Compressed sensing in Hilbert spaces

Abstract : In many linear inverse problems, we want to estimate an unknown vector belonging to a high-dimensional (or infinite-dimensional) space from few linear measurements. To overcome the ill-posed nature of such problems, we use a low-dimension assumption on the unknown vector: it belongs to a low-dimensional model set. The question of whether it is possible to recover such an unknown vector from few measurements then arises. If the answer is yes, it is also important to be able to describe a way to perform such a recovery. We describe a general framework where appropriately chosen random measurements guarantee that recovery is possible. We further describe a way to study the performance of recovery methods that consist in the minimization of a regularization function under a data-fit constraint.
Type de document :
Chapitre d'ouvrage
Holger Boche; Giuseppe Caire; Robert Calderbank; Maximilian März; Gitta Kutyniok; Rudolf Mathar. Compressed Sensing and its Applications -- Second International MATHEON Conference 2015, Birkhaüser Basel, pp.359--384, 2018, Series: Applied and Numerical Harmonic Analysis, 978-3-319-69801-4. 〈10.1007/978-3-319-69802-1_12〉. 〈https://www.springer.com/us/book/9783319698014〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01469134
Contributeur : Yann Traonmilin <>
Soumis le : lundi 17 juillet 2017 - 10:47:21
Dernière modification le : jeudi 15 novembre 2018 - 11:59:00
Document(s) archivé(s) le : samedi 27 janvier 2018 - 17:13:53

Fichiers

chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Yann Traonmilin, Gilles Puy, Rémi Gribonval, Mike Davies. Compressed sensing in Hilbert spaces. Holger Boche; Giuseppe Caire; Robert Calderbank; Maximilian März; Gitta Kutyniok; Rudolf Mathar. Compressed Sensing and its Applications -- Second International MATHEON Conference 2015, Birkhaüser Basel, pp.359--384, 2018, Series: Applied and Numerical Harmonic Analysis, 978-3-319-69801-4. 〈10.1007/978-3-319-69802-1_12〉. 〈https://www.springer.com/us/book/9783319698014〉. 〈hal-01469134v2〉

Partager

Métriques

Consultations de la notice

1130

Téléchargements de fichiers

237