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Abstract

Urban scenes acquisition is very often performed using laser scanners onboard a vehicle. In parallel, color information is
also acquired through a set of coarsely aligned camera pictures. The question of combining both measures naturally arises
for adding color to the 3D points or enhancing the geometry, but it faces important challenges. Indeed, 3D geometry
acquisition is highly accurate while the images su�er from distortion and are only coarsely registered to the geometry. In
this paper, we introduce a two-step method to register images to large-scale complex point clouds. Our method performs
the image-to-geometry registration by iteratively registering the real image to a synthetic image obtained from the
estimated camera pose and the point cloud, using either reectance or normal information. First a coarse registration
is performed by generating a wide-angle synthetic image and considering that small pitch and yaw rotations can be
estimated as translations in the image plane. Then a �ne registration is performed using a new image metric which is
adapted to the di�erence of modality between the real and synthetic images. This new image metric is more resilient to
missing data and large transformations than standard Mutual Information. In the process, we also introduce a method
to generate synthetic images from a 3D point cloud that is adapted to large-scale urban scenes with occlusions and sparse
areas. The e�ciency of our algorithm is demonstrated both qualitatively and quantitatively on datasets of urban scans
and associated images.

Keywords: Large Scale Point Sets, Image to Geometry Registration, Image Comparison Metric
2010 MSC: 68U05, 65D18

1. Introduction

Recent years have seen a fast development of acquisi-
tion technologies for acquiring urban scenes. Among all
techniques, terrestrial laser scanners have gathered an im-
portant research interest. Acquisition campaigns covering5

whole cities have been led using LiDAR (Light Detection
And Ranging) scanners onboard moving vehicles. The out-
put of these campaigns consists in large, potentially unor-
ganized, point clouds representing the buildings measured
by the laser. These campaigns are often not limited to10

acquiring the geometry as a point cloud, but also embed
other devices to measure various data. For example, this
additional data can be a set of pictures taken at the same
time as the points were measured. The set of pictures and
the point clouds are usually aligned using onboard infor-15

mation such as GPS information or accelerometers. How-
ever, this initial alignment is often awed which can lead
to wrong interpretations in further processings using both
points and pictures. This may be due to various factors
such as sensor drift and uncertainty or even stability prob-20

lems in the way the cameras are �xed to the vehicle. This
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misalignment can be corrected interactively but it is time-
consuming and intractable for large point sets and picture
sets. It is therefore necessary to devise an automatic way
to correct the registration starting from the approximate25

camera pose given by the acquisition device.

Data. In this paper we consider data consisting in urban
scenes point sets and associated pictures with approximate
camera pose, which we propose to re�ne to obtain a precise
camera position. We assume that all the camera intrinsic30

parameters are known. Our main test-case is a dataset
containing point clouds and associated images acquired in
the city of Shrewsbury, UK. It o�ers a large variety of
architecture style (modern or more traditional buildings)
and environments (high buildings or less dense areas with35

parking places) which makes it a good proof-of-concept for
our algorithm. The point cloud itself is composed of 260
million points corresponding to the scans of several streets
in the city center, as shown on Figure 1a. The whole
point cloud itself is correctly registered and coherent along40

the 2:5km path taken by a moving LiDAR mounted on a
vehicle equipped with 7 cameras. The pictures were taken
at a regular distance from each other, in 6 directions (see
Figure 1b). Along the path, 2452 pictures per direction
were taken, yielding a total of 14712 images. The pictures45

have a resolution of 2046� 2046 and are encoded using
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(a) Point cloud (b) Initial image alignment

Figure 1: Example data, taken using a mobile LiDAR with mounted
camera in the town of Shrewsbury (UK)

JPEG.
For the sake of clarity, the term Real imagewill refer to

any real world image obtained using a camera. The term
Synthetic imagewill refer to the projection of a point cloud50

using a pinhole camera model.
These real images will be converted to grayscale values

in order to be compared to synthetic images. To gener-
ate these synthetic images, we will consider either laser
intensities when available, or more simply normals of the55

point cloud. While most registration methods focus on
using laser intensities, those are not always available. In-
deed, depending on the acquisition device, the output can
be limited to a set of unorganized 3D positions with no
additional information. In that case, to be able to per-60

form image to geometry registration, one must rely on
purely geometric information such as the normals, esti-
mated through Principal Component Analysis. As shown
by our experiments, existing methods fail when using this
normal information. On the contrary, our method is able65

to perform the registration using either the laser intensity
if it is provided or the normals computed from the points.

The remainder of this paper is divided as follows: �rst,
we review existing methods for image to geometry regis-
tration in section 2. Then, an overview of our method is70

given in section 3, followed by the synthetic image gener-
ation procedure (section 4), the comparison metric details
(section 5), and our two-step registration method (section
6). Finally, we discuss the results and comparisons in sec-
tion 7 before concluding (section 8) and exposing our fu-75

ture works.

2. Related work

Image to point cloud registration is a domain that was
extensively explored in the past few years. Existing ap-
proaches can be divided into four categories:2D feature-80

based methods, statistical methods, 3D based methodsand
skyline based methods. The two �rst categories are the
most explored in the literature. They share the common
approach to cast the problem of image to point cloud reg-
istration as an iterative process of image to image reg-85

istration. This implies that the point cloud should be
turned into a synthetic picture on which the real picture
can be registered. Using both images a �rst camera pose
is estimated, a synthetic image is regenerated using this
new pose and the process is iterated. The synthetic image90

can either be obtained directly from the LiDAR scanner
which sometimes provide a spherical image, or by project-
ing the point cloud on the image plane and giving each
point a color corresponding to some geometry properties
(estimated normals for example).95

2D Feature-based methods.Feature based registration me-
thods rely on establishing correspondences between feature
points obtained using methods such as SIFT [1], or SURF
[2] on real and synthetic 2D images. These methods need
to be applied on point clouds that already possess either100

a reliable color information, or a reectance value as pre-
sented in [3], where a complete reectance image is used
to perform a SURF detection and matching.

Similarly, Moussa et al. [4] rely on RGB coloration
of the point cloud given by the laser to make compar-105

isons between a synthetic image and a real image, us-
ing ASIFT [5] descriptors. Inconsistent correspondences
are then removed by applying RANSAC [6]. Using the
correspondences between 2D and 3D points, the camera
pose is �nally obtained by solving a Perspective-n-Point110

(PnP) problem using the EPnP algorithm [7]. Yang et
al.[8] propose a method to register an image on a shape
using another image with a perfectly de�ned pose. First,
SIFT descriptors are computed on the image with a known
pose and associated with the point cloud by backproject-115

ing them on the geometry. Real image SIFT keypoints
are then computed and compared to the point cloud de-
scriptors and the best matches are kept. Finally a two-
step re�nement is performed to obtain the camera posi-
tion. This method does not require any prior estimation120

of the camera pose, but still needs a real image that has its
pose perfectly de�ned relatively to the point cloud. Gon-
zalezet al.[9] propose a methodology that registers LiDAR
range images generated from Terrestrial Laser Scans (TLS)
and digital camera images using image descriptors. The125

real image is preprocessed to remove the distortions and
its contrast is increased, followed by radiometric equaliza-
tion and bilinear interpolation. Then a manual resizing
operation is performed on the synthetic image to �t the
real image as well as possible. Feature points are detected130

and matched by combining cross-correlation, least squares
matching and epipolar constraints. Finally the camera po-
sition and orientation is obtained using RANSAC. How-
ever it relies on high de�nition images to detect common
features between LiDAR scans and photos. Furthermore,135

manual interaction is not possible for large datasets. A
method guaranteeing the global optimality of the registra-
tion in case of points and lines within indoor scenes has
also been proposed [10].

Pl•otz et al. [11] recently described a feature based reg-140

istration method using the average shading gradients to
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successfully register an image onto an untextured mesh
object without any prior pose information.

Statistical methods. Methods using statistical analysis are
widespread for aligning image to image (and thus image145

to geometry). Among all statistical methods, the most
common metric is Mutual Information (MI). Proposed by
Viola and Wells [12], MI is a measure of the mutual de-
pendencies between two random variables based on the
Shannon entropy. For image registration, the two variables150

are the pixel intensities of both images. MI measures the
similarity between two images based on the level of de-
pendency of the intensity distributions. Thus in order to
align an image to another, a good strategy is to �nd the
pose that maximizes their Mutual Information ([13],[14]).155

Considering image to geometry registration as an itera-
tive image to image registration, Mutual Information can
once again be used to measure the quality of the regis-
tration. Variations on the original metric have been later
proposed: using normalized values (Normalized Mutual160

Information [15]) or adding SIFT information [13]. Sev-
eral works have investigated Mutual Information in the
context of comparing an image with some geometric infor-
mation. Corsini et al.[16] presented an in-depth discussion
about which combination of geometric properties should165

be used to achieve the best results, e.g. normal maps, in-
tensities or even a mixture of several modalities. Mastin
et al. [17] successfully used Mutual Information to correct
small rotational errors in the registration of urban aerial
images on the corresponding aerial Lidar data using ele-170

vation and reectance data of the Lidar. In the case of
data acquired by a mobile LiDAR acquisition system, MI
has been used to obtain the position and orientation of an
image relatively to the point set, using the similarities be-
tween images and scanner intensities [18]. Tayloret al. [19]175

propose a calibration framework that estimates the cam-
era pose with no other information than the normal of the
scanned points. To do so, a modi�ed form of the Mutual
Information is maximized using particle swarm optimiza-
tion. Although this method gives good results, it su�ers180

from several drawbacks. First, its high memory demand
makes it impractical for large complex point clouds such
as the ones we consider in the paper. Furthermore, it does
not propose a way to cope with multiple depths layers that
can be seen from a same viewpoint when the sampling is185

not dense enough. This problem, discussed in section 4.2,
can lead to bad registration results as shown in our ex-
periments (see Figure 15 for example). Another drawback
lies in the dependency on panoramic spectral photogra-
phy, a type of photography which provides a larger area190

of common information between the point cloud and the
image leading to a more robust registration. When apply-
ing this method to regular images, as the ones available
in our datasets, it does not work as well since regular im-
ages have less overlapping information. Tayloret al. [20]195

further improved their method by introducing a gradient
based metric called Gradient Orientation Measure (GOM)

instead of Mutual Information. GOM computes the dif-
ference of the gradient orientation angle between the syn-
thetic image and the real image. This method improves200

the accuracy of the result compared to Normalized Mutual
Information (NMI). To alleviate the computation cost of
the synthetic image after each particle motion, another
improvement is to use spherical images. However we will
show that using a single metric of comparison is generally205

not discriminative enough and that better results can be
obtained by combining several measures to highlight the
di�erences at di�erent scales.

Statistical methods for image to geometry registration
are an active �eld of research. For example, Pascoe [21] re-210

cently introduced a Normalized Information Distance met-
ric, based on Mutual Information and entropy variation,
to retrieve the camera position in an urban environment.

3D based methods.In sharp contrast with the two �rst cat-
egories, some methods propose to use 3D reconstruction215

and then 3D matching to achieve proper registration. For
example, Corsini et al. [22] start by performing a Struc-
ture From Motion (SFM) reconstruction from an image
dataset. SFM is a powerful and widely used method that
reconstructs a set of 3D points using a set of images captur-220

ing the scene with a small variation in position and orienta-
tion. Usually, common features are identi�ed on this set of
images using descriptors such as SIFT or SURF. The vari-
ations of these identi�ed descriptors allow to reconstruct
the descriptor 3D position and thus camera positions. This225

type of reconstruction is powerful but only gives a small
amount of 3D points. The reconstructed points and the
relative pose of the images are then �tted to an existing,
denser point cloud using a scale independent version of
4-Points Congruent Sets [23]. After merging the sparse230

point cloud with the complete point cloud, the camera
pose is estimated and then re�ned using Mutual Informa-
tion maximization. Moussa et al. [24] also use Structure
From Motion to perform image to geometry registration,
but instead of doing a full 3D registration, they register235

images to the polar laser intensity images that are gener-
ated during the scanning process. Correct matches can be
obtained from real and synthetic images using standard
image descriptors. Thus, the polar image pose is obtained
through SFM which �nally yields the actual image pose240

estimate.

Skyline based methods.Skyline registration methods aim
at retrieving the camera pose by analyzing the uniqueness
of the skyline in urban environments. The color di�erences
between the sky and the buildings are used to register sin-245

gle camera images on a corresponding point cloud, start-
ing from an estimated pose. Although this approach is less
spread, Hofmannet al.[25] proposed to rely on the skyline
of the buildings. The sky is �rst automatically extracted
in the real images and independently in the synthetic im-250

age using pixel intensity thresholding. The outline is then
computed and re�ned. Extracted skylines in both images
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are then merged using a modi�ed ICP method in the image
plane. After this fusion, a better camera pose is estimated.
These methods are adapted to large scale cities but unfor-255

tunately su�er from relying only on the skyline. Hence,
every problem on the skyline such as missing data, jagged
skyline, or even too much vegetation, is likely to a�ect the
results, or not give any result at all if no building skyline
is visible in the images.260

Our work focuses on the case of complex, large scale
urban scenes. The data is acquired using a mobile LiDAR
system, which gives as output clouds of several million
points with coarsely registered corresponding images. The
images are given byin situ CCD perspective cameras, that265

can be considered as standard digital cameras with a nar-
row �eld of view. Despite the fact that some scanners
provide interesting properties such as the reectance for
each scanned point, we develop a more general framework
that is able to perform the whole registration process using270

only the geometry data, i.e., the spatial positions. This is
interesting when the laser intensity information is not em-
bedded in the data format, or with a view to extending the
approach to other acquisition devices. When the synthetic
images are based only on the geometry, the descriptor-275

based methods fail to align our rendered images. Besides,
the geometry of urban scenes make it di�cult to use 3D
based methods since the presence of vegetation, moving
vehicles and pedestrians make Structure From Motion me-
thods fail. This would yield a awed reconstructed point280

cloud leading to a wrong registration. These methods also
require a large number of images taken with a small vari-
ation in space. Such data may not always be available.
Similarly, Skyline based registration is not always applica-
ble in urban contexts due to the presence of either jagged285

or partial skyline or even a total lack of skyline in some
images. Thus, statistical methods are a better choice, but
in our urban context the Mutual Information objective ex-
hibits a highly non convex pro�le because of the sparsity
of the synthetic images. To be able to minimize this ob-290

jective, one could resort to the proposed solution of [20] to
perform particle swarm optimization. Unfortunately this
method does not provide a way to cope with occlusions
arising from multiple scenes layers, such as the ones de-
scribed in section 4.2.295

3. Overview

Our method, summarized in Figure 2, takes as input a
point cloud of a urban scene and a corresponding picture
with initial pose estimate and known intrinsic parameters.
Such an image can be acquired during the scanning process300

by a camera mounted on a vehicle or from a standard digi-
tal camera handled independently. We propose a two-step
registration method to re�ne the camera pose, knowing the
camera intrinsic parameters and a reasonable initial pose
estimation. First a wide angle synthetic image is gener-305

ated and used to optimize the camera pose with 3 degrees
of freedom (optimizing only for a rotation). This rotation

Figure 2: Overview of our method

estimation is performed, in a multiscale fashion thanks to
a new metric, called MIDHOG, that combines Normalized
Mutual Information and Histogram of Oriented Gradients310

(HOG) descriptors to measure the consistency of the real
image with a part of the wide angle synthetic image.

Starting from the re�ned orientation, the �ne registra-
tion step gradually performs a full 6 degrees of freedom
pose estimation. During this second step, two strategies315

are available: either using the MIDHOG metric, to ensure
the accuracy, or to replace it only with DHOG, to improve
the computation time at the cost of losing some precision.

To summarize, our contributions are:

� A process to generate synthetic images from a point320

cloud and a camera pose, adapted to large scale ur-
ban scenes, even when no reectance information is
available at each point.

� A new image comparison metric, more robust to in-
complete image data and large pose transformation.325

� An e�cient iterative pose estimation method using
our new metric to obtain a good estimation of the
rotation, alleviating the registration problem for im-
portant rotations.

4. Synthetic image generation for large scale urban330

scenes

When casting the image to geometry registration prob-
lem to an iterative image-to-image registration problem,
one must generate synthetic images of the geometry as
seen by the camera at the given pose. If the camera pose335

corresponds to the pose that yields the real image, the
metric comparing both images should be minimum. Here
we address the synthetic image generation problem when
dealing with a large and complex point cloud.

4.1. Projection model and color information340

To generate an image from the point cloud, a pinhole
camera model is adopted. Assuming that the intrinsic pa-
rameters of the camera are known, as well as the distor-
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(a) Point cloud pro-
jection

(b) Occlusion esti-
mation

(c) Interpolation

Figure 3: Di�erent steps to generate the synthetic image. The pixel
intensities are computed using the points normals.

tion parameters (3 radial and 2 tangential) of the Brown-
Conrady camera distortion model [26], the 2D coordinates345

of a point that is projected from the ambient space onto
the image can be obtained.

Yet this step only yields a binary image: pixels are
lit if there is a projected information and o� if there is
none. Therefore, a color should be assigned to the pro-350

jected points. In our work, we either use the laser intensity
provided by the scanning device or a grayscale informa-
tion which is deduced solely from the geometry and more
precisely from the point cloud normals that are estimated
using PCA [27]. In case the normals are used, they must355

be turned into grayscale values. To do so several options
are available. Taylor et al.[19] propose to use the scalar
product between the normal and the up axis to reect the
fact that most of the luminosity comes down from the sky.
However such lighting conditions, although they may be360

adapted to natural environment, give bad results in urban
environment where the walls, which are usually perpen-
dicular to the ground, o�er a large variety of details that
should be taken into account. Instead of using a direction
coming from the sky, one can use any other arbitrary direc-365

tion and a natural choice would be one that enhances the
details. In our experiments, the best results are achieved
using a lighting direction from the center of the camera. In
that case, the computation of each point grayscale inten-
sity breaks down to using the absolute value of the cosine370

angle between the camera direction and the point normal.
This choice enhances interesting details on the geometry
that would not appear as e�ciently using other coloration
methods. Besides, it can happen that several points com-
ing from di�erent surfaces project onto the same pixel. It375

can be due either to a sampling density higher than the
pixel size or to the fact that points from several surfaces
(eg. buildings in di�erent streets) can be seen through the
foreground surface, since there is no watertight model and
since we are dealing with large scale aggregated scans. In380

that case a choice should be performed to decide which
piece of surface occludes the other by keeping the point
that is closest to the camera position.

However, if there is not enough points on the closest
surface, sparse sampling artifacts will appear as shown in385

Figure 3a. The next steps focuses on overcoming this lim-

(a) Image view (b) Side view

Figure 4: Projection of 5 points onto an image. The considered point
and its projection on a pixel are depicted in blue. The visibility angle
is the angle < ~OP ; ~QP > . An horizon pixel is a pixel corresponding
to the point with the smallest angle in a sector. These pixels are
depicted in red, they are the points that best occlude the central
point. Other pixels are in green.

itation.

4.2. Reducing the sparse sampling artifacts

Since the method operates on large point clouds cre-
ated from multiple scans, a simple projection produces vi-390

sual artifacts on sparsely sampled areas that occlude each
other. It is possible to get rid of these artifacts in pinhole
images, following the method proposed by Pintuset al.[28]
which we summarize briey:

For each pixel p corresponding to a 3D point P, the395

region in a l � l neighborhood around it is divided into
8 sectors (usually l = 9). In a sector, for each 3D point
Q corresponding to a pixelq of this sector, we de�ne the
visibility angle relative to the pixel q as the angle between
the vector ~OP and the vector ~QP (see Figure 4). The sum400

of the smallest angles for each sector is considered as the
solid angle of visibility for the pixel p.

If the solid angle is larger than a threshold value  
the central pixel is classi�ed as being visible. The value
 = 2 :0sr is used in the remainder of this paper. This405

method successfully removes points that should not have
been visible, as shown in Figure 3b.

It can be noted that points may remain visible through
large holes such as windows, as shown in Figure 3b. Al-
though these points have no real geometric meaning, they410

still induce important visual changes in most cases leading
to a correct registration.

4.3. Interpolation

If the image is taken too close to the surface, a lot (if
not most) of pixels do not have any information available,415

even in the case of a dense point cloud. To deal with miss-
ing information in the generated image, one has to retrieve
information for unde�ned pixels. A simple bilinear inter-
polation on the available data, as proposed in [9], leads
to a widening of the edges (Figure 5), which could cause420

registration inaccuracy. To avoid that widening we pro-
pose to divide the neighborhood of the considered pixel
into 4 sectors, and the interpolation is performed only if
at least 3 of these 4 sectors contain pixels with data. In
some cases this may leave a lot of unde�ned pixels, but425

this is a good trade-o� between edge location preservation
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No
interpolation

Splatting Bilinear Ours

Accuracy
(pixels)

41.89 23.25 21.49 20.05

Standard
deviation

109.63 16.55 7.57 6.98

Success
ratio (%)

73 82 82 89

Time
(s)

40.61 263.46 58.65 56.11

Table 1: Average error in pixels observed after di�erent kinds of
interpolation. These results were obtained using coarse registration
only from 45 images. See section 7 for evaluation methodology details

and information addition. In our implementation we used
a neighborhood of 5� 5 pixels, a choice that reveals much
needed details in the generated images, without a�ecting
the edges of the scene (Figures 3c, 5 and table 1).430

The inuence of our edge-preserving interpolation scheme
on the whole registration process is evaluated in Table 1.
Performing a registration without any interpolation pro-
duces a signi�cantly higher residual error. The gain of
using a border preserving interpolation method further im-435

proves the accuracy at a very small additional computation
cost. Even if this improvement is not as big in average as
one could expect, it has proven to be useful in some cases
(as illustrated in Figure 6).

Surface splatting is an alternative to produce synthetic440

images which is robust with respect to sparse sampling
[29]. However, using a simple surfel rendering, as described
in [30], also yields a widening of the edges (Figure 5c).
Furthermore it generates higher levels of noise when the
surfel orientation is not well de�ned (such as in the trees).445

5. Robust comparison of synthetic and real images

Our method heavily relies on 2D images comparison.
We must therefore de�ne an image comparison metric, to
determine if two images represent the same scene. In our
case, this metric should be resilient to noise and incomplete450

data. This is even more important since the modality is
not the same in both images. Indeed, in our case the real
image encodes the color information while the synthetic
image encodes an intensity derived from point normals or
point reectance. In this section we present a new way455

to compare images, building on two existing approaches,
Normalized Mutual Information (NMI) and Histogram of
Oriented Gradients (HOG), which are detailed below.

5.1. Normalized Mutual Information
MI, as introduced in section 2, is widely used for image460

registration based on image comparison even in the case of
di�erent modalities, as stated by Kim et al. [14]. We focus
here on Normalized Mutual Information (NMI), a modi�ed
version of MI proposed by Studholme [15]. This normal-
ized version ensures that the MI values are bounded. This465

(a) No interpolation (b) Bilinear interpolation

(c) Splat based rendering (d) Edge preserving in-
terpolation (ours)

(e) Bilinear (de-
tail)

(f) Splatting (de-
tail)

(g) Edge preserv-
ing (detail) (ours)

Figure 5: E�ect of the bilinear interpolation versus an edge pre-
serving bilinear interpolation. As can be seen in these images, our
proposed edge preserving interpolation improves the data density
su�ciently to give an idea of the image entropy, while preserving
the details localization compared to a classical bilinear interpola-
tion, whereas other methods give dense images but at the cost of an
edge dilatation. The original data without interpolation is shown in
magenta.
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(a) Bilinear interpolation (b) Proposed bilinear interpo-
lation

Figure 6: Details of a registration of the same region, using bilinear
interpolation, or our edge preserving bilinear interpolation.

also allows to compare images when the amount of known
data varies.

The NMI between two imagesI 1 and I 2 is de�ned as:

NMI( I 1; I 2) =
H (I 1) + H (I 2)

H (I 1; I 2)
(1)

where H (I ) is the image entropy de�ned as470

H (I ) =
X

i

pi log(
1
pi

) =
X

i

� pi log(pi ) (2)

and pi is the probability for a pixel k of image I to be
of intensity i (i.e. p(I (k) = i )). Hereafter, N is the total
number of pixels in the imageI and T(� = �) equals 1 if � =
� is true, and 0 otherwise. Unde�ned pixels in the synthetic475

images are not considered in the NMI calculation. The
probability pi is de�ned as follows:

pi =
1
N

X

k

T(I (k) = i ): (3)

Let p(m;n ) be the joint probability that pixel k has an
intensity m in image I 1 and n in image I 2. The joint480

entropy H (I 1; I 2) is de�ned as

H (I 1; I 2) =
X

m

X

n

� p(m;n ) log(p(m;n ) ) (4)

Image to image registration using NMI is e�cient in
most cases, giving a measure varying between 1.0 for no
mutual information to 2.0 for two identical images. How-485

ever, due to the amount of missing data in our synthetic
images, NMI sometimes exhibits important aws. Among
others, non-convex pro�le of this measure might lead to an

error in the maximization process yielding a wrong regis-
tration, or the global maximum might not correspond to490

the actual image superposition (see Figure 8). This can
be explained by the fact that NMI, and MI in general,
take the whole image into consideration. We propose to
re-introduce some spatial locality in the analysis instead.
Interestingly, another attempt at localizing MI was pro-495

posed in pixel-wise mutual information [13], but in case of
images using only normal information this metric exhibits
a highly nonconvex pro�le making it impossible to recover
a good registration. Our proposed approach works di�er-
ently as it combines NMI with local gradient histograms.500

5.2. Distance between Histogram of Oriented Gradients
In this section, we introduce a metric based on the spa-

tial distribution of intensity gradients called Distance be-
tween Histogram of Oriented Gradients(DHOG). It corre-
sponds to a localized integration of distances between local505

Histogram of Oriented Gradients (HOG) that we briey
describe.

5.2.1. HOG
HOG, introduced in [31], is a feature descriptor char-

acterizing image areas using their gradient information.510

HOG is widely used to compare and match images [32], or
to detect objects in images.

The Histograms of Oriented Gradients of an image can
be obtained by computing the gradients on the whole im-
age. Then the image is divided into regularly sized patches515

called cells. Orientation-based histograms are then com-
puted within each cell. Each pixel in each cell contributes
to one bin of the histogram with a weight depending on
the magnitude of the gradient. Once a histogram has
been obtained within each cell, the cells are grouped by520

blocks. For each of those blocks, a normalization factor
is computed. The blocks overlap to produce resilience
to illumination and contrast change. Therefore we have
nblocks � ncells per blocks normalized histograms.

5.2.2. DHOG525

HOG is usually computed on sliding windows, to detect
known size patterns in an image. However, here we con-
sider whole images, with �xed cells position. Let us con-
sider two imagesI 1 and I 2 on which we compute the cells
histograms of oriented gradients as described previously.530

To quantify the similarity between these two images, we
integrate the square distance between each corresponding
pair of histograms.

Since we operate on an inaccurate projection model,
it is better to favor image similarity in areas that are less535

subject to distortion. In pinhole camera models, radial
distortions a�ect the borders of the image, rather than
the image center. Using a weighted sum of squared dif-
ferences between HOG will give more importance to the
registration error near the center of the image, and help540

the registration even when the image distortions are not
well de�ned.
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Besides alleviating the bad calibration, this weighting
scheme also increases the registration accuracy: on the 45
images groundtruth, it improved the registration accuracy545

by 3 pixels and the registration success ratio by 4% in
average.

Denoting wb and hb the image width and height in
numbers of blocks, we de�ne the weightwB ij of a block
B ij centered at coordinates (i; j ) as:550

wB ij = exp �
(i � wb

2 )2 + ( j � hb
2 )2

( wb
2 )2 + ( hb

2 )2
(5)

This weight will be close to 1 around the image center,
and will decay as the considered blocks are closer to the
picture's border.

Due to the particular structure of the HOG data, given555

a real imageI r and a synthetic image I s this integration
is a function of the valuesvI r

cbij and vI s
cbij of a HOG bin b

in a cell c belonging to a blockB ij (located at coordinates
i , j ):

DHOG =

P
i;j

P
c

P
b (vI r

cbij � vI s
cbij )2 � wB ijP

i;j wB ij

: (6)560

When applied on images with only a few texture, such
as normal based synthetic images, DHOG performs much
better than NMI. However on images with a lot of textures,
NMI gives more accurate results. Thus, by combining NMI
and DHOG, we are able to overcome the failure cases of565

both as illustrated in Figure 8.

5.3. MIDHOG
As shown in Figure 8, the metric variation of NMI and

DHOG are di�erent for the same transformation. Inter-
estingly their defects appear in di�erent cases. Based570

on this observation we combine NMI and DHOG so that
a proper rough registration can be achieved where either
one of the metric would tend to drift to a wrong position.
MIDHOG is based on the dissimilarity of the images, a
value of 1:0 represents two images where gradients are op-575

posite from one another, which is rather uncommon. On
a set of 20 images we observed that NMI values usually
varies between [0:87; 0:96] whereas DHOG varies between
[0:033; 0:058]. Combination gives best results using a sim-
ple addition of the components (see equation 7), DHOG580

being weighted by a parameter� .

MIDHOG = (2 :0 � NMI) + � � DHOG (7)

MIDHOG inherits the properties of both MI and DHOG,
it is zero when the two compared images are totally iden-
tical and it is symmetrical.585

An error study of the coarse registration error com-
pared to our ground truth shows that an � value between
5 and 20 gives similar and satisfactory results (see Fig-
ure 7) whereas relying too much on NMI fails to properly
register the images. On the other hand, increasing the590

weight of DHOG too much produces unsatisfactory reg-
istration in some images. A good trade-o� was obtained
using � = 10 which is used in the remainder of this paper.
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Figure 7: Average error after a coarse registration for di�erent
choices of � values for 45 groundtruth images with random initial
disruptions.
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tion, x translation
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Figure 8: Variation of three image comparison metrics: NMI, DHOG
and MIDHOG. The top row corresponds to a per pixel translation
on the horizontal axis of the subimage in a wide angle image (see
Figure 9), and the bottom row corresponds to a translation in the
vertical axis.
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6. Method

Given an input point cloud data and a real image with595

initial pose estimate 
, our goal is to �nd a re�ned pose
estimate 
 0. We introduce a two step registration consist-
ing in a fast but coarse registration, optimizing only for
the rotation, followed by a slower �ne-scale registration
optimizing for both rotation and translation.600

6.1. Wide angle image registration

A �rst and fast registration step is performed by gener-
ating a wide angleimage of the point cloud from the initial
camera pose and by re�ning 3 degrees of freedom on the
location of this pose. For the sake of clarity, an overview605

of this coarse registration step is given in Algorithm 1.

Algorithm 1: Coarse image registration step
Data: 
: initial pose
P: camera intrinsic parameters
I R : real image
Result: 
 1 a coarsely estimated camera pose
scale= 1=4 ;
PixelMotion = 0;

 1 = 
 ;
while scale � 1=2 do

I S = Generate synthetic wide image usingP, 
 1

and scale;
(�x; �y; � ) = Minimize MIDHOG between I R

and I S using an initial step of 1=20 of the
image pixel size;


 1 = Obtain 3D pose from triplet ( �x; �y; � );
PixelMotion = max( �x; �y );
if PixelMotion � 10 then

scale= 2 � scale;

The rationale behind this �rst step is that a single wide-
angle image can be substituted to several steps of regular-
size synthetic image generation. A small pitch and yaw
rotation or translation of the pose will only marginally610

distort the pixels but will a�ect the position of the image
center in the image plane. Thus a small pitch and yaw
rotation or translation of the pose can be approximated
by a small translation in the wide-angle image plane as
depicted in Figure 9. As far as the Roll Rotation is con-615

cerned it corresponds to a rotation around its center in the
wide-angle image plane. Instead of generating a new syn-
thetic image after each small motion, a single wide-image is
thus generated and its sub-images are considered as good
approximates of smaller images after asmall viewpoint620

change. As a side-e�ect, it will also produce smoother
metric variations than the one observed when performing
a 3D rotation of the camera.

This approximation can hold for both small rotations
and small translations, however we observed experimen-625

tally, during manual image registration, that the error in

Figure 9: A small pitch and yaw rotation or translation of the pose
can be approximated by a small translation in the wide-angle image
plan.

the image registration are mostly due to rotations. There-
fore we omit the translation in this coarse step and opti-
mize only for the rotation (3 degrees of freedom). To be
even faster, we do not optimize for all rotations as real630

rotations but rather approximate the Yaw rotation by a
translation along the x axis in the image plane and the
Pitch rotation by a translation along the y axis in the im-
age plane. The last rotation, the Roll, is computed as a
rotation in the image plane around the image center.635

To generate a wide angle image, the internal param-
eters of the camera are kept identical to those given as
input, but the size of the captor and the resolution of the
image are increased. In the following explanations, images
were generated using a double sensor size and resolution.640

Starting from the wide image, the sub-image that would
correspond to an image generated with the standard pa-
rameters is extracted. Applying a translation in the X
and Y direction of the image is, if the variation is small
enough, very close to doing a real world rotation (see Fig-645

ure 9). This way, we approximate the image synthesis
without having to regenerate a synthetic view of the point
cloud. By performing a match limited to 3 degrees of free-
dom (x-y translation and a � rotation around the central
pixel), an approximation of the image with a pseudo-pose,650

i.e. a pose in the image plane, can be obtained quickly.
Unfortunately, for larger camera motions the hypoth-

esis does not hold. To cope with this problem, we iterate
this step several times, regenerating a wide angle image
after each step, or if the estimated change is superior to655

10 pixels. This leads to images with less deformation after
each iteration, allowing for a real convergence toward the
metric minimum. To further improve both the computa-
tion time and the convergence of the method, we perform
this wide angle image registration at di�erent scale levels.660
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A Gaussian pyramid is �rst built from the image. Then,
the smoothest image is considered. Indeed, the details of
the image are smoothed out as is the noise, leading to a
smoother cost function easier to minimize. Once this �rst
minimum is found, the next level of the pyramid is con-665

sidered and the objective is once again minimized starting
from the pose found at the previous level. Each iteration
provides thus a better accuracy by increasing the resolu-
tion of the image and re-generating the view while taking
into account the pose robustly estimated from the previ-670

ous iteration. If the resulting estimated plane translation
is too large, the assumption that the translation in the
panoramic image plane approximates a real-world rotation
is not valid anymore. Therefore the image is re-generated
at the same scale and the process is repeated.675

The quality of the registration is evaluated using our
MIDHOG metric. To �nd the camera pose minimizing
MIDHOG (Eq. 7), we use the BOBYQA algorithm [33]
and stop when the pose variation is small enough (2 pix-
els in our implementation). BOBYQA is a determinis-680

tic, derivative-free optimization algorithm that relies on
an iteratively constructed quadratic approximation. It
shows the same kind of aws as the method presented by
[34], such as the di�culty to overcome local minimums, as
pointed out by Taylor et al.. A better alternative would685

be to use Particle Swarm Optimization with a meaningful
number of particles but it would become computationally
intractable. Fortunately, in our case the local minimum
problem that prevents the use of BOBYQA, is smoothed
by the multi-scale approach proposed in this coarse regis-690

tration.
For each iteration, we consider the two vector ~dir (0; 0; f )

and ~ndir (� x ; � y ; f ), the original view direction and the
modi�ed view direction respectively, with � x and � y the
translation found in pixels and f the focal length in pix-695

els. We de�ne ~dyaw and ~dpitch projections of ~ndir on the
image horizontal and vertical plane passing through the
image optical center. Using these vectors we can deter-
mine the rotations ! (yaw) and � (pitch) corresponding
to the pseudo-pose estimation using the equations 8 and700

9. The roll is itself not considered as a translation in pix-
els, but is estimated by performing a rotation of the pixels
in the image plane around the transformed image central
axis.

! = � sgn(�x )atan(k ~dir � ~dyaw k2; ~dir � ~dyaw ) (8)705

� = � sgn(�y )atan(k ~dir � ~dpitch k2; ~dir � ~dpitch ) (9)

The result of this coarse step is a modi�ed pose 
1,
that will be further re�ned in the following �ne registration
step.

6.2. Image to geometry �ne registration710

Having obtained a �rst estimation of the pose e�-
ciently, the �ne scale registration consists in estimating
the real pose 
 0 not far from the coarse estimation 
 1 by

Coarse Registra-
tion

Fine Registra-
tion

Cost function MIDHOG MIDHOG (pre-
cision) / DHOG
(speed)

Multi-
resolution

Yes No

Parameters Rotation (3DoF) Rotation +
Translation

Parallax No Yes

Table 2: Comparison of the di�erences and similarity between the
coarse and the �ne step of the presented method. We do not consider
any parallax in the coarse registration step, as we do not modify the
camera position, but �rst try to determine the best viewing angle of
the scene.

considering the full 6 degrees of freedom. Despite the non
convex form of the similarity metric with respect to the715

pose, we can �nd a satisfactory local minimum since 
1 is
close to 
 0. For that, we rely once again on the BOBYQA
algorithm [33] to perform the derivative free minimization.
Similarly to the coarse step, the MIDHOG metric de�ned
in equation 7 allows for a better camera pose estimation,720

especially if the synthetic image is sparse. However, if the
priority is given to the computation speed at the risk of los-
ing some precision, it is safe to drop the NMI component of
MIDHOG to rely solely on DHOG. This increases drasti-
cally the processing speed. Interestingly, this substitution725

can be done relatively safely only in the �ne registration
step since the search is limited to a narrow band around
the pose 
 1 found in the coarse registration step.

Contrarily to Taylor et al. [20], we do not need to
perform particle swarm optimization since the �rst step730

has given an approximation close to the global minimum,
where the metric behaves like a smooth convex function.
This leads to a much lower computation time.

To recap our two step method, Table 2 lists the di�er-
ences between the coarse and the �ne registration steps.735

7. Results and Discussions

Our method was tested on the Shrewsbury dataset de-
scribed in the introduction. This set contains both point
clouds and associated images. Several places of the city
with di�erent architecture style and environment were se-740

lected to observe the performance of the method. For each
of these places we singled out an image and run the two-
step registration. The point cloud was automatically cut
using a bounding box in a large area around the selected
camera initial pose to limit the memory impact. Our tests745

were run on a laptop (Intel Core i7 2:7GHz CPU, NVIDIA
Quadro K3100M), with approximately 100 million points
processed at a time. Of course, larger point clouds can be
loaded at once if enough memory is available. A �rst pre-
processing step was performed on the real images to con-750

vert them from RGB to grayscale images using the stan-
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dard Luma rec 601 conversion. The whole method was
implemented in C++ using the NLOPT [35] library for
the BOBYQA algorithm to minimize MIDHOG.

To evaluate the performances of the algorithm, we built755

a special groundtruth dataset using manual registration.
First a series of 45 images was randomly selected among
all pictures taken along the path of the vehicle mounted
LiDAR. These images were then recti�ed using the given
intrinsic parameters and manually registered to the point760

cloud by selecting 20 to 40 corresponding points both in
the images and on the geometry. This dataset of 45 regis-
tered images are considered as an acceptable ground truth.
However it should be noted that even if a special care was
taken to select relevant common points, the registration in765

some images is still imperfect and may eventually lead to
small disturbance. Besides the recti�ed images are only an
approximation of the undistorded reality and may contain
residual errors that might impact the quality of the regis-
tration. To evaluate quantitatively our proposed method,770

a perturbation was applied to each groundtruth camera
pose, consisting of a random uniform variation up to 5� in
both yaw and pitch, up to 2 � in roll and up to 10cm in
X , Y and Z . This yields a set of images with perturbed
camera pose that can be registered to the pointset using775

our method. Since the perturbation is known, the quality
of the registration can now be evaluated with respect to
the manual groundtruth. Setting up this groundtruth led
us to the observation that the average registration error
is around 6cm with errors up to 30cm in the estimation780

position and around 1� in yaw and pitch with peaks up to
4� . Errors in roll are always smaller than 1� .

7.1. Coarse image to geometry registration

The panoramic image registration is an important step
since it generates an excellent rotation approximation for785

a very small computation time. To compute DHOG, we
used square cells of constant 32� 32 pixels size, with un-
signed gradients and 9 bins in the histograms. Blocks were
composed of 4� 4 cells and their `2-norm was used as the
normalization factor. For this coarse registration step, we790

found that scales 1=4 and 1=2 are enough to get a good
registration approximation. For MIDHOG minimization,
we used ax and y step starting at 1=20 of the image size
in pixels at the �nest scale. For the roll � , since the initial
error is in general much lower (less than 1� ), a small step795

of 0:6� is used.
Figures 10 and 11 present registration results obtained

solely using the coarse registration method. It appears
clearly on all these �gures that the coarse registration im-
proves the camera pose estimation compared to the orig-800

inal registration. Detailed analyses are provided for each
of these �gures in the next paragraphs.

Council street. The �rst example set is acquired near the
town council and o�ers generic city geometrical proper-
ties, with square shaped buildings, and low angle rooftops.805

Figure 10 shows the evolution of the registration through

(a) Original pose (b) Scale 1=4 (c) Scale 1=2

(d) Detail (original
pose)

(e) Detail (scale
1=4)

(f) Detail (scale
1=2)

Figure 10: Coarse Registration comparison on Council street data,
with initial registration error of 2 :4� (yaw) and 0 :5� (pitch). Ma-
genta color is the original registration and green color is the coarse
registration results at di�erent scale. The computation took around
60s.

the mutiscale registration steps. Our method performs
also well in areas with missing building pieces or jagged
skyline (Figure 10a). A di�erent view of the same loca-
tion (Figure 11a) o�ers di�erent challenges such as missing810

rooftops, missing wall parts and occluding shadows around
the foreground elements such as the fence. While the de-
tails in Figure 11b show an improvement after the coarse
registration step, the registration is only roughly accurate.

Castle street. This is a complex geometry area with high815

angle rooftops, two moving vehicles and some pedestrians
away from the acquisition vehicle. Results of the coarse
registration are less accurate than on council street (Figure
11b), however, the pose estimation has clearly improved
compared to the initial pose, as visible in Figure 11e, and820

in Figure 11f for larger input errors.

Shopping street. The third example is a narrow city street
environment with high buildings around the street and no
access to any skyline (Figure 11c). Since the surfaces are
close to the camera position, the point cloud density in825

the image plane in this area is low. We can observe here
that the improvement provided by the coarse registration
is marginal (Figure 11c and Figure 11d), mostly due to the
fact that we are already close to the best possible solution.
The coarse step provides thus a fast pose approximation,830

but there is still a residual error (Figure 11e and Figure
11f) that will be reduced in the next step.

7.2. Fine image to geometry registration

Although the coarse registration might look visually
satisfactory (�gures 10, 11a and 11c), a closer inspection835
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(a) Coarse Registration -
Council Street

(b) Detail - Council Street

(c) Coarse Registration - Shop-
ping Street

(d) Detail - Shopping Street

(e) Coarse Registration - Cas-
tle Street

(f) Detail - Castle Street

Figure 11: Di�erent e�ects of the coarse registration method using
an input image taken from a lateral camera. Original registration
(magenta) and coarse registration (green).

(a) Coarse (b) Coarse+�ne

(c) Coarse (detail) (d) Coarse+Fine (detail)

Figure 12: Details of the registration on a part of Castle street,
for coarse registration only, or for coarse and �ne registration. The
improvement of the registration with the �ne method is clearly visible
around the street lights.

on the details of the image/point cloud superposition re-
veals that the coarse registration still produces important
errors. These errors are particularly visible in �gures 11b
and 11d. In those cases the �ne registration step im-
proves drastically the registration, as shown on Figure 12.840

When comparing the results of the coarse only registration
against the coarse plus �ne registration, one can clearly see
an improvement in the �tting of the image to the point
cloud.

As explained in section 6, the �ne scale registration845

step should be performed with MIDHOG leading to a pre-
cise registration. However it comes at the cost of higher
computation times. In order to alleviate this drawback it
is possible to drop the NMI part of MIDHOG and thus to
use solely DHOG, possibly yielding larger residual errors850

but faster computations. Table 3 compares the accuracy,
computation times and successful registration ratio of both
alternatives. The success ratio is obtained by considering
the registration to be successful when the registration er-
ror is below a threshold (25 in our case). The remaining855

error is the error computed on the images considered as
correctly registered. As expected the computation time is
improved by using only DHOG with a gain of about 40s
in average. However, when relying only on normals, the
overall registration quality su�ers from the unique use of860

DHOG, whereas using MIDHOG as the image comparison
metric leads to an average registration error 4 pixels lower
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Error Std Time Ratio
Remaining

Error
Original

disruption
123.57 40.82 N/A N/A N/A

NMI
(normals)

448.94 633.3 302s 31% 20.05

NMI
(reectance)

24.25 77.23 585s 91% 8.56

DHOG
(normals)

20.74 20.35 498s 89% 15.34

DHOG
(reectance)

15.25 21.05 572s 98% 12.28

MIDHOG
(normals)

16.77 10.77 541s 93% 14.85

MIDHOG
(reectance)

15.25 21.05 597s 98% 12.28

Table 3: Comparison of the average error in pixels, standard devi-
ation, convergence time, successful registration ratio and remaining
error on the successful registration case for 45 images using either
NMI, DHOG or MIDHOG as image comparison metric. The re-
maining error is the error computed on the images considered as
correctly registered. Lines containing (reectance) mark are based
on the reectance values rather than on the normal value for the
metric calculation. Using the reectance values leads to a major
improvement in the results quality.

and a higher success rate. When using reectance infor-
mation both MIDHOG and DHOG give similar results.

All previous experiments were run by considering syn-865

thetic images created from estimated normals or reectance.
In the di�cult case of normal based synthetic images,
we showed that our proposed metric was able to perform
the registration while other methods failed. Yet LiDAR
devices can provide an additional information: the re-870

ectance of the laser. This information produces synthetic
images that can be compared more easily with real im-
ages, and most methods work on this type of modality.
Table 3 also shows that when using the reectance infor-
mation for synthetic image generation, our method out-875

performs state-of-the art methods in terms of successful
registration.Using the groundtruth described in section 6,
the registration e�ciency was compared using NMI with
either simple geometrical information or reectance values
and the same comparison was done using MIDHOG. As880

can be seen in table 3, using NMI without the reectance
values had a huge impact on the �nal registration. Mastin
et al.[17] observed that for aerial scans and photo, the use
of reectance only marginally improved the registration.
However in our case the reectance values, if available, im-885

prove greatly the �nal registration. This statement is also
true but less spectacular when using MIDHOG, in which
case the reectance values improve the �nal registration
only slightly. The NMI registration based on the normals
fails to properly register the image and the point cloud.890

On the other hand, MIDHOG and NMI based on the re-
ectance give similar and satisfactory results. MIDHOG
based solely on the estimated normals also gives satisfac-

x(m) y(m) z(m) ! ( � ) � ( � ) � ( � ) pixels
Normals 0:051 0:061 0:058 0:516 0:745 0:458 16:6
Reectance 0:056 0:060 0:058 0:344 0:401 0:401 9:74
KITTI 0:082 0:055 0:057 1:031 0:115 0:458 14:29

Table 4: Average registration error of our two-step method com-
pared to the ground truth for 45 random images and for the KITTI
dataset. x; y; z : translation, !; �; � : Euler angles; and error mea-
sured in the image (in pixels). N is a Normal based registration, R
is a reectance intensity based registration, KITTI is the result on
the KITTI dataset (normals based).

(a) NMI based registration on
normals.

(b) NMI based registration on
reectance.

(c) MIDHOG based registra-
tion on normals.

(d) MIDHOG based registra-
tion on reectance.

Figure 13: Di�erent metrics used for the registration based either on
the normals or on the reectance values of the point cloud.

tory results, but is sightly less accurate than using the
reectance.895

Table 4 gives the average errors on the groundtruth
dataset for a complete MIDHOG registration using either
the normals or using the laser reectance. These results
were computed with randomly generated errors, di�erent
than the ones present in table 3, which explain the slightly900

di�erent residual error values.
We also applied our registration method to the KITTI

dataset [36]. This dataset was obtained using a Velodyn
LiDAR and co-registered camera. However, the Velodyn
LiDAR outputs a point cloud that covers only a fraction905

of the space around the moving vehicle (see Figure 14).
When projecting the point cloud on the image plane, the
captured geometry covers only roughly half the image, and
points located too far from the Lidar are also not acquired
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Figure 14: Projection of the point cloud on two of the images of the
Kitti dataset containing image/scan pairs. The Velodyne LiDAR
point cloud is sparse, and its scanning height is limited, which only
o�ers a small amount of corresponding data.

at all. This is a huge di�erence with our data where point910

clouds have neither height nor depth limit, since the scans
were previously merged and consolidated. To assess the
registration quality of our approach, a process similar to
the one described in the beginning of section 7 was applied
to the KITTI data. Considering one image/scan pair at915

a time, a random error between� 5� was applied in pitch
and yaw, and a random error� 0:1m was added to the po-
sition. Our two step registration was applied on drive set
number 71. It appears that due to the nature of the data,
the registration of a single image/scan pair does not give920

satisfactory results. In this particular case, the method
proposed by [19] appears to work better, and is applicable
due the low size of image and the low size of the point
cloud. However, if we consider several image/scan pairs at
once, in a similar way to [18] to compute MIDHOG, our925

method successfully registers the images to the scans as
shown in table 4 (last row).

The two-step registration method exhibits several ad-
vantages compared to a direct 6 degrees of freedom regis-
tration. One of these advantages is its resilience to impor-930

tant rotations. Indeed, as can be seen in table 5 , applying
directly a 6 degrees of freedom pose estimation in a non
optimal environment yields far larger errors. This can be
explained by the sparse nature of the images, errors in the
point cloud and missing data. Clearly, the two-step regis-935

tration outperforms a single step registration. As visible in
tables 6 and 7, our method can handle rather large input
errors with acceptable accuracy results. However errors
above 15� tend to be too high to be reliably overcome.

7.3. Comparisons940

We compared our approach with two recent works for
registering images on a point cloud. The �rst one is the
original Taylor algorithm [19] based on Normalized Mu-
tual Information and the second one is the GOM metric
of the same author [20]. Comparisons were run on a sub-945

set of our real dataset, around Castle street, limited to 16

Error
(pixels)

Std Time Ratio
Remaining

Error
Original

disruption
123.57 40.82 N/A N/A N/A

NMI
(�ne only)

169.93 204.12 550s 7% 28.9

NMI
(coarse + �ne)

448.94 633.3 302s 31% 20.05

DHOG
(�ne only)

107.83 54.50 366s 11% 12.69

DHOG
(coarse + �ne)

20.74 20.35 498s 89% 15.34

MIDHOG
(�ne only)

104.78 56.99 435s 17% 12.36

MIDHOG
(coarse + �ne)

16.77 10.77 541s 93% 14.85

Table 5: Comparison of the average error, standard deviation, con-
vergence time, successful registration ratio and remaining error for
45 images using either NMI, DHOG or MIDHOG as image compari-
son metric. The remaining error is the error computed on the images
considered as correctly registered.. The results obtained using the
�ne step only have largely worse results than the one obtained by
the full coarse plus �ne registration. All these data were obtained
using the normal information of the point to compute the metric.

Angle
(degrees)

3 6 9 12 14 17 20 23

Success ratio
(%)

100 72 65.4 47 46.6 27.3 30 0

Table 6: Registration success ratio when applying a random disrup-
tion around a random rotation axis for 12 images. the displayed
angle is the angle between the viewing direction of the original and
disturbed camera, therefore even a rather small angle can represent
important pitch, yaw and roll disruption.

Pitch
Yaw

5� 10� 15� 20�

5� 100% 66% 50% 25%
10� 83% 66% 50% 33%
15� 66% 58% 33% 25%
20� 41% 16% 16% 16%

Table 7: Registration success ratio when applying a yaw and pitch
disruption for 12 images. Ratio obtained for original disruptions
lesser than 10� are quite acceptable, however, original disruptions
superior to 15 � dramatically decrease the registration quality.
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Million points due to the memory limitation of the Matlab
implementation. First, the GOM method does not address
point visibility problems which leads to areas blurred by
inconsistent information superposition, as shown on Fig-950

ure 15a, inuencing the algorithm convergence. This test
was run with particle swarm of 0:5m variation in transla-
tion, a 2:5� range in yaw, pitch and roll. Figure 15 shows
that using the GOM metric does not lead to a proper reg-
istration.The GOM metric is not robust enough to resist955

to sparsity and missing parts of the synthetic images. The
sparsity and the missing parts of the generated image dis-
turbed the metric too much and actually prevented the
registration. A similar test was run using the NMI metric
(Figure 15b) and, once again, we can observe a failure to960

properly register the image on the point cloud.
Other tests were run on di�erent scenes, applying the

same� 0:1m and � 5� of search range. This is illustrated
by Figure 16 where the original image appears in magenta
and the point cloud projection appears in green.Results965

show once again that both NMI and GOM fail to properly
register the image. Tests based solely on NMI failed to
register properly (�gures 16a and 16f), even when using the
reectance data (�gures 16b and 16g). Tests using GOM
metric also failed to register properly the image (�gures970

16c, 16h and 16i, except when using the reectance value
(Figure 16d), which yields an acceptable result, whereas
our algorithm yields a good results in all cases (Figure 16e
and 16j).

8. Conclusion975

We presented a process to register e�ciently and ac-
curately an image in a large scale point set starting from
an initial position. This method proceeds in two steps: a
coarse registration step and a �ne scale registration step.
Both steps play an important role: the coarse registration980

step makes the process more resilient to a bad initial pose,
while the �ne scale registration step permits to obtain very
low registration errors. Both steps rely on a synthetic im-
age generation adapted to large urban point clouds. A key
feature of our work is that we propose an alternative for985

the generation of synthetic images from the sole geometric
information when no reectance information is available.
We also proposed a new robust image comparison metric
adapted to the comparison of a real image with a synthetic
image resilient to large pose transformation. As a future990

work, the method can be further improved by integrating
the re-estimation of the image distortions during the �ne
registration step which would lead to a better distortion
model and even more precise results.
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(a) GOM method [20] (40 minutes) (b) NMI method [19] (62 minutes) (c) Our two-step method (10 minutes)

Figure 15: Di�erent registration results using various techniques on a subset of the point cloud. Our method clearly leads to a good registration
whereas other methods fail. The high amount of noise and artifacts, characteristic of complex urban scenes, coupled with the lack of occlusion
may be the origin of this registration failure.

(a) NMI with particle
swarm

(b) NMI with particle
swarm (reectance)

(c) GOM with particle
swarm

(d) GOM with particle
swarm (reectance)

(e) Our method

(f) NMI with particle
swarm

(g) NMI with particle
swarm (reectance)

(h) GOM with particle
swarm

(i) GOM with particle
swarm (reectance)

(j) Our method

Figure 16: Di�erent metrics from Taylor et al. [19, 20] used with a particle swarm optimization. Registration with NMI are clearly misaligned.
GOM based on the estimated normals also lead to wrong registration. However using the reectance values combined with GOM clearly gives
acceptable results in one case (16d) whereas our algorithm yields a good results in all cases.
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