Compressed sensing in Hilbert spaces

Abstract : In many linear inverse problems, we want to estimate an unknown vector belonging to a high-dimensional (or infinite-dimensional) space from few linear measurements. To overcome the ill-posed nature of such problems, we use a low-dimension assumption on the unknown vector: it belongs to a low-dimensional model set. The question of whether it is possible to recover such an unknown vector from few measurements then arises. If the answer is yes, it is also important to be able to describe a way to perform such a recovery. We describe a general framework where appropriately chosen random measurements guarantee that recovery is possible. We further describe a way to study the performance of recovery methods that consist in the minimization of a regularization function under a data-fit constraint.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01469134
Contributeur : Yann Traonmilin <>
Soumis le : lundi 17 juillet 2017 - 10:47:21
Dernière modification le : mardi 21 novembre 2017 - 15:23:52

Fichiers

chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01469134, version 2
  • ARXIV : 1702.04917

Collections

Citation

Yann Traonmilin, Gilles Puy, Rémi Gribonval, Mike Davies. Compressed sensing in Hilbert spaces. 2017. 〈hal-01469134v2〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

36