E. J. Candès and Y. Plan, Matrix completion with noise, Proc. of the IEEE, vol.98, issue.6, pp.925-936, 2010.

E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, vol.9, issue.6, pp.717-772, 2009.

J. Choo, C. Lee, C. K. Reddy, and H. Park, Weakly supervised nonnegative matrix factorization for user-driven clustering, Data Mining and Knowledge Discovery, vol.29, issue.6, pp.1598-1621, 2015.

R. Chreiky, G. Delmaire, M. Puigt, G. Roussel, D. Courcot et al., Split gradient method for informed non-negative matrix factorization, Proc. of LVA/ICA, pp.376-383, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01367330

C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, Blind calibration of mobile sensors using informed nonnegative matrix factorization, Proc. of LVA/ICA, pp.497-505, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01367332

C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, Blind mobile sensor calibration using an informed nonnegative matrix factorization with a relaxed rendezvous model, Proc. of ICASSP, pp.2941-2945, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01367338

C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, Nonlinear mobile sensor calibration using informed semi-nonnegative matrix factorization with a Vandermonde factor, Proc. of SAM, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371239

M. Fazel, Matrix rank minimization with applications, 2002.

N. Guan, D. Tao, Z. Luo, and B. Yuan, NeNMF: An optimal gradient method for nonnegative matrix factorization, IEEE Trans. Sig. Proc, vol.60, issue.6, pp.2882-2898, 2012.

D. Guillamet, J. Vitrì-a, and B. Schiele, Introducing a weighted non-negative matrix factorization for image classification, Pattern Recognition Letters, vol.24, issue.14, pp.2447-2454, 2003.

J. P. Haldar and D. Hernando, Rank-constrained solutions to linear matrix equations using powerfactorization, IEEE Sig. Proc. Letters, vol.16, issue.7, pp.584-587, 2009.

R. Hamon, V. Emiya, and C. Févotte, Convex nonnegative matrix factorization with missing data, Proc. of MLSP, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346492

N. D. Ho, Nonnegative matrix factorizations algorithms and applications, 2008.

P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res, vol.5, pp.1457-1469, 2004.

C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel,

H. Kim and H. Park, Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.2, pp.713-730, 2008.

Y. D. Kim and S. Choi, Weighted nonnegative matrix factorization, Proc. of ICASSP, pp.1541-1544, 2009.

R. Kumar, C. Da-silva, O. Akalin, A. Y. Aravkin, H. Mansour et al., Efficient matrix completion for seismic data reconstruction, Geophysics, vol.80, issue.5, pp.97-114, 2015.

H. Lantéri, C. Theys, C. Richard, and C. Févotte, Split gradient method for nonnegative matrix factorization, Proc. of EUSIPCO, 2010.

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, NIPS, pp.556-562, 2001.

A. Limem, G. Delmaire, M. Puigt, G. Roussel, and D. Courcot, Non-negative matrix factorization under equality constraints-a study of industrial source identification, Applied Numerical Mathematics, vol.85, pp.1-15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01367321

A. Limem, M. Puigt, G. Delmaire, G. Roussel, and D. Courcot, Bound constrained weighted NMF for industrial source apportionment, Proc. of MLSP, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01367328

C. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Computation, vol.19, issue.10, pp.2756-2779, 2007.

C. Liu, H. C. Yang, J. Fan, L. W. He, and Y. M. Wang, Distributed nonnegative matrix factorization for web-scale dyadic data analysis on MapReduce, Proc. of WWW Conf, 2010.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research, vol.11, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Soviet Mathematics Doklady, vol.27, pp.372-376, 1983.

S. Savvaki, G. Tsagkatakis, A. Panousopoulou, and P. Tsakalides, Application of matrix completion on water treatment data, Proc. of CySWater, vol.3, pp.1-3, 2015.

A. Sobral, T. Bouwmans, and E. Zahzah, LRSLibrary: Low-rank and sparse tools for background modeling and subtraction in videos, Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing
URL : https://hal.archives-ouvertes.fr/hal-01373019

N. Srebro and T. Jaakkola, Weighted low-rank approximations, Proc. of ICML, 2003.

M. Tepper and G. Sapiro, Compressed nonnegative matrix factorization is fast and accurate, IEEE Trans. Sig. Proc, vol.64, issue.9, pp.2269-2283, 2016.

Y. X. Wang and Y. J. Zhang, Nonnegative matrix factorization: A comprehensive review, IEEE Trans. on Knowledge and Data Eng, vol.25, issue.6, pp.1336-1353, 2013.

Z. Wen, W. Yin, and Y. Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Mathematical Programming Computation, vol.4, issue.4, pp.333-361, 2012.

S. Zhang, W. Wang, J. Ford, and F. Makedon, Learning from Incomplete Ratings Using Non-negative Matrix Factorization, vol.58, pp.549-553, 2006.

G. Zhou, A. Cichocki, and S. Xie, Fast nonnegative matrix/tensor factorization based on low-rank approximation, IEEE Trans. Sig. Proc, vol.60, issue.6, pp.2928-2940, 2012.