1 1

]
⊕ Idn−3 ; burn,t (σn−1) = Idn−3 ⊕

[
1 t
0 −t

]
.

Let us use these natural transformations to form functors over the category Uβ. Indeed, a natural transforma-
tion η : B− → GL− (or GL− -1) provides in particular:

• a functor N : β −→ C
[
t±1] -Mod;

• morphisms N ([n′ − n, idn′ ]) : N (n) → N (n′) for all natural numbers n′ ≥ n, such that the relation (1) of
Proposition 1.10 is satisfied.

Therefore, according to Proposition 1.10, it suffices to show that the relation (2) is satisfied to prove that N is an
object of Fct

(
Uβ, C

[
t±1] -Mod

)
.

Notation 1.22. Recall that 0 is a null object in the category of R-modules, and that the notation ιG : 0 → G was
introduced in Notation 0.1. Let n ∈ N. For all natural numbers n and n′ such that n′ ≥ n, we define ι

C[t±1]
⊕n′−n ⊕

id
C[t±1]

⊕n : C
[
t±1]⊕n

↪→ C
[
t±1]⊕n′ the embedding of C

[
t±1]⊕n as the submodule of C

[
t±1]⊕n′ given by the n

last copies of C
[
t±1].
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Tong-Yang-Ma functor: This example is based on the family introduced by Tong, Yang and Ma (see Theorem
1.19). Let TYMt : β → C

[
t±1] -Mod be the functor defined on objects by TYMt (n) = C

[
t±1]⊕n for all nat-

ural numbers n, and for all numbers n ≥ 2, for every Artin generator σi of Bn, by TYMt (σi) = tymn,t (σi) for
morphisms. For all natural numbers n and n′ such that n′ ≥ n, we assign TYMt ([n′ − n, idn′ ]) : C

[
t±1]⊕n

↪→
C
[
t±1]⊕n′ to be the embedding ι

C[t±1]
⊕n′−n ⊕ id

C[t±1]
⊕n (where these morphisms are introduced in Notation 1.22).

For all natural numbers n′′ ≥ n′ ≥ n, for all Artin generators σi ∈ Bn and all ψj ∈ Bn′−n, our assignments give:

TYMt (ψ\σ) ◦ TYMt
([

n′ − n, idn′
])

=
(

Idj−1 ⊕ TYM (t)⊕ Id(n′−n)−j−1 ⊕ Idn′−n+i−1 ⊕ TYM (t)⊕ Idn′−i−1

)
◦
(

ι
C[t±1]

⊕n′−n ⊕ id
C[t±1]

⊕n

)
.

Remark that
(

Idj−1 ⊕ TYM (t)⊕ Id(n′−n)−j−1

)
◦ ι

C[t±1]
⊕(n′−n) = ι

C[t±1]
⊕(n′−n) . Hence we deduce that

TYMt (ψ\σ) ◦ TYMt
([

n′ − n, idn′
])

= TYMt
([

n′ − n, idn′
])
◦ TYMt (σ)

for all σ ∈ Bn and all ψ ∈ Bn′−n. According to Proposition 1.10, our assignment defines a functor TYMt : Uβ →
C
[
t±1] -Mod, called the Tong-Yang-Ma functor.

Burau functors: Other examples naturally arise from the Burau representations.
Let Burt : β −→ C

[
t±1] -Mod be the functor defined on objects by Burt (n) = C

[
t±1]⊕n for all natural

numbers n, and for all numbers n ≥ 2, for every Artin generator σi of Bn, by Burt (σi) = burn,t (σi) for morphisms.

For all natural numbers n and n′ such that n′ ≥ n, we assign Burt ([n′ − n, idn′ ]) : C
[
t±1]⊕n

↪→ C
[
t±1]⊕n′ to be

the embedding ι
C[t±1]

⊕n′−n ⊕ id
C[t±1]

⊕n (where these morphisms are introduced in Notation 1.22).

As for the functor TYM, the assignment for Bur implies that for all natural numbers n′′ ≥ n′ ≥ n, for all σ ∈ Bn
and all ψ ∈ Bn′−n, Burt ([n′ − n, idn′ ]) ◦Burt (σ) = Burt (ψ\σ) ◦Burt ([n′ − n, idn′ ]). According to Proposition
1.10, our assignment defines a functor Burt : Uβ −→ C

[
t±1] -Mod, called the unreduced Burau functor. This

functor Burt was already considered by Randal-Williams and Wahl in [20, Example 4.3].
Analogously, we can form a functor from the reduced Burau representations. Let Burt : β −→ C

[
t±1] -Mod

be the functor defined on objects by Burt (0) = 0 and Burt (n) = C
[
t±1]⊕n−1 for all nonzero natural numbers n,

and by Burt (σi) = burn,t (σi) for morphisms for every Artin generator σi of Bn for all numbers n ≥ 2.

For all natural numbers n and n′ such that n′ ≥ n, we assign Burt ([n′ − n, idn′ ]) : C
[
t±1]⊕n−1

↪→ C
[
t±1]⊕n′−1

to be the embedding ι
C[t±1]

⊕n′−n ⊕ id
C[t±1]

⊕n−1 (where these morphisms are introduced in Notation 1.22). Repeat-

ing mutadis mutandis the work done for the functor TYM, the assignment for Burt implies that for all natu-
ral numbers n′′ ≥ n′ ≥ n, for all σ ∈ Bn and all ψ ∈ Bn′−n, Burt ([n′ − n, idn′ ]) ◦Burt (σ) = Burt (ψ\σ) ◦
Burt ([n′ − n, idn′ ]). According to Proposition 1.10, our assignment defines a functor Burt : Uβ −→ C

[
t±1] -Mod,

called the reduced Burau functor.

Lawrence-Krammer functor: The family of Lawrence-Krammer representations was notably used to prove that
braid groups are linear (see [2, 12, 13]). For this paragraph, we assign K = C

[
t±1] [q±1] the ring of Laurent

polynomials in two variables and consider the functor GL− of Definition 1.17 with this assignment. Let LK :
Uβ→ C

[
t±1] [q±1] -Mod be the assignment:

• Objects: for all natural numbers n ≥ 2, LK (n) =
⊕

1≤j<k≤n
Vj,k, with for all 1 ≤ j < k ≤ n, Vj,k is a free

C
[
t±1] [q±1]-module of rank one. Hence, LK (n) ∼=

(
C
[
t±1] [q±1])⊕n(n−1)/2 as C

[
t±1] [q±1]-modules.

Moreover, one assigns LK (1) = 0 and LK (0) = 0.

• Morphisms:
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– Automorphisms: for all natural numbers n, for every Artin generator σi of Bn (with i ∈ {1, . . . , n− 1}),
for all vj,k ∈ Vj,k (with 1 ≤ j < k ≤ n),

LK (σi) vj,k =



vj,k if i /∈ {j− 1, j, k− 1, k},
tvi,k +

(
t2 − t

)
vi,i+1 + (1− t) vi+1,k if i = j− 1,

vi+1,k if i = j 6= k− 1,
tvj,i + (1− t) vj,i+1 −

(
t2 − t

)
qvi,i+1 if i = k− 1 6= j,

vj,i+1 if i = k,
−qt2vi,i+1 if i = j = k− 1.

– General morphisms: let n, n′ ∈ N, such that n′ ≥ n. For all natural numbers j and k such that
1 ≤ j < k ≤ n, we define the embedding Vn,n′

j,k : Vj,k
∼−→ Vj+(n′−n),k+(n′−n) ↪→ ⊕

1≤j<k≤n′
Vj,k of free

C
[
t±1] [q±1]-modules. Then we define LK ([n′ − n, idn′ ]) :

⊕
1≤j<k≤n

Vj,k →
⊕

1≤j<k≤n′
Vj,k to be the embed-

ding
⊕

1≤j<k≤n
Vn,n′

j,k .

Since we consider a family of representations of Bn (see [13]), the assignment LK defines an object of Fct
(

β, C
[
t±1] -Mod

)
.

Let n, n′ and n′′ be natural numbers such that n′′ ≥ n′ ≥ n. It follows directly from our definitions of
LK ([n′ − n, idn′ ]), LK ([n′′ − n′, idn′′ ]) and LK ([n′′ − n, idn′′ ]) that relation (1) of Proposition 1.10 is satisfied.

According to the definition of LK (σl) with σl an Artin generator of Bn′−n, for all vj,k ∈ Vj,k with 1 + (n′ − n) ≤
j < k ≤ n′, LK (σl) vj,k = vj,k. Hence for all ψ ∈ Bn′−n:

LK (ψ\idn) ◦ LK
([

n′ − n, idn′
])

= LK
([

n′ − n, idn′
])

.

Note also that for all l ∈ {1, . . . , n− 1}, for all vj,k ∈ Vj,k with 1 + (n′ − n) ≤ j < k ≤ n′, it follows from the
assignment of LK that:

LK (idn′−n\σl)
(

v(n′−n)+j,(n′−n)+k

)
= LK (σn′−n+l)

(
v(n′−n)+j,(n′−n)+k

)
= LK

([
n′ − n, idn′

]) (
LK (σl)

(
vj,k

))
.

Therefore, this implies that for all σ ∈ Bn, LK ([n′ − n, idn′ ]) ◦ LK (σ) = LK (idn′−n\σ) ◦ LK ([n′ − n, idn′ ]). Hence,
LK satisfies the relation (2) of Proposition 1.10. Hence, the assignment defines a functor LK : Uβ→ C

[
t±1] [q±1] -Mod,

called the Lawrence-Krammer functor.

2 Functoriality of the Long-Moody construction

The principle of the Long-Moody construction, corresponding to Theorem 2.1 of [17], is to build a linear rep-
resentation of the braid group Bn starting from a representation Bn+1. We develop a functorial version of this
construction, which leads to the notion of Long-Moody functors (see Section 2.2). Beforehand, we need to intro-
duce various tools, which are consequences of the relationships between braid groups and free groups (see Section
2.1). Finally, in Section 2.3, we investigate examples of functors which are recovered by Long-Moody functors.

2.1 Braid groups and free groups

This section recalls some relationships between braid groups and free groups. We also develop tools which will be
used throughout our work of Sections 2.2 and 4.

We consider the free group on n generators, which we denote by Fn = 〈g1, . . . , gn〉.
Notation 2.1. We denote by eFn the unit element of the free group on n generators Fn, for all natural numbers n.

Recall that the category of finitely generated free groups is monoidal using free product of groups (see Notation
1.16). The object 0 being null in the category gr, recall that ιFn : 0→ Fn denotes the unique morphism from 0 to Fn
as in Notation 0.1.
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Definition 2.2. Let n be a natural number. We consider ιF1 ∗ idFn : Fn ↪→ Fn+1. This corresponds to the identifica-
tion of Fn as the subgroup of Fn+1 generated by the n last copies of F1 in Fn+1. Iterating this morphism, we obtain
for all natural numbers n′ ≥ n the morphism ιFn′−n

∗ idFn : Fn ↪→ Fn′ .

Let {ςn : Fn → Bn+1}n∈N be a family of group morphisms from the free group Fn to the braid group Bn+1, for
all natural numbers n. We require these morphisms to satisfy the following crucial property.

Condition 2.3. For all elements g ∈ Fn, for all natural numbers n′ ≥ n, the following diagram is commutative in
the category Uβ:

1\n
ςn(g) //

id1\[n′−n,idn′ ]
��

1\n

id1\[n′−n,idn′ ]
��

1\n′
ςn′
(

eFn′−n
∗g
) // 1\n′.

Remark 2.4. Condition 2.3 will be used to prove that the Long-Moody functor is well defined on morphisms with
respect to the tensor product structure in Theorem 2.21. Moreover, it will also be used in the proof of Propositions
4.14 and 4.18.

Lemma 2.5. Condition 2.3 is equivalent to assume that for all natural numbers n, for all elements g ∈ Fn, the morphisms
{ςn}n∈N satisfy the following equality in Bn+2:((

bβ
1,1

)−1
\idn

)
◦ (id1\ςn (g)) = ςn+1

(
eF1 ∗ g

)
◦
((

bβ
1,1

)−1
\idn

)
. (4)

Proof. Let n and n′ be natural numbers such that n′ ≥ n. The equality (4) implies that for all 1 ≤ k ≤ n′ − n, the
following diagram in the category β is commutative :

1\n′
idn′−(n+k)\ςn+k−1

(
eFk−1

∗g
)
//

idn′−(n+k)\
(

bβ
1,1

)−1
\id(k−1)+n

��

1\n′

idn′−(n+k)\
(

bβ
1,1

)−1
\id(k−1)+n

��
1\n′

idn′−(n+k)\ςn+k(eFk
∗g)

// 1\n′.

Hence composing squares, we obtain that the following diagram is commutative in the category β:

1\ · · · \ (1\1) \n
idn′−n−1\

(
bβ

1,1

)−1
\idn
//

idn′ \ςn(g)
��

1\ · · · \1\ (1\n)

idn′−1\ςn+1(eF1∗g)
��

idn′−n−2\
(

bβ
1,1

)−1
\id1+n

// · · ·

(
bβ

1,1

)−1
\idn′−1 // 1\n′

ςn′(eF1∗g)
��

1\ · · · \1\n
idn′−n−1\

(
bβ

1,1

)−1
\idn

// 1\ · · · \1\ (1\n)
idn′−n−2\

(
bβ

1,1

)−1
\id1+n

// · · · (
bβ

1,1

)−1
\idn′−1

// 1\n′.

By definition of the braiding (see Definition 1.1), we deduce that the composition of horizontal arrows is the mor-

phism
(

bβ
1,n′−n

)−1
\idn in β. Recall from Proposition 1.14 that id1\ [n′ − n, σ] =

[
n′ − n, (id1\σ) ◦

((
bβ

1,n′−n

)−1
\idn

)]
.

Hence Condition 2.3 is satisfied if we assume that the equality (4) is satisfied for all natural numbers n.
Conversely, assume that Condition 2.3 is satisfied. Condition 2.3 with n′ = n + 1 ensures that:[

1,
((

bβ
1,1

)−1
\idn

)
◦ (id1\ςn (g))

]
=

[
1, ςn′

(
eF1 ∗ g

)
◦
((

bβ
1,1

)−1
\idn

)]
.

11



Since AutUβ (1) = B1 is the trivial group, we deduce from the defining equivalence relation of Uβ (see Definition
1.5) the equality in Bn+2:((

bβ
1,1

)−1
\idn

)
◦ (id1\ςn (g)) = ς1+n

(
eF1 ∗ g

)
◦
((

bβ
1,1

)−1
\idn

)
.

Remark 2.6. It follows from Lemma 2.5 that, for i ≥ 2, ςn(gi) is determined by ςk(g1) for k ≤ n by the equalities (4).

Example 2.7. The family ςn,1, based on what is called the pure braid local system in the literature (see [17, Remark
p.223]), is defined by the following inductive assignment for all natural numbers n ≥ 1.

ςn,1 : Fn −→ Bn+1

gi 7−→
{

σ2
1 if i = 1

σ−1
1 ◦ σ−1

2 ◦ · · · ◦ σ−1
i−1 ◦ σ2

i ◦ σi−1 ◦ · · · ◦ σ2 ◦ σ1 if i ∈ {2, . . . , n} .

We assign ς0,1 to be the trivial morphism.

Proposition 2.8. The family of morphisms {ςn,1}n∈N satisfies Condition 2.3.

Proof. Relation (4) is trivially satisfied for n = 0. Let n ≥ 1 be a fixed natural number. By definition 1.4, we have(
bβ

1,1

)−1
= σ−1

1 . Moreover, for all i ∈ {2, . . . , n}, we have and ςn+1
(
eF1 ∗ gi−1

)
= ςn+1 (gi)

id1\ςn,1 (gi−1) = σ−1
2 ◦ · · · ◦ σ−1

i−1 ◦ σ2
i ◦ σi−1 ◦ · · · ◦ σ2.

We deduce that: ((
bβ

1,1

)−1
\idn

)
◦ (id1\ςn,1 (gi−1)) ◦

(
bβ

1,1\idn

)
= ςn,1 (gi) .

Hence Relation (4) of Lemma 2.5 is satisfied for all natural numbers.

Example 2.9. Let us consider the trivial morphisms ςn,∗ : Fn → 0Gr → Bn+1 for all natural numbers n. The
relation of Lemma 2.5 being easily checked, this family of morphisms {ςn,∗ : Fn → Bn+1}n∈N satisfies Condition
2.3.

Action of braid groups on automorphism groups of free groups: There are several ways to consider the group
Bn as a subgroup of Aut (Fn). For instance, the geometric point of view of topology gives us an action of Bn on the
free group Fn (see for example [4] or [11]) identifying Bn as the mapping class group of a n-punctured disc Σn

0,1:
fixing a point y on the boundary of the disc Σn

0,1, each free generator gi can be taken as a loop of the disc based
y turning around punctures. Each element σ of Bn, as an automorphism up to isotopy of the disc Σn

0,1, induces a

well-defined action on the fundamental group π1

(
Σn

0,1

)
∼= Fn called Artin representation (see Example 2.15 for

more details).

In the sequel, we fix a family of group actions of Bn on the free group Fn: let {an : Bn → Aut (Fn)}n∈N be
a family of group morphisms from the braid group Bn to the automorphism group Aut (Fn). For the work of
Sections 2.2 and 4, we need the morphisms an : Bn → Aut (Fn) to satisfy more properties.

Condition 2.10. Let n and n′ be natural numbers such that n′ ≥ n. We require
(

ιFn′−n
∗ idFn

)
◦ (an (σ)) =

(an′ (σ
′\σ)) ◦

(
ιFn′−n

∗ idFn

)
as morphisms Fn → Fn′ for all elements σ of Bn and σ′ of Bn′−n, ie the following

diagrams are commutative:

Fn
an(σ) //

ιFn′−n
∗idFn

��

Fn

ιFn′−n
∗idFn

��

Fn

ιFn′−n
∗idFn

//

ιFn′−n
∗idFn   

Fn′

Fn′
an′(idn′−n\σ)

// Fn′ Fn′ .
an′ (σ

′\idn)

==
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Remark 2.11. Condition 2.10 will be used to define the Long-Moody functor on morphisms in Theorem 2.21. More-
over, it will also be used for the proof of Propositions 4.14 and 4.18.

We will also require the families of morphisms {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N to satisfy
the following compatibility relations.

Condition 2.12. Let n be a natural number. We assume that the morphism given by the coproduct ςn ∗ (id1\−) :
Fn ∗ Bn → Bn+1 factors across the canonical surjection to Fn o

an
Bn. In other words, the following diagram is

commutative:
Fn
� � //

ςn
""

Fn o
an

Bn

��

Bn?
_oo

id1\−||
Bn+1.

where the morphism Fn o
an

Bn → Bn+1 is induced by the morphism Fn ∗ Bn → Bn+1 and the group morphism

id1\− : Bn → Bn+1 is induced by the monoidal structure. This is equivalent to requiring that, for all elements
σ ∈ Bn and g ∈ Fn, the following equality holds in Bn+1:

(id1\σ) ◦ ςn (g) = ςn (an (σ) (g)) ◦ (id1\σ) . (5)

Remark 2.13. Condition 2.12 is essential in the definition of the Long-Moody functor on objects in Theorem 2.21.

We fix a choice for these families of morphisms {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N.

Definition 2.14. The families {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N are said to be coherent if they
satisfy conditions 2.3, 2.10 and 2.12.

Example 2.15. A classical family is provided by the Artin representations (see for example [4, Section 1]). For
n ∈N, an,1 : Bn → Aut (Fn) is defined for all elementary braids σi where i ∈ {1, . . . , n− 1} by:

an,1 (σi) : Fn −→ Fn

gj 7−→


gi+1 if j = i
g−1

i+1gigi+1 if j = i + 1
gj if j /∈ {i, i + 1}.

It clearly follows from their definitions that the morphisms {an,1 : Bn → Aut (Fn)}n∈N satisfy Condition 2.10.

Proposition 2.16. The morphisms {an,1 : Bn → Aut (Fn)}n∈N together with the morphisms {ςn,1 : Fn ↪→ Bn+1}n∈N of
Example 2.7 satisfy Condition 2.12.

Proof. Let i be a fixed natural number in {1, . . . , n− 1}. We prove that the equality (5) of Condition 2.12 is satisfied
for all Artin generator σi and all generator gj of the free group (with j ∈ {1, . . . , n}). First, it follows from the braid
relation σiσi+1σi = σi+1σiσi+1 that:

σ−1
1+i ◦ σ−1

i ◦ σ−2
1+i ◦ σ2

i ◦ σ2
1+i ◦ σi ◦ σ1+i = σ−1

i ◦ σ2
1+i ◦ σi,

and we deduce that:
σ−1

1+i ◦ ςn,1 (an,1 (σi) (g1+i)) ◦ σ1+i = ςn,1 (g1+i) .

Also, the braid relation σi+1 ◦ σi ◦ σi+1 = σi ◦ σi+1 ◦ σi implies that σ−1
i+1 ◦ σ−1

i ◦ σ2
i+1 ◦ σi ◦ σi+1 = σ2

i and a fortiori:

σ−1
1+i ◦ ςn,1 (an,1 (σi) (gi)) ◦ σ1+i = ςn,1 (gi) .

Finally, for a fixed j /∈ {i, i + 1}, the commutation relation σiσj = σjσi and from the braid relation σiσi+1σi =
σi+1σiσi+1 give directly:

ςn,1
(

gj
)
= σ−1

1+i ◦ ςn,1
(
an,1 (σi)

(
gj
))
◦ σ1+i.
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Corollary 2.17. The families of morphisms {an,1 : Bn → Aut (Fn)}n∈N and {ςn,1 : Fn → Bn+1}n∈N are coherent.

Example 2.18. Consider the family of morphisms {ςn,∗ : Fn → Bn+1}n∈N of Example 2.9 and any family of mor-
phisms {an : Bn → Aut (Fn)}n∈N. Then Condition 2.12 is always satisfied. As a consequence, these families of
morphisms {ςn,∗ : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N are coherent if and only if the family of mor-
phisms {an : Bn → Aut (Fn)}n∈N satisfies Condition 2.10.

2.2 The Long-Moody functors

In this section, we prove that the Long-Moody construction of [17, Theorem 2.1 ] induces a functor

LM : Fct (Uβ, K-Mod)→ Fct (Uβ, K-Mod) .

We fix families of morphisms {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N, which are assumed to be co-
herent (see Definition 2.14).

We first need to make some observations and introduce some tools. Let F be an object of Fct (Uβ, K-Mod) and n
be a natural number. A fortiori, the K-module F (n + 1) is endowed with a left K [Bn+1]-module structure. Using
the morphism ςn : Fn → Bn+1, F (n + 1) is a K [Fn]-module by restriction.

Let us consider the augmentation ideal of the free group Fn, denoted by IK[Fn ]. Since it is a (right) K [Fn]-
module, one can form the tensor product IK[Fn ] �

K[Fn ]
F (n + 1). Also, for all natural numbers n and n′ such that

n′ ≥ n, the morphism ιFn′−n
∗ idFn : Fn ↪→ Fn′ canonically induces a morphism ιI

K[Fn′−n]
∗ idIK[Fn ]

: IK[Fn ] ↪→

I
K[Fn′ ]

. In addition, the augmentation ideal IK[Fn ] is a K [Bn]-module too:

Lemma 2.19. The action an : Bn → Aut (Fn) canonically induces an action of Bn on IK[Fn ] denoted by an : Bn →
Aut

(
IK[Fn ]

)
(abusing the notation).

Proof. For any group morphism H → Aut (G), the group ring K [G] is canonically an H-module and so is the
augmentation ideal IG, as a submodule of K [G].

Remark 2.20. If the family of morphisms {an : Bn → Aut (Fn)}n∈N is coherent with respect to the family of mor-
phisms {ςn : Fn → Bn+1}n∈N, the relation of Condition 2.10 remains true mutatis mutandis, for all natural num-

bers n and n′, considering the induced morphisms an : Bn → Aut
(
IK[Fn ]

)
and ιI

K[Fn′−n]
∗ idIK[Fn ]

: IK[Fn ] →

I
K[Fn′ ]

.

In the following theorem, we define an endofunctor of Fct (Uβ, K-Mod) corresponding to the Long-Moody con-
struction. It will be called the Long-Moody functor with respect to {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N.

Theorem 2.21. Recall that we have fixed coherent families of morphisms {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N.
The following assignment defines a functor LMa,ς : Fct (Uβ, K-Mod)→ Fct (Uβ, K-Mod).

• Objects: for F ∈ Obj (Fct (Uβ, K-Mod)), LMa,ς (F) : Uβ→ K-Mod is defined by:

– Objects: ∀n ∈N, LMa,ς (F) (n) = IK[Fn ] �
K[Fn ]

F (n + 1).

– Morphisms: for n, n′ ∈N, such that n′ ≥ n, and [n′ − n, σ] ∈ HomUβ (n, n′), assign:

LMa,ς (F)
([

n′ − n, σ
]) (

i �
K[Fn ]

v

)
= an′ (σ)

(
ιI

K[Fn′−n]
∗ idIK[Fn ]

)
(i) �

K[Fn′ ]
F
(
id1\

[
n′ − n, σ

])
(v) ,

for all i ∈ IK[Fn ] and v ∈ F (n + 1).

• Morphisms: let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. We define
LMa,ς (η) : LMa,ς (F)→ LMa,ς (G) for all natural numbers n by:

(LMa,ς (η))n = idIK[Fn ]
�

K[Fn ]
ηn+1.

14



In particular, the Long-Moody functor LMa,ς induces an endofunctor of the category Fct (β, K-Mod).

Notation 2.22. When there is no ambiguity, once the morphisms {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N

are fixed, we omit them from the notation LMa,ς for convenience (especially for proofs).

Proof. For this proof, n, n′ and n′′ are natural numbers such that n′′ ≥ n′ ≥ n.

1. First let us show that the assignment of LM defines an endofunctor of Fct (β, K-Mod). The two first points
generalize the proof of [17, Theorem 2.1]. Let F, G and H be objects of Fct (β, K-Mod).

(a) We first check the compatibility of the assignment LM (F) with respect to the tensor product. Consider
σ ∈ Bn g ∈ Fn, i ∈ IK[Fn ] and v ∈ F (n + 1). Since (id1\σ) ◦ ςn (g) = ςn (an (σ) (g)) ◦ (id1\σ) by
Condition 2.12, we deduce that:

LM (F) (σ)

(
i �

K[Fn ]
F (ςn (g)) (v)

)
= an (σ) (i) �

K[Fn ]
F (id1\σ) (F (ςn (g)) (v))

= an (σ) (i) �
K[Fn ]

(F (ςn (an (σ) (g))) ◦ F (id1\σ)) (v)

= an (σ) (i · g) �
K[Fn ]

F (id1\σ) (v)

= LM (F) (σ)

(
i · g �

K[Fn ]
(v)

)
.

(b) Let us prove that the assignment LM (F) defines an object of Fct (β, K-Mod). According to our assign-
ment and since an and id1\− are group morphisms, it follows from the definition that LM (F) (idBn) =
idLM(F)(n). Hence, it remains to prove that the composition axiom is satisfied. Let σ and σ′ be two ele-
ments of Bn, i ∈ IK[Fn ] and v ∈ F (n + 1). From the functoriality of F over β and the compatibility of the
monoidal structure \ with composition, we deduce that F (id1\ (σ

′)) ◦ F (id1\ (σ)) = F (id1\ (σ
′ ◦ σ)).

Since an is a group morphism, we have:(
an
(
σ′ ◦ σ

))
(i) = an

(
σ′
)
(an (σ) (i)) .

Hence, it follows from the assignment of LM that:

LM (F)
(
σ′ ◦ σ

) (
i �

K[Fn ]
v

)
=

(
an
(
σ′ ◦ σ

))
(i) �

K[Fn ]
F
(
id1\

(
σ′ ◦ σ

))
(v)

= an
(
σ′
)
(an (σ) (i)) �

K[Fn ]

(
F
(
id1\

(
σ′
))
◦ F (id1\ (σ))

)
(v)

= LM (F)
(
σ′
)
◦ LM (F) (σ)

(
i �

K[Fn ]
v

)
.

(c) It remains to check the consistency of our definition of LM on morphisms of Fct (β, K-Mod). Let η :
F → G be a natural transformation. Hence, we have that:

G (id1\σ) ◦ ηn+1 = ηn′+1 ◦ F (id1\σ) .

Hence, it follows from the assignment of LM that:

LM (G) (σ) ◦ LM (η)n = LM (η)n′ ◦ LM (F) (σ)

Therefore LM (η) is a morphism in the category Fct (β, K-Mod). Denoting by idF : F → F the identity
natural transformation, it is clear that LM (idF) = idLM(F). Finally, let us check the composition axiom.
Let η : F → G and µ : G → H be natural transformations. Let n be a natural number, i ∈ IK[Fn ] and
v ∈ F (n). Now, since µ and η are morphisms in the category Fct (β, K-Mod):

LM (µ ◦ η)n

(
i �

K[Fn ]
v

)
= i �

K[Fn ]
(µn+1 ◦ ηn+1) (v) = LM (µ)n ◦ LM (η)n

(
i �

K[Fn ]
v

)
.
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2. Let us prove that the assignment LM lifts to define an endofunctor of Fct (Uβ, K-Mod). Let F, G and H be
objects of Fct (Uβ, K-Mod).

(a) First, let us check the compatibility of the assignment LM (F) with respect to the tensor product. In
fact, this compatibility being already done for automorphisms (see 1a), the remaining point to prove is
the compatibility of LM (F) ([n′ − n, idn′ ]). Let g ∈ Fn, i ∈ IK[Fn ] and v ∈ F (n + 1). It follows from
Condition 2.3 that in Bn+1:

id1\
[
n′ − n, idn′−n\ςn (g)

]
= ςn′

(
eFn′−n

∗ g
)
◦
(
id1\

[
n′ − n, idn′

])
.

Since
(

ιI
K[Fn′−n]

∗ idIK[Fn ]

)
(i · g) =

(
eI

K[Fn′−n]
∗ i
)
·
(

eFn′−n
∗ g
)

, we deduce that:

LM (F)
([

n′ − n, idn′
]) (

i �
K[Fn ]

F (ςn (g)) (v)

)

=

(
ιI

K[Fn′−n]
∗ idIK[Fn ]

)
(i) �

K[Fn′ ]
F
(
id1\

[
n′ − n, idn′

])
(F (ςn (g)) (v))

=

(
ιI

K[Fn′−n]
∗ idIK[Fn ]

)
(i · g) �

K[Fn′ ]
F
(
id1\

[
n′ − n, idn′

])
(v)

= LM (F)
([

n′ − n, idn′
]) (

i · g �
K[Fn ]

v

)
.

(b) Let us prove that the assignment LM (F) defines an object of Fct (Uβ, K-Mod) using Proposition 1.10.
Recall the compatibility of the monoidal structure \ with respect to composition and that F is an object
of Fct (Uβ, K-Mod). Consider [n′ − n, σ] ∈ HomUβ (n, n′). It follows from our assignment, that:

LM (F)
([

n′ − n, σ
])

= LM (F) (σ) ◦ LM (F)
([

n′ − n, idn′
])

.

Moreover, the composition of morphisms introduced in Definition 2.2 implies that:

LM (F)
([

n′′ − n, idn′′
])

= LM (F)
([

n′′ − n′, idn′′
])
◦ LM (F)

([
n′ − n, idn′

])
.

Hence, the relation (1) of Proposition 1.10 is satisfied. Let σ ∈ Bn and ψ ∈ Bn′−n. Since (ιn′−n ∗ idn) ◦
(an (σ)) = (an′ (ψ\σ)) ◦ (ιn′−n ∗ idn) by Condition 2.10, we deduce that:

LM (F) (ψ\σ) ◦ LM (F)
([

n′ − n, idn′
])

= LM (F)
([

n′ − n, idn′
])
◦ LM (F) (σ) .

Hence the relation (2) of Proposition 1.10 is also satisfied. Therefore, according to Proposition 1.10, since
LM (F) is an object of Fct (β, K-Mod), the assignment LM (F) defines an object of Fct (Uβ, K-Mod).

(c) Finally, let us check the consistency of our assignment for LM on morphisms. Let η : F → G be a natural
transformation. We already proved in 1c that LM (η) is a morphism in the category Fct (β, K-Mod).
Since η is a natural transformation between objects of Fct (Uβ, K-Mod), we have that:

G
(
id1\

[
n′ − n, idn′

])
◦ ηn+1 = ηn′+1 ◦ F

(
id1\

[
n′ − n, idn′

])
.

Hence, it follows from the assignment of LM that:

LM (G)
([

n′ − n, idn′
])
◦ LM (η)n = LM (η)n′ ◦ LM (F)

([
n′ − n, idn′

])
.

Hence the relation (3) of Proposition 1.12 is satisfied, and we deduce from this last proposition that
LM (η) is a morphism in the category Fct (Uβ, K-Mod). The verification of the composition axiom
repeats mutatis mutandis the one of 1c.
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Recall the following fact on the augmentation ideal of the free group Fn where n ∈N.

Proposition 2.23. [25, Chapter 6, Proposition 6.2.6] The augmentation ideal IK[Fn ] is a free K [Fn]-module with basis the
set {(gi − 1) | i ∈ {1, . . . , n}}.

This result allows us to prove the following properties.

Proposition 2.24. The functor LMa,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) is reduced and exact. Moreover, it com-
mutes with all colimits and all finite limits.

Proof. Let 0Fct(Uβ,K-Mod) : Uβ→ K-Mod denote the null functor. It follows from the definition of the Long-Moody

functor that LM
(

0Fct(Uβ,K-Mod)

)
= 0Fct(Uβ,K-Mod).

Let n be a natural number. Since the augmentation ideal IK[Fn ] is a free K [Fn]-module (as stated in Proposition
2.23), it is therefore a flat K [Fn]-module. Then, the result follows from the fact that the functor IK[Fn ] �

K[Fn ]
− :

K-Mod → K-Mod is an exact functor, the naturality for morphisms following from the definition of the Long-
Moody functor (see Theorem 2.21).

Similarly, the fact that the functor LMa,ς commutes with all colimits is a formal consequence of the commuta-
tion with all colimits of the tensor products IK[Fn ] �

K[Fn ]
− for all natural numbers n. The commutation result for

finite limits is a property of exact functors (see for example [18, Chapter 8, section 3]).

Remark 2.25. Let F be an object of Fct (Uβ, K-Mod) and n a natural number. For all k ∈ {1, . . . , n}, we denote
F (n + 1)k = K [(gk − 1)] �

K[Fn ]
F (n + 1) with gk a generator of Fn. We define an isomorphism

Λn,F : IK[Fn ] �
K[Fn ]

F (n + 1) −→
n⊕

k=1

F (n + 1)k
∼= (F (n + 1))⊕n

(gk − 1) �
K[Fn ]

v 7−→

0, . . . , 0,

k-th︷︸︸︷
v , 0, . . . , 0

 .

Thus, for η : F → G a natural transformation, with Λ:

∀n ∈N, Λn ((LM (η))n) = η⊕n
n+1.

Hence, we can have a matricial point of view on this construction (see [17, Theorem 2.2]). Similarly, the study of
Bigelow and Tian in [3] is performed from a purely matricial point of view.

Case of trivial ς: Finally, let us consider the family of morphisms {ςn,∗ : Fn → Bn+1}n∈N of Example 2.9.

Remark 2.26. As stated in Example 2.18, we only need to consider a family of morphisms {an : Bn → Aut (Fn)}n∈N

which satisfies Condition 2.10 so that the families {ςn,∗ : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N are coher-
ent.

Notation 2.27. We denote by X : Uβ→ K-Mod the constant functor such that X (n) = K for all natural numbers n.

We have the following remarkable property.

Proposition 2.28. Let F be an object of Fct (Uβ, K-Mod) and {an : Bn → Aut (Fn)}n∈N a family of morphisms which
satisfies Condition 2.10. Then, as objects of Fct (Uβ, K-Mod), LMa,ς∗ (F) ∼= LMa,ς∗ (X)⊗

K
F (1\−).

Proof. Remark 2.25 shows that there is an isomorphism of K-modules of the form:

LMa,ς∗ (F) (n)
Λn,F // (F (n + 1))⊕n

(
Λn,X⊗

K
idF(1\n)

)−1

// LMa,ς∗ (X) (n)⊗
K

F (1\n) .

It is straightforward to check that this isomorphism is natural if ς is trivial.
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2.3 Evaluation of the Long-Moody functor

A first step to understand the behaviour of a Long-Moody endofunctor is to investigate its effect on the constant
functor X. This is indeed the most basic functor to study. Moreover, as Proposition 2.28 shows, the evaluation on
this functor is the fundamental information to understand a given Long-Moody endofunctor when we consider
the family of morphisms {ςn,∗ : Fn → Bn+1}n∈N of Example 2.9.

Fixing coherent families of morphisms {ςn : Fn → Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N, we consider the
Long-Moody functor

LMa,ς : Fct (β, K-Mod)→ Fct (β, K-Mod) .

For a fixed natural number n, using the isomorphism Λn of Remark 2.25, we observe that LMa,ς (X) (n) ∼= K⊕n.

Notation 2.29. Let y be an invertible element of K. Let yX : β → K-Mod be the functor defined for all natural
numbers n by yX (n) = K and such that:

• if n = 0 or n = 1, then yX (id) = idK;

• if n ≥ 2, for every Artin generator σi of Bn, (yX) (σi) : K→ K is the multiplication by y.

For an object F of Fct (β, K-Mod), we denote the functor yX⊗
K

F : β→ K-Mod by yF.

2.3.1 Computations for LM1

Let us assume that K = C
[
t±1]. Let us consider the coherent families of morphisms {ςn,1 : Fn ↪→ Bn+1}n∈N (in-

troduced in Example 2.7) and {an,1 : Bn → Aut (Fn)}n∈N (introduced in Example 2.15). We denote by LM1 the as-
sociated Long-Moody functor. We are interested in the behaviour of the functor t−1LM1 (tX) : β −→ C

[
t±1] -Mod

on automorphisms of the category Uβ. Indeed, adding a parameter t is necessary to recover functors specifically
associated with the category Uβ, such as Burt (see Section 1.2). Let us fix n a natural number and σi an Artin
generator of Bn.

Beforehand, let us understand the action an,1 : Bn −→ Aut
(
IK[Fn ]

)
induced by an,1 : Bn → Aut (Fn). We

compute:

an,1 (σi) : IK[Fn ] −→ IK[Fn ]

gj − 1 7−→


gi+1 − 1 if j = i

g−1
i+1gigi+1 − 1 = [gi − 1] gi+1 + [gi+1 − 1]

(
1− g−1

i+1gigi+1

)
if j = i + 1

gj − 1 if j /∈ {i, i + 1} .

Notation 2.30. Let us fix the matrices rn =

n︷ ︸︸ ︷
0 · · · 0 1
... . . . . . .

0

0 . . . . . . ...
1 0 · · · 0


for all natural numbers n.

Hence, we have the following result.

Proposition 2.31. The matrices {rn}n∈N define a natural equivalence t−1LM1 (tX)
r−→ Burt2 as objects of Fct (β, K-Mod).

Proof. Using the isomorphism Λn of Remark 2.25, we obtain that for σi an Artin generator of Bn:

t−1LM1 (tX) (σi) = Idi−1 ⊕
[

0 1
t2 1− t2

]
⊕ Idn−i−1.

We deduce that rn ◦
(
t−1LM1 (tX) (σi)

)
◦ r−1

n = Burt2 (σi).
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Recovering of the Lawrence-Krammer functor: Let us first introduce the following result due to Long in [17].
We assume that K = C

[
t±1] [q±1]. For this paragraph, we assume that 1 + qt = 0, q has a square root, q2 = 1 and

q3 = 1.

Notation 2.32. We denote by X′ : β −→ C
[
t±1] [q±1] -Mod the constant functor such that X′ (n) = C

[
t±1] [q±1]

for all natural numbers n. Generally speaking, for F an object of Fct (β, K-Mod) the representation of Bn induced
by F will be denoted by F|Bn .

Proposition 2.33. [17, special case of Corollary 2.10] Let n be a natural number such that n ≥ 4. Then, the Lawrence-
Krammer representation LK|Bn is a subrepresentation of q−1 (LM1

(
q
(
t−1LM1 (tX)

)))
|Bn .

We first need to introduce new tools. Let n and m be two natural numbers. Let wn = (w1, . . . , wn) ∈ Cn such
that wi 6= wj if i 6= j. We consider the configuration space:

Ywn ,m =
{
(z1, . . . , zm) | zi ∈ C, zi 6= wk for 1 ≤ k ≤ n, zi 6= zj if i 6= j

}
.

The two following results due to Long will be crucial to prove Proposition 2.33.

Proposition 2.34. [17, Corollary 2.7] Let n be a natural number and ρ : Bn+1 → GL (V) be a representation of Bn with V
a C

[
t±1] [q±1]-module. Then, the representation defined by Long in [17, Theorem 2.1], which we denote by LM, is a group

morphism:
q−1LM (qρ) : Bn → GL

(
H1 (Ywn ,1, Eρ

))
for Eρ a flat vector bundle associated with ρ (see [17, p. 225-226]).

Lemma 2.35. [17, Lemma 2.9] For all natural numbers m, there is an isomorphism of abelian groups:

Hm+1
(

Ywn ,m+1, EX|Bn

)
∼= H1

(
Ywn ,1, Hm

(
Ywn+1,m, EX|Bn

))
.

In particular, for m = 1, H2
(

Ywn ,2, EX|Bn

)
∼= H1

(
Ywn ,1, H1

(
Ywn+1,2, EX|Bn

))
.

Proof of Proposition 2.33. By Proposition 2.34, we can write as a representation:

q−1LM
(

q
(

t−1LM (tX)
))

: Bn → GL
(

H1
(

Ywn ,1, Et−1LM(tX)

))
.

A fortiori by Lemma 2.35, q−1LM
(

q
(

t−1LM
(

tX|Bn

)))
is an action of Bn on H2

(
Ywn ,2, EX|Bn

)
. In particular, for

m = 2 and n ≥ 4, according to [14, Theorem 5.1], the representation of Bn factoring through the Iwahori–Hecke al-
gebra Hn (t) corresponding to the Young diagram (n− 2, 2) is a subrepresentation of q−1LM

(
q
(

t−1LM
(

tX|Bn

)))
.

Moreover, this representation is equivalent to the Lawrence-Krammer representation by [1, Section 5]. By the def-
inition of the Long-Moody construction (see [17, Theorem 2.1]), q−1LM

(
q
(

t−1LM
(

tX|Bn

)))
is the representa-

tion q−1 (τ1LM1)
(
q
(
t−1LM1 (tX)

))
|Bn .

We denote by LK≥4 : β −→
(
C
[
t±1]) [q±1] -Mod the subfunctor of the Lawrence-Krammer defined in Example

1.2 which is null on the objects such that n < 4. The result of Proposition 2.33 implies that:

Proposition 2.36. The functor LK≥4 is a subfunctor of q−1 (τ1LM1)
(
q
(
t−1LM1 (tX)

)) ≥4.

2.3.2 Computations for other cases

Let us introduce examples of Long-Moody functors which arise using other actions an : Bn → Aut (Fn).
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Wada representations In 1992, Wada introduced in [24] a certain type of family of representations of braid
groups. We give here a functorial approach to this work.

Definition 2.37. Let Aut− : (N,≤)→ Gr be the functor defined by:

• Objects: for all natural numbers n, Aut− (n) = Aut (Fn) the automorphism group of the free group on n
generators;

• Morphisms: let n be a natural number. We define Aut− (γn) : Aut (Fn) ↪→ Aut (Fn+1) assigning Aut− (γn) (ϕ) =
id1 ∗ ϕ for all ϕ ∈ Aut (Fn), using the monoidal category (gr, ∗, 0) recalled in Notation 1.16.

Definition 2.38. Let us consider two different non-trivial reduced words W (g1, g2) and V (g1, g2) on F2, such that:

• the assignments g1 7→W (g1, g2) and g2 7→ V (g1, g2) define a automorphism of F2;

• the assignment (W, V) : B2 −→ Aut (F2):

[(W, V) (σ1)]
(

gj
)
=

{
W (g1, g2) if j = 1
V (g1, g2) if j = 2

is a morphism.

Two morphisms (W, V) : B2 −→ Aut (F2) and (W ′, V′) : B2 → Aut (F2) are said to be swap-dual if W ′ (g1, g2) =

V (g2, g1) and V′ (g1, g2) = W (g2, g1), backward-dual if W ′ (g1, g2) =
(

W
(

g−1
1 , g−1

2

))−1
and V′ (g1, g2) =(

V
(

g−1
1 , g−1

2

))−1
, inverse if (W ′, V′) = (W, V)−1.

Definition 2.39. [24] Let W (g1, g2) and V (g1, g2) be two words on F2. A natural transformationW : B− → Aut− is
said to be of Wada-type if for all natural numbers n, for all i ∈ {1, . . . , n− 1}, the following diagram is commutative
(we recall that incln

i was introduced in Notation 1.18 and Aut− (γ2,i) in Definition 2.37):

Bn
Wn // Aut (Fn)

B2
(W,V)

//

incln
i

OO

Aut (F2) .

Aut−(γ2,i)∗idFn−i−1

OO

Remark 2.40. Note that therefore a Wada-type natural transformation is entirely determined by the choice of
(W, V).

Wada conjectured a classification of these type of representations. This conjecture was proved by Ito in [10].

Theorem 2.41. [10] There are seven classes of Wada-type natural transformation W up to the swap-dual, backward-dual
and inverse equivalences, listed below.

1. (W, V)1,m (g1, g2) =
(

g2, gm
2 g1g−m

2
)

where m ∈ Z;

2. (W, V)2 (g1, g2) = (g1, g2);

3. (W, V)3 (g1, g2) =
(

g2, g−1
1

)
;

4. (W, V)4 (g1, g2) =
(

g2, g−1
2 g−1

1 g2

)
;

5. (W, V)5 (g1, g2) =
(

g−1
2 , g−1

1

)
;

6. (W, V)6 (g1, g2) =
(

g−1
2 , g2g1g2

)
;
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7. (W, V)7 (g1, g2) =
(

g1g−1
2 g−1

1 , g1g2
2

)
.

Remark 2.42. Note that the action given by the first Wada representation with m = 1 is a generalization of the Artin
representation.

Notation 2.43. The actions given by the k-th Wada-type natural transformation will be denoted by an,k : Bn ↪→
Aut (Fn). In particular, for k = 1 with m = 1, we recover the Artin representation (see Example 2.15).

For all 1 ≤ k ≤ 8, it clearly follows from their definitions that the families of morphisms
{

an,k : Bn → Aut (Fn)
}

n∈N

satisfy Condition 2.10. Hence, for 1 ≤ k ≤ 8, we consider a family of morphisms
{

ςn,k : Fn → Bn+1
}

assumed to
be coherent with respect to the morphisms

{
an,k : Bn ↪→ Aut (Fn)

}
n∈N

(in the sense of Definition 2.14). Such mor-
phisms ςn,k always exist because we could at least take the family of morphisms {ςn,∗ : Fn → Bn+1} (see Example
2.18). We denote by LMk : Fct (β, K-Mod) → Fct (β, K-Mod) the corresponding Long-Moody functor defined in
Theorem 2.21 for k ∈ {1, . . . , 8}.

Let us imitate the procedure of Section 2.3.1. We assume that K = C
[
t±1]. Let n be a fixed natural number. Let

us consider the case of k = 2. Using the isomorphism Λn of Remark 2.25, we obtain the functor LM2 (X) : β →
C
[
t±1] -Mod, defined for σi ∈ Bn by:

LM2 (F) (σi) = (F (σi))
⊕n .

For k = 3, using Λn, we compute that the functor t−1LM3 (tX) : β→ C
[
t±1] -Mod is defined for σi ∈ Bn by:

t−1LM3 (tX) (σi) = Idi−1 ⊕
[

0 −ςn,3 (gi)
1 0

]
⊕ Idn−i−1.

Hence, the functor t−1LM3 (tX) is very similar to the one associated with the Tong-Yang-Ma representations (recall
Definition 1.2). We deduce that the identity natural equivalence gives t−1LM3 (tX) ∼= TYM−ςn,3(gi)

as objects of
Fct (β, K-Mod).

For the actions given by the Wada-type natural transformation 4, 5, 6 and 7 in Theorem 2.41, the produced
functors t−1LMi (tX) : β −→ C

[
t±1] -Mod are mild variants of what is given by the case i = 1.

3 Strong polynomial functors

We deal here with the concept of a strong polynomial functor. This type of functor will be the core of our work
in Section 4. We review (and actually extend) the definition and properties of a strong polynomial functor due to
Djament and Vespa in [7] and also a particular case of coefficient systems of finite degree used by Randal-Williams
and Wahl in [20].

In [7, Section 1], Djament and Vespa construct a framework to define strong polynomial functors in the category
Fct (M,A), where M is a symmetric monoidal category, the unit is an initial object and A is an abelian category.
Here, we generalize this definition for functors from pre-braided monoidal categories having the same additional
property. In particular, the notion of strong polynomial functor will be defined for the category Fct (Uβ, K-Mod).
The keypoint of this section is Proposition 3.2, in so far as it constitutes the crucial property necessary and sufficient
to extend the definition of strong polynomial functor to the pre-braided case.

3.1 Strong polynomiality

We first introduce the translation functor, which plays the central role in the definition of strong polynomiality.

Definition 3.1. Let (M, \, 0) be a strict monoidal small category, let D be a category and let x be an object of
M. The monoidal structure defines the endofunctor x\− : M −→ M. We define the translation by x functor
τx : Fct (M,D)→ Fct (M,D) to be the endofunctor obtained by precomposition by the functor x\−.

The following proposition establishes the commutation of two translation functors associated with two objects
of M. It is the keystone property to define strong polynomial functors.
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Proposition 3.2. Let D be a category and (M, \, 0) be a strict monoidal small category equipped with natural (in x and y)
isomorphisms x\y ∼= y\x. Let x and y be two objects of M. Then, there exists a natural isomorphism between functors from
Fct (M,D) to Fct (M,D):

τx ◦ τy ∼= τy ◦ τx.

Proof. First, because of the associativity of the monoidal product \ and the strictness of M, we have that τx ◦ τy =

τx\y and τy ◦ τx = τy\x. We denote by bM−,− the pre-braiding of M. The key point is the fact that as bM−,− is a braiding

on the maximal subgroupoid of M (see Definition 1.13), bMx,y : x\y
∼=−→ y\x defines an isomorphism. Hence,

precomposition by bMx,y\idM defines a natural transformation
(

bMx,y\idM
)∗

: τx\y → τy\x. It is an isomorphism since

we analogously construct an inverse natural transformation
((

bMx,y

)−1
\idM

)∗
: τy\x → τx\y.

Remark 3.3. In Proposition 3.2, the natural isomorphism is not unique: as the proof shows, we could have used the

morphism
(

bMy,x

)−1
\idM instead to define an isomorphism between τx\y (F) and τy\x (F). In fact, a category only

needs to be equipped with natural (in x and y) isomorphisms x\y ∼= y\x to satisfy the conclusion of Proposition
3.2.

Let us move on to the introduction of the evanescence and difference functors, which will characterize the
(very) strong polynomiality of a functor in Fct (M,A). Recall that, if M is a small category and A is an abelian
category, then the functor category Fct (M,A) is an abelian category (see [18, Chapter VIII]).

From now until the end of Section 3, we fix (M, \, 0) a pre-braided strict monoidal category such that the
monoidal unit 0 is an initial object, A an abelian category and x denotes an object of M.

Definition 3.4. For all objects F of Fct (M,A), we denote by ix (F) : τ0 (F) → τx (F) the natural transformation
induced by the unique morphism ιx : 0 → x of M. This induces ix : IdFct(M,A) → τx a natural transformation
of Fct (M,A). Since the category Fct (M,A) is abelian, the kernel and cokernel of the natural transformation ix
exist. We define the functors κx = ker (ix) and δx = coker (ix). The endofunctors κx and δx of Fct (M,A) are called
respectively evanescence and difference functor associated with x.

The following proposition presents elementary properties of the translation, evanescence and difference func-
tors. They are either consequences of the definitions, or direct generalizations of the framework considered in [7]
where M is symmetric monoidal.

Proposition 3.5. Let y be an object of M. Then the translation functor τx is exact and we have the following exact sequence
in the category of endofunctors of Fct (M,A):

0 −→ κx
Ωx−→ Id ix−→ τx

∆x−→ δx −→ 0. (6)

Moreover, for a short exact sequence 0 −→ F −→ G −→ H −→ 0 in the category Fct (M,A), there is a natural exact
sequence in the category Fct (M,A):

0 −→ κx (F) −→ κx (G) −→ κx (H) −→ δx (F) −→ δx (G) −→ δx (H) −→ 0. (7)

In addition:

1. The translation endofunctor τx of Fct (M,A) commutes with limits and colimits.

2. The difference endofunctors δx and δy of Fct (M,A) commute up to natural isomorphism. They commute with colimits.

3. The endofunctors κx and κy of Fct (M,A) commute up to natural isomorphism. They commute with limits.

4. The natural inclusion κx ◦ κx ↪→ κx is an isomorphism.

5. The translation endofunctor τx and the difference endofunctor δy commute up to natural isomorphism.

6. The translation endofunctor τx and the endofunctor κy commute up to natural isomorphism.
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7. We have the following natural exact sequence in the category of endofunctors of Fct (M,A):

0 −→ κy −→ κx\y −→ τxκy −→ δy −→ δx\y −→ τyδx −→ 0. (8)

Proof. In the symmetric monoidal case, this is [7, Proposition 1.4]: the numbered properties are formal conse-
quences of the commutation property of the translation endofunctors given by Proposition 3.2. Hence, the proofs
carry over mutatis mutandis to the pre-braided setting.

Using Proposition 3.5, we can define strong polynomial functors.

Definition 3.6. We recursively define on n ∈ N the category Polstrong
n (M,A) of strong polynomial functors of

degree less than or equal to n to be the full subcategory of Fct (M,A) as follows:

1. If n < 0, Polstrong
n (M,A) = {0};

2. if n ≥ 0, the objects of Polstrong
n (M,A) are the functors F such that for all objects x of M, the functor δx (F) is

an object of Polstrong
n−1 (M,A).

For an object F of Fct (M,A) which is strong polynomial of degree less than or equal to n ∈N, the smallest d ∈N

(d ≤ n) for which F is an object of Polstrong
d (M,A) is called the strong degree of F.

Remark 3.7. By Proposition 1.14, the category (Uβ, \, 0) is a pre-braided monoidal category such that 0 is initial
object. This example is the first one which led us to extend the definition of [7]. Thus, we have a well-defined
notion of strong polynomial functor for the category Uβ.

The following three propositions are important properties of the framework in [7] adapted to the pre-braided
case. Their proofs follow directly from those of their analogues in [7, Propositions 1.7, 1.8 and 1.9].

Proposition 3.8. [7, Proposition 1.7] Let M′ be another pre-braided strict monoidal category and α : M −→M′ be a strong
monoidal functor. Then, the precomposition by α provides a functor Polstrong

n (M,A)→ Polstrong
n (M′,A).

Proposition 3.9. [7, Proposition 1.8] The category Polstrong
n (M,A) is closed under the translation endofunctor τx, under

quotient, under extension and under colimits. Moreover, assuming that there exists a set E of objects of M such that:

∀m ∈ Obj (M) , ∃ {ei}i∈I ∈ Obj (E) where I is finite, m ∼= \
i∈I

ei,

then, an object F of Fct (M,A) belongs to Polstrong
n (M,A) if and only if δe (F) is an object of Polstrong

n−1 (M,A) for all
objects e of E.

Corollary 3.10. Let n be a natural number. Let F be a strong polynomial functor of degree n in the category Fct (M,A).
Then a direct summand of F is necessarily an object of the category Polstrong

n (M,A).

Proof. According to Proposition 3.9, the category Polstrong
n (M,A) is closed under quotients.

Remark 3.11. The category Polstrong
n (M,A) is not necessarily closed under subobjects. For example, we will see

in Section 3.3 that for M = Uβ and A = C
[
t±1] -Mod, the functor Burt is a subobject of τ1Burt (see Proposition

3.28), Burt is strong polynomial of degree 2 (see Proposition 3.28) whereas τ1Burt is strong polynomial of degree
1 (see Proposition 3.29). If we assume that the unit 0 is also a terminal object of M, then κx is the null endofunctor,
δx is exact and commutes with all limits. In this case, the category Polstrong

n (M,A) is closed under subobjects.

Remark 3.12. If we consider M = Uβ, then each object n (ie a natural number) is clearly 1\n. Hence, because of
the last statement of Proposition 3.9, when we will deal with strong polynomiality of objects in Fct (Uβ,A), it will
suffice to consider τ1.

Proposition 3.13. [7, Proposition 1.9] Let F be an object of Fct (M,A). Then, the functor F is an object of Polstrong
0 (M,A)

if and only if it the quotient of a constant functor of Fct (M,A).
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Finally, let us point out the following property of the strong polynomial degree with respect to the translation
functor.

Lemma 3.14. Let d and k be natural numbers and F be an object of Fct (Uβ, K-Mod) such that τk (F) is an object of
Polstrong

d (Uβ, K-Mod). Then, F is an object of Pold+k (Uβ, K-Mod).

Proof. We proceed by induction on the degree of polynomiality of τk (F). First, assuming that τk (F) belongs to
Polstrong

0 (Uβ, K-Mod), we deduce from the commutation property 6 of Proposition 3.5 that τk (δ1F) = 0. It follows
from the definition of τk (F) (see Definition 3.1) that for all n ≥ 2, δ1 (F) (n) = 0. Hence

δ1 · · · δ1δ1︸ ︷︷ ︸
k + 1 times

(F) ∼= 0

and therefore F is an object of Polk (Uβ, K-Mod). Now, assume that τk (F) is a strong polynomial functor of degree
d ≥ 0. Since (τk ◦ δ1) (F) ∼= (δ1 ◦ τk) (F) by the commutation property 6 of Proposition 3.5, (τk ◦ δ1) (F) is an object
of Polstrong

d−1 (Uβ, K-Mod). The inductive hypothesis implies that δ1 (F) is an object of Polstrong
d+k (Uβ, K-Mod).

Remark 3.15. Let us consider the atomic functor An (with n > 0), which is strong polynomial of degree n (see
Example 3.21). Then τk (An) ∼= A⊕n

n−k is strong polynomial of degree n− k, for k a natural number such that k ≤ n.
This illustrates the fact that d + k is the best boundary for the degree of polynomiality in Lemma 3.14.

3.2 Very strong polynomial functors

Let us introduce a particular type of strong polynomial functor, related to coefficient systems of finite degree (see
Remark 3.17 below). We recall that we consider a pre-braided strict monoidal category (M, \, 0) such that the
monoidal unit 0 is an initial object and an abelian category A.

Definition 3.16. We recursively define the category VPoln (M,A) of very strong polynomial functors of degree
less than or equal to n to be the full subcategory of Polstrong

n (M,A) as follows:

1. If n < 0, VPoln (M,A) = {0};

2. if n ≥ 0, a functor F ∈ Polstrong
n (M,A) is an object of VPoln (M,A) if for all objects x of M, κx (F) = 0 and

the functor δx (F) is an object of VPoln−1 (M,A).

For an object F of Fct (M,A) which is very strong polynomial of degree less than or equal to n ∈ N, the
smallest d ∈N (d ≤ n) for which F is an object of VPold (M,A) is called the very strong degree of F.

Remark 3.17. A certain type of functor, called a coefficient system of finite degree, closely related to the strong
polynomial one, is used by Randal-Williams and Wahl in [20, Definition 4.10] for their homological stability theo-
rems, generalizing the concept introduced by van der Kallen for general linear groups [23]. Using the framework
introduced by Randal-Williams and Wahl, a coefficient system in every object x of M of degree n at N = 0 is a very
strong polynomial functor.

Remark 3.18. As we force κx to be null for all objects x of M, the category VPoln (M,A) is closed under kernel func-
tors of the epimorphisms. In particular, this category is closed under direct summands. However, VPoln (M,A)
is not necessarily closed under subobjects. For instance, as for Remark 3.11, we have that the functor Burt is
strong polynomial of degree 2 (see Proposition 3.28), the functor τ1Burt is very strong polynomial of degree 1 (see
Proposition 3.29), but Burt is a subobject of τ1Burt (see Proposition 3.28).

Proposition 3.19. The category VPoln (M,A) is closed under the translation endofunctor τx, under kernel of epimorphism
and under extension. Moreover, assuming that there exists a set E of objects of M such that:

∀m ∈ Obj (M) , ∃ {ei}i∈I ∈ Obj (E) (where I is finite), m ∼= \
i∈I

ei,

then, an object F of Fct (M,A) belongs to VPoln (M,A) if and only if κe (F) = 0 and δe (F) is an object of VPoln−1 (M,A)
for all objects e of E.
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Proof. The first assertion follows from the fact that for all objects x of M, the endofunctor τx commutes with the
endofunctors δx and κx (see Proposition 3.5). For the second and third assertions, let us consider two short exact
sequences of Fct (M,A): 0 −→ G −→ F1 −→ F2 −→ 0 and 0 −→ F3 −→ H −→ F4 −→ 0 with Fi a very strong
polynomial functor of degree n for all i. Let x be an object of M. We use the exact sequence (7) of Proposition 3.5
to obtain the two following exact sequences in the category Fct (M,A):

0 −→ κx (G) −→ 0 −→ 0 −→ δx (G) −→ δx (F1) −→ δx (F2) −→ 0;

0 −→ 0 −→ κx (H) −→ 0 −→ δx (F3) −→ δx (H) −→ δx (F4) −→ 0.

Therefore, κx (G) = κx (H) = 0 and the result follows directly by induction on the degree of polynomiality. For
the last point, we consider the long exact sequence (8) of Proposition 3.5 applied to an object F of VPoln (M,A) to
obtain the following exact sequence in the category Fct (M,A):

0 −→ κy (F) −→ κx\y (F) −→ τxκy (F) −→ δy (F) −→ δx\y (F) −→ τyδx (F) −→ 0.

Hence, by induction on the length of objects as monoidal product of {ei}i∈I , we deduce that κm (F) = 0 for all
objects m of M if and only if κe (F) = 0 for all objects e of E. Moreover, since VPoln (M,A) is closed under
extension and by the translation endofunctor τy, the result follows by induction on the degree of polynomiality
n.

Proposition 3.20. Let F be an object of Fct (M,A). The functor F is an object of VPol0 (M,A) if and only if it is isomorphic
to τkF for all natural numbers k.

Proof. The result follows using the long exact sequence (6) of Proposition 3.5 applied to F.

The following example show that there exist strong polynomial functors which are not very strong polynomial
in any degree.

Example 3.21. Let us consider the categories Uβ and K-Mod, and n a natural number. Let K be considered as an
object of K-Mod and 0 be the trivial K-module. Let An be an object of Fct (Uβ, K-Mod), defined by:

• Objects: ∀m ∈N, An (m) =

{
K if n = m
0 otherwise

.

• Morphisms: let [j− i, f ] with f ∈ Bn be a morphism from i to j in the category Uβ. Then:

An ( f ) =

{
idK if i = j = n
0 otherwise.

The functor An is called an atomic functor in K of degree n. For coherence, we fix A−1 to be the null functor of
Fct (Uβ, K-Mod). Then, it is clear that ip (An) is the zero natural transformation. On the one hand, we deduce the
following natural equivalence κ1 (An) ∼= An and a fortiori An is not a very strong polynomial functor. On the other
hand, it is worth noting the natural equivalence δ1 (An) ∼= τ1 (An) and the fact that τ1 (An) ∼= An−1. Therefore, we
recursively prove that An is a strong polynomial functor of degree n.

Remark 3.22. Contrary to Polstrong
n (M,A), a quotient of an object F of VPoln (M,A) is not necessarily a very

strong polynomial functor. For example, for M = Uβ and A = K-Mod, let us consider the functor A0 defined
in Example 3.21, which we proved to be a strong polynomial functor of degree 0. Let A be the constant object of
Fct (Uβ, K-Mod) equal to K. Then, we define a natural transformation α : A→ A0 assigning:

∀n ∈N, αn =

{
idK if n = 0
tK otherwise.

Moreover, it is an epimorphism in the category Fct (Uβ, K-Mod) since for all natural numbers n, coker (αn) =
0K-Mod. We proved in Example 3.21 that A0 is not a very strong polynomial functor of degree 0 whereas A is a
very strong polynomial functor of degree 0 by Proposition 3.20.

25



Finally, let us remark the following behaviour of the translation functor with respect to very strong polynomial
degree.

Lemma 3.23. Let d and k be a natural numbers and F be an object of VPold (M, K-Mod). Then the functor τk (F) is very
strong polynomial of degree equal to that of F.

Proof. We proceed by induction on the degree of polynomiality of F. First, if we assume that F belongs to
VPol0 (M, K-Mod), then according to Proposition 3.20, τk (F) ∼= F is a degree 0 very strong polynomial func-
tor. Now, assume that F is a very strong polynomial functor of degree n ≥ 0. Using the commutation properties
5 and 6 of Proposition 3.5, we deduce that (κ1 ◦ τk) (F) ∼= (τk ◦ κ1) (F) = 0 and (δ1 ◦ τk) (F) ∼= (τk ◦ δ1) (F). Since
the functor δ1 (F) is a degree n− 1 very strong polynomial functor, the result follows from the inductive hypothe-
sis.

Remark 3.24. The previous proof does not work for strong polynomial functors since the initial step fails. Indeed,
considering the atomic functor A1, which is strong polynomial of degree 1 (see Example 3.21), then τ2 (A0) = 0.

3.3 Examples of polynomial functors over Uβ

The different functors introduced in Section 1.2 are strong polynomial functors.

Very strong polynomial functors of degree one: Let us first investigate the polynomiality of the functors Burt
and TYMt.

Proposition 3.25. The functors Burt and TYMt are very strong polynomial functors of degree 1.

Proof. For the functor Burt, this is a consequence of [20, Example 4.15]. We will thus focus on the case of the functor
TYMt. Let n be a natural number. By Remark 3.12, it is enough to consider the application i1TYMt ([0, idn]) =
ι
C[t±1]

⊕n′−n ⊕ id
C[t±1]

⊕n . This map is a monomorphism and its cokernel is C
[
t±1]. Hence κ1TYMt is the null

functor of Fct
(
Uβ, C

[
t±1] -Mod

)
. Let n′ be a natural number such that n′ ≥ n and let [n′ − n, σ] ∈ HomUβ (n, n′).

By naturality and the universal property of the cokernel, there exists a unique endomorphism of C
[
t±1] such that

the following diagram commutes, where the lines are exact. It is exactly the definition of δ1TYMt ([n′ − n, σ]).

0 // C
[
t±1]⊕n

ι
C[t±1]⊕id

C[t±1]
⊕n

//

TYM([n′−n,σ])
��

C
[
t±1]⊕n+1 πn+1 //

τ1(TYM)([n′−n,σ])
��

C
[
t±1] //

∃!
��

0

0 // C
[
t±1]⊕n′

ι
C[t±1]⊕id

C[t±1]
⊕n′
// C
[
t±1]⊕n′+1

πn′+1

// C
[
t±1] // 0.

For all (a, b) ∈ C
[
t±1] ⊕ C

[
t±1]⊕n

= C
[
t±1]⊕n+1, τ1 (TYMt) ([n′ − n, σ]) (a, b) = (a,TYMt ([n′ − n, σ]) (b)).

Therefore, (πn′+1 ◦ τ1 (TYMt) ([n′ − n, σ])) (a, b) = a = πn+1 (a, b). Hence, id
C[t±1] also makes the diagram com-

mutative and thus δ1TYMt ([n′ − n, σ]) = id
C[t±1]. Hence, δ1TYMt is the constant functor equal to C

[
t±1]. A

fortiori, because of Proposition 3.20, δ1TYMt is a very strong polynomial functor of degree 0.

The particular case of Burt:

Definition 3.26. Let T1 : Uβ −→ C
[
t±1] -Mod be the subobject of the constant functor X (see Notation 2.27) such

that T1 (0) = 0 and T1 (n) = C
[
t±1] for all non-zero natural numbers n.

Remark 3.27. It follows from Definition 3.26 that δ1T1
∼= A0 (where A0 is introduced in Example 3.21). Therefore,

T1 is a strong polynomial functor of degree 1, but is not very strong polynomial. Nevertheless, it is worth noting
that κ1T1 = 0.
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Proposition 3.28. The functor Bur is a strong polynomial functor of degree 2. This functor is not very strong polynomial.
More precisely, we have the following short exact sequence in Fct

(
Uβ, C

[
t±1] -Mod

)
:

0 // Burt // τ1Burt // T1 // 0 .

Proof. The natural transformation i1
(
Burt

)
n : Burt (n) → τ1Burt (n) (introduced in Definition 3.4) is defined to

be ι
C[t±1]

⊕n′−n ⊕ id
C[t±1]

⊕n−1 . Let n ≥ 2 be a natural number. This map is a monomorphism (so κ1Burt = 0) and its

cokernel is C
[
t±1]. Repeating mutatis mutandis the work done in the proof of Proposition 3.25, we deduce that

for all [n′ − n, σ] ∈ HomUβ (n, n′) (with n′ ≥ n ≥ 2), δ1Burt ([n′ − n, σ]) = Id
C[t±1]. In addition, since Burt (1) = 0

and τ1Burt (1) = C
[
t±1], we deduce that δ1Burt (1) = C

[
t±1] and for all n′ ≥ 1, for all [n′ − 1, σ] ∈ HomUβ (1, n′),

δ1Burt ([n′ − 1, σ]) = Id
C[t±1]. Hence, we prove that δ1Burt ∼= T1 where T1 is introduced in Definition 3.26. The

results follow from the fact that δ1T1
∼= A0 by Remark 3.27.

For formal reasons (see Proposition 3.5), Burt is a subfunctor of τ1Burt. The following proposition illustrates
Remarks 3.11 and 3.18.

Proposition 3.29. The functor τ1Burt is a very strong polynomial functor of degree 1.

Proof. Repeating mutatis mutandis the work done in the proof of Proposition 3.28, we prove that δ1Burt is the
constant functor equal to C

[
t±1] (denoted by X in Notation 2.27). Since X is a constant functor, δ1Burt is by

Proposition 3.20 a very strong polynomial functor of degree 0.

A very strong polynomial functor of degree two: We could have defined the unreduced Burau functor of Ex-
ample 1.2 assigning

((
C
[
t±1]) [q±1])⊕n to each object n ∈N.

Notation 3.30. Abusing the notation,
(
C
[
t±1]) [q±1] : Uβ →

(
C
[
t±1]) [q±1] -Mod denotes the constant functor at(

C
[
t±1]) [q±1]. The functor Burt ⊗

C[t±1]

(
C
[
t±1]) [q±1] is denoted by ˇBurt : Uβ→

(
C
[
t±1]) [q±1] -Mod.

Remark 3.31. These functors
(
C
[
t±1]) [q±1] and ˇBurt are also very strong polynomial of degree one (the proof is

exactly the same as the one for Burt in Proposition 3.27).

Lemma 3.32. Considering the modified version of the unreduced Burau functor of Remark 3.30, then we have δ1LK = ˇBurt.

Proof. We consider the application i1LK ([0, idn]). This map is a monomorphism and its cokernel is
⊕

1≤i≤n
Vi,n+1. Let

n and n′ be two natural numbers such that n′ ≥ n. Let [n′ − n, σ] ∈ HomUβ (n, n′). By naturality and because of
the universal property of the cokernel, there exists a unique endomorphism of

(
C
[
t±1]) [q±1]-modules such that

the following diagram commutes, where the lines are exact. It is exactly the definition of δ1LK ([n′ − n, σ]).

0 // ⊕
1≤j<k≤n

Vj,k
LK([1,id1+n ]) //

LK([n′−n,σ])

��

⊕
1≤i<l≤n+1

Vi,l
oooπn //

τ1(LK)([n′−n,σ])

��

⊕
2≤l≤n+1

V1,l //

∃!

��

0

0 // ⊕
1≤j′<k′≤n′

Vj′ ,k′
LK([1,id1+n′ ])

// ⊕
1≤l′≤n′+1

Vi′ ,l′ oooπn′
// ⊕
2≤l′≤n′+1

V1,l′ // 0.

Let i ∈ {1, . . . , n− 1}, l ∈ {2, . . . , n + 1} and v1,l be an element of V1,l . Then we compute:

τ1LK (σi) v1,l = LK (σ1+i) (v1,l) =


v1,l if i + 1 /∈ {l − 1, l},
tv1,i+1 + (1− t) v1,i+2 −

(
t2 − t

)
qvi+1,i+2 if i + 2 = l,

v1,i+2 if i + 1 = l.
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We deduce that in the canonical basis {e1,2, e1,3, . . . , e1,n+1} of
⊕

2≤l≤n+1
V1,l :

δ1LK (σi) = Idi−1 ⊕
[

0 t
1 1− t

]
⊕ Idn−i−1 = ˇBurt (σi) .

So as to identify δ1LK, it remains to consider the action on morphisms of type [1, idn]. According to the definition
of the Lawrence-Krammer functor, we have τ1 (LK) ([1, idn]) = LK

(
σ−1

1

)
◦ LK ([1, idn+2]) and:

LK (σ1) (v1,k) =

{
v2,k if k ∈ {3, . . . , n + 2},
−qt2v1,2 if k = 2.

It follows that for all vi,l ∈ Vi,l with 1 ≤ i < l ≤ n + 1:

πn+1 ◦ τ1 (LK) ([1, idn]) (vi,l) =

{
vi,l+1 if i = 1 and l ∈ {2, . . . , n + 1},
0 otherwise.

Hence, we deduce that for all 2 ≤ l ≤ n + 1, δ1LK ([1, idn]) (v1,l) = v1,l+1 = ˇBurt ([1, idn]) (v1,l).

Proposition 3.33. The functor LK is a very strong polynomial functor of degree 2.

Proof. Let n be a natural number. By Remark 3.12, we only have to consider the application i1LK ([0, idn]). Since
this map is a monomorphism with cokernel

⊕
1≤i≤n

Vi,n+1, κ1LK is the null constant functor. Since the functor ˇBurt is

very strong polynomial of degree one (following exactly the same proof as the one of Proposition 3.25), we deduce
from Lemma 3.32 that LK is very strong polynomial of degree two.

4 The Long-Moody functor applied to polynomial functors

Let us move on to the effect of the Long-Moody functors on (very) strong polynomial functors. For this purpose,
it is enough by Remark 3.12 to consider the cokernel of the map i1LM. First, we decompose the functor τ1 ◦ LM
(see Proposition 4.19) so as to understand the behaviour of the image of i1LM through this decomposition. This
allows us to prove a splitting decomposition of the difference functor (see Theorem 4.23). This is the key point to
prove our main results, namely Corollary 4.26 and Theorem 4.27. Finally, we give some additional properties of
Long-Moody functors with respect to polynomial functors.

Let {ςn : Fn ↪→ Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N be coherent families of morphisms (see Definition
2.14), with associated Long-Moody functor LMa,ς (see Theorem 2.21), which we fix for all the work of this section
(in particular, we omit the ”a, ς” from the notation).

4.1 Decomposition of the translation functor

We introduce two functors which will play a key role in the main result. First, let us recall the following crucial
property of the augmentation ideal of a free product of groups, which follows by combining [6, Lemma 4.3] and
[6, Theorem 4.7].

Proposition 4.1. Let G and H be groups. Then, there is a natural K [G ∗ H]-module isomorphism:

IK[G∗H]
∼=
(
IK[G] ⊗

K[G]
K [G ∗ H]

)
⊕
(
IK[H] ⊗

K[H]
K [G ∗ H]

)
.

Remark 4.2. In the statement of Proposition 4.1, recall that the augmentation ideal IK[G] (respectively IK[H]) is
a free right K [G]-module (respectively K [H]-module) by Proposition 2.23. Moreover, the group ring K [G ∗ H]
is a left K [G]-module (respectively left K [H]-module) via the morphism idG ∗ ιH : G → G ∗ H (respectively
ιG ∗ idH : H → G ∗ H ).
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Notation 4.3. Let n and n′ be natural numbers such that n′ ≥ n. We consider the morphism idFn ∗ ιFn′−n
: Fn ↪→ Fn′ .

This corresponds to the identification of Fn as the subgroup of Fn′ generated by the n first copies of F1 in Fn′ .
In addition, the group morphism idFn ∗ ιFn′−n

: Fn ↪→ Fn′ canonically induces a K-module morphism idIK[Fn ]
∗

ιI
K[Fn′−n]

: IK[Fn ] ↪→ IK[Fn′ ]
.

For F an object of Fct (Uβ, K-Mod), we consider the functor (τ1 ◦ LM) (F). For all natural numbers n, by
Proposition 4.1, we have a K [F1+n]-module isomorphism:

IK[F1+n ]
�

K[F1+n ]
F (n + 2)

∼=
((
IK[F1]

�
K[F1]

K [F1+n]

)
⊕
(
IK[Fn ] �

K[Fn ]
K [F1+n]

))
�

K[F1+n ]
F (n + 2) .

Now, by Remark 4.2, the K [Fn+1]-module F (n + 2) is a K [F1]-module via

F
(
ς1+n

(
idF1 ∗ ιFn

))
: F1 → AutK-Mod (F (n + 2))

and K [Fn]-module via
F
(
ς1+n

(
ιF1 ∗ idFn

))
: Fn → AutK-Mod (F (n + 2)) .

Therefore, because of the distributivity of tensor product with respect to the direct sum, we have the following
proposition.

Proposition 4.4. Let F ∈ Obj (Fct (Uβ, K-Mod)) and n be a natural number. Then, we have the following K-module
isomorphism:

τ1LM (F) (n) ∼=
(
IK[F1]

�
K[F1]

F (n + 2)

)
⊕
(
IK[Fn ] �

K[Fn ]
F (n + 2)

)
. (9)

Definition 4.5. For all natural numbers n and F ∈ Obj (Fct (Uβ, K-Mod)), we denote by

• υ (F)n the monomorphism of K-modules
(

idI
K[F1]
∗ ιIK[Fn ]

)
�

K[F1+n ]
idF(n+2) : IK[F1]

�
K[F1]

F (n + 2) ↪→ τ1LM (F) (n),

• ξ (F)n the monomorphism of K-modules
(

ιI
K[F1]
∗ idIK[Fn ]

)
�

K[F1+n ]
idF(n+2) : IK[Fn ] �

K[Fn ]
F (n + 2) ↪→ τ1LM (F) (n),

associated with the direct sum of Proposition 4.4.

The aim of this section is in fact to show that this K-module decomposition leads to a decomposition of τ1LM
(see Theorem 4.23) as a functor.

4.1.1 Additional conditions

We need two additional conditions so as to make the decomposition of Proposition 4.4 functorial. First, we require
the morphisms {an : Bn → Aut (Fn)}n∈N to satisfy the following property.

Condition 4.6. Let n and n′ be natural numbers such that n′ ≥ n. We require a1+n′

((
bβ

1,n′−n

)−1
\idn

)
◦
(

ιFn′−n
∗ idFn+1

)
◦(

idF1 ∗ ιFn

)
= idF1 ∗ ιFn′

. In other words, the following diagram is commutative:

F1

idF1∗ιFn
��

idF1∗ιFn′ // F1+n′

F1+n
ιFn′−n

∗idF1+n

// Fn′−n ∗ F1+n ∼= F1+n′ .

a1+n′

((
bβ

1,n′−n

)−1
\idn

)OO
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Remark 4.7. Condition 4.6 will be used to define an intermediary functor (see Proposition 4.14).

In addition, we will assume that the morphisms {an : Bn → Aut (Fn)}n∈N satisfy the following condition.

Condition 4.8. Let n and n′ be natural numbers such that n′ ≥ n. We require an′ (idn′−n\−) : Bn → Aut (Fn′)
maps to the stabilizer of the homomorphism idFn′−n

∗ ιFn : Fn′−n −→ Fn′ , ie for all element σ of Bn the following
diagram is commutative:

Fn′−n

idFn′−n
∗ιFn

//

idFn′−n
∗ιFn ""

Fn′

Fn′ .
an′(idn′−n\σ)

==

Remark 4.9. Condition 4.8 will be used in the proof of Propositions 4.14 and 4.15.

Remark 4.10. The relations of Conditions 4.6 and 4.8 remain true mutatis mutandis, for all natural numbers n,
considering the induced morphisms an : Bn → Aut

(
IK[Fn ]

)
and idIK[Fn ]

∗ ιI
K[Fn′−n]

: IK[Fn ] ↪→ IK[Fn′ ]
.

Definition 4.11. If the morphisms {an : Bn → Aut (Fn)}n∈N also satisfy conditions 4.6 and 4.8, the coherent fami-
lies of morphisms {ςn : Fn ↪→ Bn+1}n∈N and {an : Bn → Aut (Fn)}n∈N are said to be reliable.

Proposition 4.12. The coherent families of morphisms {an,1 : Bn → Aut (Fn)}n∈N and {ςn,1 : Fn ↪→ Bn+1}n∈N of Ex-
amples 2.7 and 2.15 are reliable.

Proof. Recall from Definition 1.4 that
(

bβ
1,n′−n

)−1
= σ−1

1 ◦ σ−1
2 ◦ · · · ◦ σ−1

n′−n. We consider the element eFn′−n
∗ g1 ∗

eFn = gn′−n+1 ∈ F(n′−n)+1+n. The definition of an,1 gives that a1+n′ ,1 (σn′−n) (gn′−n) = gn′−n+1. Therefore, we have
that:

a1+n′ ,1

(
σ−1

n′−n

)
(gn′−n+1) = gn′−n.

Iterating this observation, we deduce that a1+n′

((
bβ

1,n′−n

)−1
\idn

)
(gn′−n+1) = g1 ∈ F1+n′ . Hence, the family of

morphisms {an,1 : Bn → Aut (Fn)}n∈N satisfies Condition 4.6.
Similarly to Example 2.15 earlier, for all g ∈ Fn′−n and each Artin generator σi ∈ Bn, an′ (idn′−n\σi) (g ∗ eFn) =

g ∗ eFn . Hence, the family of morphisms {an,1 : Bn → Aut (Fn)}n∈N satisfies Condition 4.8.

From now until the end of Section 4, we fix coherent reliable families of morphisms {ςn : Fn ↪→ Bn+1}n∈N

and {an : Bn → Aut (Fn)}n∈N.

4.1.2 The intermediary functors

The functor τ2: Let us consider the factor IK[F1]
�

K[F1]
F (n + 2) of τ1LM (F) (n) in the decomposition of Proposi-

tion 4.4.

Notation 4.13. For all objects F of Fct (Uβ, K-Mod), for all natural numbers n, we denote IK[F1]
�

K[F1]
F (n + 2) by

Υ (F) (n).

Recall the monomorphisms {υ (F)n : Υ (F) (n) ↪→ τ1LM (F) (n)}n∈N
of Definition 4.5.

Proposition 4.14. Let F be an object of Fct (Uβ, K-Mod). For all natural numbers n and n′ such that n′ ≥ n, and for all
[n′ − n, σ] ∈ HomUβ (n, n′), assign:

Υ (F)
([

n′ − n, σ
])

= idI
K[F1]

�
K[F1]

F
(
id2\

[
n′ − n, σ

])
.

This defines a subfunctor Υ (F) : Uβ→ K-Mod of τ1LM (F), using the monomorphisms {υ (F)n}n∈N
.
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Proof. Let us check that the assignment Υ (F) is well defined with respect to the tensor product. Let n and n′ be
natural numbers such that n′ ≥ n, and [n′ − n, σ] ∈ HomUβ (n, n′) with σ ∈ Bn′ . Recall from Proposition 1.14 that

id2\ [n′ − n, σ] =

[
n′ − n, (id2\σ) ◦

((
bβ

2,n′−n

)−1
\idn

)]
. On the one hand, by Condition 2.12, we have:

(id2\σ) ◦ ς1+n′ (g1) = ς1+n′ (a1+n′ (id1\σ) (g1)) ◦ (id2\σ) .

Hence, it follows from Condition 4.8 that

(id2\σ) ◦ ς1+n′ (g1) = ς1+n′ (g1) ◦ (id2\σ) . (10)

On the other hand, Condition 4.6 gives that

g1 = a2+n′

((
bβ

1,n′−n

)−1
\idn+1

)
(gn′−n+1)

and by Condition 4.8 we have

g1 = a2+n′

(
id1\

(
bβ

1,n′−n

)−1
\idn

)
(g1) .

By the definition of the braiding bβ
−,− (see Definition 1.4), we deduce that:

ς1+n′ (g1) = ς1+n′

(
a2+n′

((
bβ

2,n′−n

)−1
\idn

)
(gn′−n+1)

)
.

Then, it follows from the combination of Conditions 2.3 and 2.12 that as morphisms in Uβ:[
n′ − n, ς1+n′ (g1) ◦

((
bβ

2,n′−n

)−1
\idn

)]
=

[
n′ − n,

((
bβ

2,n′−n

)−1
\idn

)
◦ (idn′−n\ς1+n (g1))

]
. (11)

Hence, we deduce from the relations (10) and (11) that:[
n′ − n,

(
(id2\σ) ◦

((
bβ

2,n′−n

)−1
\idn

))
◦ (idn′−n\ς1+n (g1))

]
=

[
n′ − n, ς1+n′ (g1) ◦

(
(id2\σ) ◦

((
bβ

2,n′−n

)−1
\idn

))]
.

A fortiori, F (id2\ [n′ − n, σ]) ◦ F (ς1+n (g1)) = F (ς1+n′ (g1)) ◦ F (id2\ [n′ − n, σ]). Hence, our assignment is well
defined with respect to the tensor product.

Let us prove that the subspaces Υ (F) (n) are stable under the action of Uβ. Let i ∈ IK[F1]
and v ∈ F (n + 2).

We deduce from the definition of the monoidal structure morphisms of Uβ (see Proposition 1.14) and from the
definition of the Long-Moody functor (see Theorem 2.21) that, for all i ∈ IK[F1]

and for all v ∈ F (n + 2):

((
τ1LM (F)

([
n′ − n, σ

]))
◦ υ (F)n

) (
i �

K[F1]
v

)

=a1+n′ (id1\σ)

(
a1+n′

((
bβ

1,n′−n

)−1
\idn

)(
ιI

K[Fn′−n]
∗ idI

K[F1]
∗ ιIK[Fn ]

)
(i)
)

�
K[Fn′+1]

F
(
id1\id1\

[
n′ − n, σ

])
(v) .

It follows from Condition 4.6 that:

a1+n′

((
bβ

1,n′−n

)−1
\idn

)(
ιI

K[Fn′−n]
∗ idI

K[F1]
∗ ιIK[Fn ]

)
(i) =

(
idI

K[F1]
∗ ιI

K[Fn′ ]

)
(i) .
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Since by Condition 4.8, a1+n′ (id1\σ)

(
idI

K[F1]
∗ ιI

K[Fn′ ]

)
(i) =

(
idI

K[F1]
∗ ιI

K[Fn′ ]

)
(i) for all elements σ of Bn′ , we

deduce that:

(
τ1LM (F)

([
n′ − n, σ

])
◦ υ (F)n

) (
i �

K[F1]
v

)
=

(
υ (F)n′ ◦Υ (F)

([
n′ − n, σ

])) (
i �

K[Fm ]
v

)
.

Therefore, the functorial structure of τ1LM (F) induces by restriction the one of Υ (F).

Now, we can lift this link between Υ (F) of τ1LM (F) to endofunctors of Fct (Uβ, K-Mod).

Proposition 4.15. Let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. For all
natural numbers n, assign :

(Υ (η))n = idI
K[F1]

�
K[F1]

ηn+2.

Then we define a subfunctor Υ : Fct (Uβ, K-Mod)→ Fct (Uβ, K-Mod) of τ1LM using the monomorphisms {υ (F)n}n∈N
.

Proof. The consistency of our definition follows repeating mutatis mutandis point 4 of the proof of Theorem 2.21.
It directly follows from the definitions of (Υ (η))n, υ (G)n and τ1 ◦ LM (see Definition 2.2) that υ (G)n ◦ (Υ) (η)n =
(τ1 ◦ LM) (η)n ◦ υ (F)n .

In fact, we have an easy description of the functor Υ.

Proposition 4.16. There is a natural equivalence Υ ∼= τ2 where τ2 is the translation functor introduced in Definition 3.1.

Proof. Let F be an object of Fct (Uβ, K-Mod). By Proposition 2.23, for all natural numbers n, we have an isomor-
phism:

χn,F : IK[F1]
�

K[F1]
F (n + 2)

∼=−→ F (n + 2) .

(g1 − 1) �
K[Fn ]

v 7−→ v

It follows from Definition 3.1 and Proposition 4.14 that the isomorphisms {χn,F}n∈N define the desired natural

equivalence Υ
χ→ τ2.

The functor LM ◦ τ1: Now, let us consider the part IK[Fn ] �
K[Fn ]

F (n + 2) of τ1 ◦ LM (F) (n) in the decomposition

of Proposition 4.4. In fact, we are going to prove that these modules assemble to form a functor which identifies
with LM (τ1F). We recall from Theorem 2.21 and Definition 3.1 the following fact.

Remark 4.17. The functor LM ◦ τ1 : Fct (Uβ, K-Mod)→ Fct (Uβ, K-Mod) is defined by:

• for F ∈ Obj (Fct (Uβ, K-Mod)), ∀n ∈ N, (LM ◦ τ1) (F) (n) = IK[Fn ] �
K[Fn ]

F (n + 2), where F (n + 2) is a left

K [Fn]-module using F (id1\ςn (−)) : Fn → AutK-Mod (F (n + 2)). For n, n′ ∈ N, such that n′ ≥ n, and
[n′ − n, σ] ∈ HomUβ (n, n′):

(LM ◦ τ1) (F)
([

n′ − n, σ
])

= an′ (σ)

(
ιI

K[Fn′−n]
∗ idIK[Fn ]

)
�

K[Fn′ ]
F
(
id1\id1\

[
n′ − n, σ

])
.

• Morphisms: let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. The
natural transformation (LM ◦ τ1) (η) : (LM ◦ τ1) (F)→ (LM ◦ τ1) (G) for all natural numbers n is given by:

((LM ◦ τ1) (η))n = idIK[Fn ]
�

K[Fn ]
ηn+2.
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Proposition 4.18. For all F ∈ Obj (Fct (Uβ, K-Mod)), the monomorphisms {ξ (F)n}n∈N
(see Definition 4.5) allow to

define a natural transformation ξ ′ (F) : (LM ◦ τ1) (F)→ (τ1 ◦ LM) (F) where, for all natural numbers n:

ξ ′ (F)n =
(

ιI
K[F1]
∗ idIK[Fn ]

)
�

K[F1+n ]
F
((

bβ
1,1

)−1
\idn

)
.

This yields a natural transformation ξ ′ : LM ◦ τ1 → τ1 ◦ LM.

Proof. Let n and n′ be natural numbers such that n′ ≥ n, and [n′ − n, σ] ∈ HomUβ (n, n′) with σ ∈ Bn′ . Let
i ∈ IK[Fn ], v ∈ F (n + 2) and g ∈ Fn. By Condition 2.3 (using Lemma 2.5 with n′ = n + 1) the following equality
holds in Bn+2: ((

bβ
1,1

)−1
\idn

)
◦ (id1\ςn (g)) = ς1+n

(
eF1 ∗ g

)
◦
((

bβ
1,1

)−1
\idn

)
.

Recall that F (n + 2) is a K [Fn]-module via F
(
ς1+n ◦

(
ιF1 ∗ idFn

))
and τ1F (n + 1) is a K [Fn]-module via F (id1\ (ςn ◦ idFn)).

Then it follows that the assignment ξ ′ (F)n is well-defined with respect to the tensor product structures of (LM ◦ τ1) (F) (n)
and (τ1 ◦ LM) (F) (n). Moreover, we compute that:

(
(τ1 ◦ LM) (F)

([
n′ − n, σ

]))
◦
(
ξ ′ (F)n

) (
i �

K[Fn ]
v

)

= a1+n′ (id1\σ)

(
a1+n′

((
bβ

1,n′−n

)−1
\idn

)(
ιI

K[F1+n′−n]
∗ idIK[Fn ]

)
(i)
)

�
K[Fn′+1]

F
((

bβ
1,1

)−1
\
[
n′ − n, σ

])
(v) .

It follows from Condition 2.10 that:

a1+n′

((
bβ

1,n′−n

)−1
\idn

)
◦
(

ιI
K[F1+n′−n]

∗ idIK[Fn ]

)
(i) =

(
ιI

K[F1+n′−n]
∗ idIK[Fn ]

)
(i) .

Again by Condition 2.10, we deduce that:

a1+n′ (id1\σ) ◦
(

ιI
K[F1+n′−n]

∗ idIK[Fn ]

)
(i) = ιI

K[F1]
∗ an′ (σ)

(
ιI

K[Fn′−n]
∗ idIK[Fn ]

)
(i) .

Hence, we deduce that:(
(τ1 ◦ LM) (F)

([
n′ − n, σ

]))
◦
(
ξ ′ (F)n

)
=
(
ξ ′ (F)n′

)
◦
(
(LM ◦ τ1) (F)

([
n′ − n, σ

]))
.

Let η : F → G be a natural transformation in the category Fct (Uβ, K-Mod) and let n be a natural number. Since
η is a natural transformation, we have:

G
((

bβ
1,1

)−1
\idn

)
◦ ηn+2 = ηn+2 ◦ F

((
bβ

1,1

)−1
\idn

)
.

Hence, we deduce from the definitions of τ1 ◦ LM (see Theorem 2.21) and of LM ◦ τ1 (see Remark 4.17) that:

ξ ′ (G)n ◦ (LM ◦ τ1) (η)n = (τ1 ◦ LM) (η)n ◦ ξ ′ (F)n .

4.1.3 Splitting of the translation functor

Now, we can establish a decomposition result for the translation functor applied to a Long-Moody functor.

Proposition 4.19. There is a natural equivalence of endofunctors of Fct (Uβ, K-Mod):

τ1 ◦ LM ∼= τ2 ⊕ (LM ◦ τ1) .
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Proof. Recall the natural transformations υ : Υ → τ1 ◦ LM (introduced in Proposition 4.15) and ξ ′ : LM ◦ τ1 →
τ1 ◦ LM (defined in Proposition 4.18). The direct sum in the category Fct (Uβ, K-Mod) (induced by the direct sum
in the category K-Mod) allows us to define a natural transformation:

υ⊕ ξ ′ : Υ⊕ (LM ◦ τ1) −→ (τ1 ◦ LM) (F) .

This is a natural equivalence since for all natural numbers n, we have an isomorphism of K-modules according to
Proposition 4.4: Υ (F) (n)⊕ (LM ◦ τ1) (F) (n) ∼= (τ1 ◦ LM) (F) (n). We conclude using Proposition 4.16.

4.2 Splitting of the difference functor

Recall the natural transformation i1 : IdFct(Uβ,K-Mod) → τ1 of Fct (Uβ, K-Mod). Our aim is to study the cok-
ernel of i1 ◦ LM. We recall that for F an object of Fct (Uβ, K-Mod), for all natural numbers n, (i1LM) (F)n =
LM (F) ([1, id1+n]) (see Definition 3.4).

Remark 4.20. Explicitly for all elements i of IK[Fn ], for all elements v of F (n):

(i1LM) (F)n

(
i �

K[Fn ]
v

)
=
(

ιI
K[F1]
∗ idIK[Fn ]

)
(i) �

K[F1+n ]
F (id1\ι1\idn) (v) .

The natural transformation LM ◦ i1: Let us consider the exact sequence (6) in the category of endofunctors of
Fct (Uβ, K-Mod) of Proposition 3.5:

0 // κ1
Ω1 // Id

i1 // τ1
∆1 // δ1 // 0 .

Since the Long-Moody functor is exact (see Proposition 2.24), we have the following exact sequence:

0 // LM ◦ κ1
oooLM(Ω1) // LM

LM(i1) // LM ◦ τ1
LM(∆1) // LM ◦ δ1 // 0 . (12)

Remark 4.21. From the definition of LM (see Theorem 2.21), we deduce that for F an object of Fct (Uβ, K-Mod), for
all natural numbers n, for all elements i of IK[Fn ], for all elements v of F (n):

LM (i1) (F)n

(
i �

K[Fn ]
v

)
= i �

K[Fn ]
F (ι1\id1\idn) (v) .

Recall the natural transformation ξ ′ : LM ◦ τ1 → τ1 ◦ LM introduced in 4.18.

Lemma 4.22. As natural transformations from LM to τ1 ◦ LM, which are endofunctors of the category Fct (Uβ, K-Mod),
the following equality holds:

ξ ′ ◦ (LM (i1)) = i1LM.

Proof. Let F be an object of Fct (Uβ, K-Mod). Let n be a natural number. Let i be an element of IK[Fn ] and let v be

an element of F (n). Since
(

bβ
1,1

)−1
◦ (ι1\id1) = id1\ι1 by Definition 1.13, we deduce from Proposition 4.18, Remark

4.21 and Remark 4.20, that:

(
ξ ′ ◦ (LM (i1))

)
(F)n

(
i �

K[Fn ]
v

)
= (id1 ∗ i) �

K[F1+n ]
F (id1\ι1\idn) (v) = (i1LM) (F)n

(
i �

K[Fn ]
v

)
.
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Decomposition results: Lemma 4.22 leads to the following key results.

Theorem 4.23. There is a natural equivalence in the category Fct (Uβ, K-Mod):

δ1 ◦ LM ∼= τ2 ⊕ (LM ◦ δ1) .

Moreover, there is a natural isomorphism κ1 ◦ LM ∼= LM ◦ κ1.

Proof. It follows from the definition of i1 (see Proposition 3.5) and from Lemma 4.22 that the following diagram is
commutative and the row is an exact sequence:

0 // κ1 ◦ LM
oooΩ1LM // LM

i1LM // τ1 ◦ LM
∆1LM // δ1 ◦ LM // 0

LM
LM(i1) // LM ◦ τ1.

?�

by Lemma 4.22ξ ′

OO

We denote by i⊕LM◦τ1
the inclusion morphism LM ◦ τ1 ↪→ τ2 ⊕ (LM ◦ τ1). The functor LM ◦ κ1 is also the kernel

of the natural transformation i⊕LM◦τ1
◦ (LM ◦ i1), as the inclusion morphism i⊕LM◦τ1

: LM ◦ τ1 ↪→ τ2 ⊕ (LM ◦ τ1) is
a monomorphism. Then, recalling the exact sequence (12), we obtain that the following diagram is commutative
and that the two rows are exact:

0 // κ1 ◦ LM
oooΩ1LM // LM

i1LM // τ1 ◦ LM
∆1LM // δ1 ◦ LM // 0

0 // LM ◦ κ1 oooLM(Ω1)
// LM

i⊕LM◦τ1
◦(LM(i1))

// τ2 ⊕ (LM ◦ τ1) idτ2⊕(LM(∆1))
//

υ⊕ξ ′∼= by Proposition 4.19

OO

τ2 ⊕ (LM ◦ δ1) // 0

A fortiori, by definition of δ1 (see Definition 3.4) and the universal property of the cokernel, we deduce that:

τ2 ⊕ (LM ◦ δ1) ∼= δ1 ◦ LM.

Furthermore, by the unicity up to isomorphism of the kernel, we conclude that κ1 ◦ LM ∼= LM ◦ κ1.

4.3 Increase of the polynomial degree

The results formulated in Theorem 4.23 allow us to understand the effect of the Long-Moody functors on (very)
strong polynomial functors.

Proposition 4.24. Let F be a non-null object of Fct (Uβ, K-Mod). If the functor F is strong polynomial of degree d, then:

1. the functor τ2 (F) belongs to Polstrong
d (Uβ, K-Mod);

2. the functor LM (F) belongs to Polstrong
d+1 (Uβ, K-Mod).

Proof. We prove these two results by induction on the degree of polynomiality. For the first result, it follows
from the commutation property 5 of Proposition 3.5 for τ2. For the second result, let us first consider F a strong
polynomial functor of degree 0. By Theorem 4.23, we obtain that δ1LM (F) ∼= τ2 (F). Therefore LM (F) is a strong
polynomial functor of degree less than or equal to 1. Now, assume that F is a strong polynomial functor of degree
n ≥ 0. By Theorem 4.23: δ1LM (F) ∼= LM (δ1F) ⊕ τ2 (F). By the inductive hypothesis and the result on τ2, we
deduce that LM (F) is a strong polynomial functor of degree less than or equal to n + 1.

Corollary 4.25. For all natural numbers d, the endofunctor LM of Fct (Uβ, K-Mod) restricts to a functor:

LM : Polstrong
d (Uβ, K-Mod) −→ Polstrong

d+1 (Uβ, K-Mod) .
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Corollary 4.26. Let d be a natural number and F be an object of Polstrong
d (Uβ, K-Mod) such that the strong polynomial

degree of τ2 (F) is equal to d. Then, the functor LM (F) is a strong polynomial functor of degree equal to d + 1.

Theorem 4.27. Let d be a natural number and F be an object of VPold (Uβ, K-Mod) of degree equal to d. Then, the functor
LM (F) is a very strong polynomial functor of degree equal to d + 1.

Proof. Using Lemma 3.23, it follows from Corollary 4.26 that LM (F) is a strong polynomial functor of degree
equal to n + 1. Since the functor LM commutes with the evanescence functor κ1 by Theorem 4.23, we deduce that
(κ1 ◦ LM) (F) ∼= (LM ◦ κ1) (F) = 0. Moreover, using Theorem 4.23, we have:

(κ1 ◦ (δ1 ◦ LM)) (F) ∼= (κ1 ◦ τ2) (F)
⊕

(κ1 ◦ (LM ◦ δ1)) (F) .

Therefore, the fact that τ2 commutes with the evanescence functor κ1 (see the commutation property 6 of Proposi-
tion 3.5) and Theorem 4.23 together imply that:

(κ1 ◦ (δ1 ◦ LM)) (F) ∼= (τ2 ◦ κ1) (F)
⊕

(LM ◦ (κ1 ◦ δ1)) (F) .

The result then follows from the fact that F is an object of VPoln (Uβ, K-Mod) and τ2 is a reduced endofunctor of
the category Fct (Uβ, K-Mod).

Example 4.28. By Proposition 3.20, X is a very strong polynomial functor of degree 0. Now applying the Long-
Moody functor LM1, we proved in Proposition 2.31 that t−1LM1 (tX) is naturally equivalent to Burt2 , which is
very strong polynomial of degree 1 by Proposition 3.25.

4.4 Other properties of the Long-Moody functors

We have proven in the previous section that a Long-Moody functor sends (very) strong polynomial functors to
(very) strong polynomial functors. We can also prove that a (very) strong polynomial functor in the essential
image of a Long-Moody functor is necessarily the image of another strong polynomial functor.

Proposition 4.29. Let d be a natural number. Let F be a strong polynomial functor of degree d in the category Fct (Uβ, K-Mod).
Assume that there exists an object G of the category Fct (Uβ, K-Mod) such that LM (G) = F. Then, the functor G is a
strong polynomial functor of degree less than or equal to d + 1 in the category Fct (Uβ, K-Mod).

Proof. It follows from Theorem 4.23 that:

δ1F ∼= τ2 (G)⊕ (LM ◦ δ1) (G) .

According to Corollary 3.10, the functor τ2 (G) is an object of the category Polstrong
d−1 (Uβ, K-Mod), and because of

Lemma 3.14 the functor G is an object of the category Polstrong
d+1 (Uβ, K-Mod).

Proposition 4.30. The Long-Moody functor LM : Fct (β, K-Mod) −→ Fct (β, K-Mod) is not essentially surjective.

Proof. Let l be a natural number. Let El : Uβ −→ K-Mod be the functor which factorizes through the category
N, such that El (n) = K⊕nl

for all natural numbers n and for all [n′ − n, σ] ∈ HomUβ (n, n′) (with n, n′ natural
numbers such that n′ ≥ n), El ([n′ − n, σ]) = ι

C[t±1]
⊕n′l−nl ⊕ id

C[t±1]
⊕nl . In particular, for all natural numbers n, for

every Artin generator σi of Bn, El (σi) = id
K⊕nl . It inductively follows from this definition and direct computations

that El is a very strong polynomial functor of degree l.
Let us assume that LM is essentially surjective. Hence, there exists an object F of Fct (β, K-Mod) such that

LM (F) ∼= El . Because of the definition of LM (F) on morphisms (see Theorem 2.21), this implies that for all
natural numbers n and for all σ ∈ Bn, an (σ) = idn. Also, if LM is essentially surjective, there exists an object T of
the category Fct (β, K-Mod) such that we can recover the Burau functor from LM (T), ie something like αLM (T)
(see Notation 2.29) with α ∈ K. We deduce from the definition of LM (T) on objects and morphisms that for all
n ≥ 1, T (n) = K and for all generator σi of Bn:

LM (T) (σi) = T (σi) · Idn.

Then necessarily, for all i ∈ {1, . . . , n}, T (σi) = δ such that δ2 = t and we consider δ−1LM (T). We deduce

that there exists a natural transformation ω : δ−1LM (T)
∼=→ Burt. This contradicts the fact that for all σ ∈ Bn,

an (σ) = idn.
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Remark 4.31. The proof of Proposition 4.30 shows in particular that a Long-Moody functor LM is not essentially
surjective on very strong polynomial functors in any degree.

In [5, Section 4.7, Open Problem 7], Birman and Brendle ask “whether all finite dimensional unitary matrix
representations of Bn arise in a manner which is related to the construction” recalled in Theorem 2.21. Since the
Tong-Yang-Ma and unreduced Burau representations recalled in Theorem 1.19 are unitary representations, the
proof of Proposition 4.30 shows that any Long-Moody functor (and especially the one based on the version of the
construction of Theorem 2.21) cannot provide all the functors encoding unitary representations. Therefore, we
refine the problem asking whether all functors encoding families of finite dimensional unitary representations of
braid groups lie in the image of a Long-Moody functor.

Remark 4.32. Another question is to ask whether we can directly obtain the reduced Burau functor Burt by a Long-
Moody functor. Recall that for all natural numbers n, Burt (n) = C

[
t±1]⊕n−1 and LM (F) (n) ∼= (F (n + 1))⊕n

for any Long-Moody functor LM and any object F of Fct (Uβ, K-Mod) (see Remark 2.25). Therefore, for dimen-
sional considerations on the objects, it is clear that we have to consider a modified version of the Long-Moody
construction. This modification would be to take the tensor product with IFn−1 on Fn−1, the K-module F (n + 1)

being a K [Fn−1]-module using a morphism Fn−1 →
(

Fn−1 o
a′n

Bn+1

)
→ Bn+1 for all natural numbers n, where

a′n : Bn+1 → Aut (Fn−1) is a group morphism.
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