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Piezoelectric properties of polymer/lead-free ceramic composites

M. Alexandre*, C. Bessaguet*, C. David**, E. Dantras and C. Lacabanne

Physique des Polym�eres, Institut Carnot CIRIMAT, Universit�e Toulouse 3- Paul Sabatier, Toulouse, France

ABSTRACT
Thermoplastic/lead-free piezoelectric ceramic composite have been
prepared. Sodium niobate (NaNbO3) has been chosen for its high Curie
temperature. Moreover, it could be synthesized with two different
morphologies: NaNbO3 nanowires (NN NW’s) and NaNbO3 particles (NN
P’s). The filler has been dispersed in thermoplastic matrices with different
dielectric permittivities eM: PA11 ( eM D 2Þ and polyvinylidene fluoride
(PVDF) (eM D 10Þ. Due to polarization conditions, only ceramic particles
are poled. The piezoelectric coefficient (d33) has been measured in compo-
sites. The higher d33 is recorded in composites based on PA11 (d33 D 6.5
pC.N¡1 for 30 vol. % NN NW’s). The influence of the NN aspect ratio on
PVDF/NN composites has been analysed: the higher d33 (d33 D 2.6 pC.N¡1

for 25 vol. %) is recorded in PVDF/NN P’s. The major interest of these
hybrid lead-free piezoelectric composites is mild poling conditions, ductil-
ity and thermal stability of piezoelectric performances.
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Introduction

In the last few decades, much attention has been given to the study of organic ferroelectric materials.
[1�9] These electroactive polymers are very attractive because of their light weight, easy moulding
and good piezo/pyroelectric properties. In sensor applications, the low dielectric properties of poly-
mers enable them to reach higher piezoelectric performances than those obtained for conventional
piezoelectric ceramics. However, in order to obtain the ferroelectric properties,[10] these organic
materials require a poling field 10 times higher than conventional ferroelectric ceramics,[11,12]
sometimes leading to dielectric breakdown. Moreover, the low thermal stability of the piezoelectric
properties of ferroelectric polymers limits their applications.[13,14] In some particular cases, it is
required to preserve, on the one hand, easy processing and mechanical properties of polymers and,
on the other hand, the thermal stability of piezoelectric ceramics.[5,15,16] Many works have
reported the elaboration and characterization of polymers/inorganic piezoelectric particles compo-
sites.[17�23] The studied particles generally had poor thermal stability (e.g. BaTiO3). Moreover,
some were prepared from toxic and non-environmentally friendly precursors e.g. lead titanate zirco-
nate (PZT).[24�26]

Since 1997, regulations [27] on the use of lead have resulted in more research about lead-free fer-
roelectric ceramics such as sodium niobate (NaNbO3/NN). NaNbO3 is a ferroelectric ceramic with
seven crystalline phases named N, P, R, S, T1, T2 and U, depending on the phase it can be ferroelec-
tric, antiferroelectric or paraelectric.[28�33] The most interesting phase transition is the P�R
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transition that can be considered as the Curie transition. According to the literature, it takes places
at a high temperature: 360 �C�370 �C).[31,32] In 2003, Goh et al. [34] were the first to synthesize
NaNbO3 in powder form using a hydrothermal synthesis method. Few years later, Zhu et al. [35]
showed that the structure and composition of NaNbO3 depended on temperature and time. With a
classical protocol of hydrothermal crystallogenesis, either particles (NN P’s) or nanowires (NN
NW’s) can be synthesized in the laboratory. Ceramic nanowires have been synthesized in many
works.[36�39] Nevertheless, it appears to be quite difficult to preserve a non-centrosymmetric crys-
talline cell that is crucial for ferroelectric structure.[40�42] More recently, Sodano et al. showed
that the use of piezoelectric nanowires instead of particles can lead to an increase of final piezoelec-
tric properties of composites.[43]

In 2012, David et al. [44] elaborated a thermoplastic polymer (PA11)/NN NW’s composite to
study its piezoelectric properties. Note that only ceramic particles were polarized due to low poling
fields. They highlighted the influence of the ceramic permittivity on the polarization step and, there-
fore, the piezoelectric coefficient. Following this line of reasoning, in this study, thermoplastic poly-
mer/NN piezoelectric particles composites were investigated. Polymer matrices with different
permittivities were chosen: PA11 with a permittivity of 2, in the vitreous state at room temperature
(RT) [44] and polyvinylidene fluoride (PVDF) with a permittivity of 10, in the rubbery state at RT.
[45] In the oriented state, these polymer matrices can be piezoelectric after poling by fields of up to
100 kV.mm¡1, for a duration of about 1 h. Ploss et al. [46] studied PVDF-TrFE/PZT composites:
under a field of 55 kV.mm¡1 during 1 h, the copolymer matrix remains unpoled, only ceramic inclu-
sions were polarized. In this study, the ‘low’ electric field applied (10 kV.mm¡1) leads only to the
polarization of the ferroelectric ceramic. As a result additional contributions can be avoided (e.g.
Maxwell�Wagner�Sillars or interfacial polarization between crystalline and amorphous phases of
the polymer). PA11 and PVDF were used as structural matrices of the composites. We will focus on
the influence of the aspect ratio of NN NW’s and NN P’s piezoelectric particles as well as the dielec-
tric permittivity of the matrix on the piezoelectric coefficient (d33) of the composites.

Experimental section

Synthesis of NaNbO3

NaNbO3 (or NN) was synthesized by hydrothermal crystallogenesis.[34,35,44] Niobium pentoxide
(Nb2O5) and concentrated (10 M) sodium hydroxide (NaOH) were mixed and dispersed for 1 min
in an ultrasonic bath. Then, the mixture was transferred to an autoclave and heated at 183 �C.
Nb2O5 powders aggregate and grow to form irregular bars. Depending on the time of reaction, dif-
ferent morphologies are obtained; nanowires (NW’s) are obtained after almost 2 h of reaction and
particles (P’s) are formed after 8 h of reaction. For both forms, an intermediate compound is
obtained after the reaction: NaNb6O15OH.[44] Rinsing with deionized water removes the sodium
hydroxide and neutralizes the pH. Then, an annealing at 600 �C for 6 h was performed to obtain
NN P’s or NN NW’s.

Figure 1 represents scanning electron microscopy (SEM) images (SEM-FEG JEOL JSM-6700F) of
NN NW’s (a) and NN P’s (b). NW’s are about 50 mm long with a diameter of about 500 nm. Par-
ticles are cubic with a lateral size of about 1 mm.

Elaboration of NaNbO3 ceramic

In order to determine the Curie temperature, a disk of bulk NN was processed by pressing and sin-
tering. Spark plasma sintering (SPS) was used to limit the grain growth. The temperature was
increased from RT until 1000 �C at 100 �C/min. Finally, the sample was annealed under oxygen
atmosphere for a few hours to reduce the residual carbon on the sample surface.



Polymer/NaNbO3 composites processing

PA11/NN composites were elaborated according to the protocol described in [44]. PA11 was dis-
solved in a mixture of dichloromethane and formic acid. Then, NN powder was dispersed in the
solution. Finally, the dispersion was poured into water and the PA11/NN composite precipitated.

For PVDF/NN composites, PVDF and NN powders were mixed in ethanol. The suspension was
dispersed by ultrasound for a few minutes. Then, the ethanol was evaporated to obtain a homoge-
neous composite powder. The powder was dried at 100 �C in order to completely remove all traces
of ethanol.

The processing of films was performed using an extruder at 200 �C. The dispersion in composites
with a volume fraction of 20% of NN NW’s and NN P’s is shown in Figure 2. The dispersion is very
important to observe homogeneous piezoelectric properties at the macroscopic scale. The nanowire
dispersion is homogeneous even if some aggregates are visible due to the high aspect ratio. As
expected, the dispersion of particles is better due to their morphology.

Methods

Polarization protocol

The polarization step consists of applying a high static electric field to the sample in order to allow
the orientation of electric dipoles.[19,45,47] It is a critical step to obtain a piezoelectric composite.

Two parameters were optimized: electric field and temperature. The electric field must be higher
than the coercive field of the NN, i.e. 2.2 kV/mm.[48] The temperature has to be higher than the

Figure 1. SEM images of NN NW’s (a) and NN P’s (b).

Figure 2. SEM images of PVDF/20 vol. % NN cryocuts: (a) nanowires and (b) particles.



glass transition of the polymer to increase the matrix permittivity. The composite was polarized at
110 �C under a static electric field of 10 kV.mm¡1 during 15 min. Samples were immersed in an oil
bath to avoid breakdown.

Piezoelectric measurements

The piezoelectric coefficient (d33) measurements were carried out 24 h after the polarization step to
avoid effects of the electric charges accumulated on the composite surface.

The piezoelectric coefficient was measured by a PM 200 piezometer supplied by Piezotest (UK).
Frequency and stress were set to 110 Hz and 0.25 N, respectively. The stress was applied to the sam-
ple in the same direction as the polarization and the amount of electric charges created was
measured.

Results and discussion

NaNbO3 characterization

X-ray diffraction
X-ray diffraction (XRD) analysis was performed on the NN at RT every 0.02 �/s to measure the crys-
tal lattice parameters and confirm the presence of NN. Figure 3 shows the XDR pattern of NW’s
(Figure 3(a)) and P’s (Figure 3(b)). In both cases, the pattern has the same peaks which correspond
to the orthorhombic crystalline phase (Pbma) of the NN (JCPS 89-8957). According to the litera-
ture, however, NN is in its P phase at RT, which means it has an orthorhombic network with the
spatial group Pbcm. This difference could be due to the measurement uncertainty because the peaks
at 36.5� and 38.5� are not entirely resolved.

In order to highlight the NN phase transitions, a XRD analysis was performed on the ceramic
powder at temperatures ranging from 30 �C to 800 �C. Patterns are shown in Figure 4. There is no
evolution of the crystalline structure between 30 �C and 600 �C, so these thermograms are not pre-
sented here. The evolution of the crystalline structure can be divided into three regions. From 30 �C
to 650 �C, the presence of two diffraction peaks indicates that the structure of NN is orthorhombic.
At 700 �C, a new diffraction peak is observed: it corresponds to the tetragonal structure (P4/mbm)
according to JCPS 89-6654 data. Then, from 700 �C to 800 �C, the crystalline structure is cubic
(Pm3m).

Curie temperature
Due to the complexity of NN structures, a lot of works have been devoted to the study of transitions.
[29�33,48,49] The P�R transition temperature (TP�R) has generally been associated with the Curie

Figure 3. XRD patterns of NN NW’s (a) and NN P’s (b) at RT.



temperature. In the case of NN, the TP�R is too high and the modifications in the lattice parameters
too small, making it impossible to detect this transition by differential scanning calorimetry (DSC)
and XRD. Therefore, a non-classical protocol has been developed to determine the Curie tempera-
ture of the particles synthesized in the laboratory. A bulk ceramic disk was manufactured, poled and
annealed at different temperatures. Figure 5 represents the evolution of d33 (%) of the bulk ceramic
as a function of annealing temperature. The d33 maximum value is measured at 34.5 pC.N¡1, which
is in agreement with values found in literature.[48,49] It is interesting to note that the transition,
measured at 287 �C, is spread out over a wide temperature range (from 265 �C to 310 �C). This
could be explained by the influence of the NN grain size on the P�R transition according to Moure
et al. [31]. In this work, for a particle size lower than 70 nm, the transition temperature is 180 �C.
For a particle size between 200 and 400 nm, the transition temperature is between 310 �C and 330

Figure 4. XRD patterns of NN powder at different temperatures. (■) and (�) represent the tetragonal and orthorhombic crystalline
structure, respectively.

Figure 5. Variation of the normalized piezoelectric coefficient (d33) of the NN ceramic according to the annealing temperature. The
line is just a guide for the eyes.



�C; finally, for particles larger than 1 mm, the transition temperature is 370 �C. On the other hand,
Molak et al. [33] measured this P�R transition between 343 �C and 370 �C for monocrystalline
samples. In our case, the dispersion of the particle size is important and NN is polycrystalline. This
could explain the difference in the TP�R value, the broad transition of d33 and the lag of transition
temperatures measured by XRD.

Matrix influence

Figure 6(a) represents the variation of d33 of polymer/NN NW‘s composites versus the volume frac-
tion of NN NW’s, for PA11 and PVDF matrix, respectively. As expected, in both cases, d33 increases
with the fraction of NN. The increase is more pronounced in the case of PA11 composites: for
20 vol. % of NN NW’s, d33 D 2.9 pC.N¡1 while d33 D 0.8 pC.N¡1 for PVDF composites. In addition,
a piezoelectric coefficient d33 of 6.5 pC.N

¡1 is reached for a PA11/30 vol. % NN NW’s composite.
During the polarization, the real electric field that is applied to the ceramic depends on the matrix

permittivity and can be calculated from the Equation (1) [50]

!
ENP D 3eM

eNP C 2eM

!
Eappl (1)

where
!
ENP is the real electric field applied to the particles, eM and eNP are the matrix and particle

dielectric permittivity, respectively, and
!
Eappl is the applied electric field.

The polarization efficiency (and, therefore, the piezoelectric coefficient) is directly linked to the
real electric field applied to the ceramic which in turn depends on the matrix permittivity. However,
PA11 and PVDF permittivity are 2 [44] and 10,[45] respectively. Therefore, PVDF composites get a
higher polarization than PA11 composites. But since the amorphous PVDF phase is in the rubbery
state at RT, part of the polarization vanishes and the corresponding d33 of PVDF composites is lower
than the d33 for PA11 composites.

Influence of aspect ratio of NN fillers

In this section, the influence of aspect ratio on the d33 (NN P’s or NN NW’s) is studied for different
volume fractions of NN. The PVDF matrix is chosen due to an easy elaboration process.

Figure 6(b) represents the evolution of d33 according to the volume fraction of NN for two com-
posites: PVDF/NN NW’s and PVDF/NN P’s. As expected, in both cases the d33 increases with the
fraction of NN. d33 values for PVDF composites with 20 vol. % of NN are compared: in PVDF/NN
P’s composites, d33 D 1.7 pC.N¡1 while for PVDF/NN NW’s composite, d33 D 0.8 pC.N¡1. It is

Figure 6. Variation of the piezoelectric coefficient d33 versus volume fraction (f) of NN. (a) PA11/NN NW’s and PVDF/NN NW’s
composites. (b) PVDF/NN NW’s and PVDF/NN P’s composites.



also interesting to note that d33 reaches 4.3 pC.N
¡1 in PVDF/35 vol. % NN composite while remain-

ing ductile.
From literature data, polymer/PZT NW’s have interesting electroactive properties.[43] Unfortu-

nately, such nanowire morphology is not adapted to NN. In the case of this study, the elaboration
process does not prevent the orientation of NW’s. For lead-free piezoelectric composites, polymer/
NN NP’s composites seem to be more adapted to reach satisfactory electroactive properties.

Conclusion

Thermoplastic/lead-free piezoelectric ceramic composites were synthesized with particles of two dif-
ferent morphologies: NN NW’s and NN P’s. XRD analyses show that both are in the orthorhombic
crystalline phase, i.e. a non-centrosymmetric phase. The NN fillers were dispersed in thermoplastic
matrices with different dielectric permittivities eM at RT: PA11 ( eM D 2Þ and PVDF ( eM D 10Þ.
The piezoelectric coefficient (d33) was measured in polymer/NN NW’s composites. The higher d33
is recorded in composites based on PA11 (d33 D 6.5 pC.N¡1 for 30 vol. % NN NW’s). The vitreous
state of the amorphous phase of PA11 at RT favours the piezoelectricity of PA11/NN NW’s compo-
sites. The influence of the aspect ratio of the NN piezoelectric filler on PVDF/NN composites, was
analysed: a higher d33 (2.6 pC.N

¡1for 25 vol. %) is recorded in PVDF/NN P’s. A more homogeneous
dispersion of NN P’s within the matrix might explain this result. For such NN contents, composites
remain ductile. It should be noted that for hybrid composites, the piezoelectric state is reached with
mild poling fields which is not the case for piezoelectric polymers. It is interesting to note that the
Curie temperature of NN ceramic is higher than the processing temperature of high performance
polymers. Further studies may give rise to a wide variety of multifunctional polymer/NN P’s piezo-
electric composites. The major interest of these composites is their ductility, easy poling and thermal
stability of the piezoelectricity.
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