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Abstract

This work provides a formal assessment on the pessimism of existing
methods for the schedulability analysis of multicores with global fixed pri-
ority (FP) scheduling. We show how according to the existing analysis
methods for FP scheduling, it is relatively easy to define a simple task
allocation strategy followed by local analysis that dominates the existing
global-FP feasibility analysis algorithms, in terms of deadline guarantees.
Rather than being an indication of a true comparison between the effec-
tiveness of local and global policies, we consider the result as an indication
of the limited maturity of multicore global analysis (and its outstanding
pessimism).

Additionally, we show how a simple change in the task model, con-
sisting in splitting the task execution and performing the analysis in two
stages, allows to provide a better global schedulability analysis that over-
comes this limitation. However, the new analysis mainly aims to show
where the demonstrated pessimism most likely comes from. Due to the
huge pessimism pointed out on existing analyses and the limited improve-
ment from the new analysis, more efforts from the community are needed
to enhance the multicore global scheduling works.

1 Introduction and State of the Art

A real-time task is a piece of software codes that is repeatedly activated with
specified (minimum) inter-arrival time. Each task instance can be called a job,
which is further characterised by its arrival time and an absolute deadline such
that a job must complete its execution in between the two time instants: the
duration of a job’s execution is called its response time. A task is said to be
schedulable if all its jobs can meet the respective deadlines.
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The real-time scheduling problem deals with how to schedule a set of tasks
so as to guarantee that they complete execution before their deadlines on a
single-core or multicore platform based on simple assumptions on their (worst-
case) execution times. The problem consists of two sides: defining an effective
scheduling policy and finding an analysis method that allows to provide the
required guarantee for the selected policy (or a class of them).

This work targets the very common model of periodic or sporadic indepen-
dent tasks that need to be scheduled on a set of cores. Each task is further
characterized by its worst-case execution time and relative deadline.

Since the seminal work of Liu and Layland (1973), the Fixed Priority (FP)
and the Earliest Deadline First (EDF) scheduling algorithms have been over-
whelmingly popular. According to the FP scheduling, a task is statically as-
signed a priority, and all of its jobs execute according to it. At runtime, the
arrival of a higher priority job can preempt the execution of a lower priority
job. In EDF scheduling, the priority is assigned to each job separately and
depends on its absolute deadline, such that an earlier deadline corresponds to a
higher priority. Both FP and EDF belong to the class of job-level fixed-priority
scheduling policies.

In the case of the single core, most existing analysis results make use of the
critical instant theorem, which provides knowledge on the worst-case combina-
tion of task arrival times that results in the worst-case response time for a given
task. As shown in Liu and Layland (1973), the worst-case scenario for single
core analysis is when all tasks are simultaneously activated and all tasks release
their jobs as soon as possible. By analyzing this job release pattern, the exact
schedulability analysis upon the single core is tractable (in pseudo-polynomial
time) for both FP (Audsley et al (1991)) and EDF scheduling (Baruah et al
(1990); Spuri (1996)).

Upon multicores, the available scheduling policies can be classified as parti-
tioned or global.

In partitioned scheduling, tasks are statically allocated to cores, and the
tasks associated to a core are scheduled as in the single core case. The task
allocation problem for the partitioned scheduling can be formulated as a bin
packing problem (Baruah and Bini (2008)). Even if not optimal, there are
heuristic algorithms like those in Fisher et al (2006) and Chen (2015) that can
find efficient solutions to the partitioning problem.

In global scheduling, a task is allowed to freely migrate among the available
cores (typically with a simplified assumption of zero migration cost). A preemp-
tion can happen if a higher priority job arrives but there is no idle core. In this
case, the preeempted task is put back in a global ready queue and may resume
its execution upon the first core that becomes available (the same where it was
executing or a different one). In correspondence with the FP algorithm and the
EDF algorithm, global scheduling can be performed using Global FP (G-FP)
or Global EDF (G-EDF) upon the multicore.

Partitioned scheduling and global scheduling are incomparable. For example,
if a task is schedulable by G-FP (G-EDF) scheduling, then it may or may
not be schedulable by partitioned FP (EDF) scheduling, and vice versa. More
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information for multicore real-time scheduling is surveyed in Davis and Burns
(2011b).

In this work, we focus on multicore global scheduling. Different from the sin-
gle core case, in the analysis of multicore global scheduling, the critical instant
condition cannot be easily identified and there is no simple way to find the abso-
lute worst case set of job arrivals. An illustrative discussion on the time critical
condition can be found in Baruah (2007); Davis and Burns (2011b). Davis and
Burns (2011a) and Sun et al (2014) independently identified a (infinite) class
of task activations that lead to the worst-case response time of a task. In fact,
there is currently no single worst-case scenario for analysing the schedulability
of a task in the case of global scheduling. An exact analysis would need to con-
sider all the possible task arrival patterns and is clearly impractical. Therefore,
the state of the art for multicore analysis of global scheduling relies on a set of
sufficient-only conditions that are to some degree pessimistic.

This creates two open problems: first, there is currently no simple way to
compare the effectiveness of partitioned versus global scheduling, even under
the assumption of availability of good (but necessarily suboptimal) partitioning
schemes. The second problem is how to improve the quality of the existing
analysis methods to reduce their pessimism and hopefully to achieve a measure
of their overall quality in comparison to an ideal sufficient and necessary test.

Contributions

• The main result of this paper is a formal proof that demonstrates how ex-
isting multicore global scheduling analysis methods are pessimistic enough
to be always dominated (only in terms of scheduling guarantees, not real
performance) by a simple partitioning scheme followed by exact local anal-
ysis.

• Another minor contribution is that we show how most likely the pessimism
derives from limitations in the analysis method, not the scheduling policy.
It is shown that a very simple change in the input model for the analysis,
consisting in considering the execution of a task as the sequential execu-
tion of two segments (this does not change the actual task model, nor its
scheduling) is sufficient for an improvement of the analysis results. This
contribution is partly of value as a new way of applying the existing analy-
sis methods, since it provides better/tighter schedulability conditions, but
mostly points at the need for better methods and better ways to reduce
pessimism.

1.1 Related work

A set of tests have been developed for the exact analysis of globally sched-
uled tasks under the assumption of discrete time, that is, all tasks must ar-
rive only at integer time instants. Bertogna and Cirinei (2007) proposed the
first test based on explicitly modeling the schedulability analysis as a finite
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state machine and computing the state space. Geeraerts et al (2013) enhanced
Baker and Cirinei’s solution by investigating the simulation relation to eliminate
the unnecessary states that are not useful for assessing the schedulability. In
Bonifaci and Marchetti-Spaccamela (2012), the multicore global schedulability
problem was studied and was formulated into a two-player game and this moti-
vated Burmyakov et al (2015) to develop a faster exact test for multicore G-FP
scheduling. Due to the complexity of the problem, all these methods can only
deal with task parameters with rather small integers. This constraint holds,
even when considering only a task’s periodic behavior. Examples of works fous-
ing on the exact global schedulability analysis of periodic tasks upon multicores
include Guan et al (2007) and Cucu-Grosjean and Goossens (2011).

As shown in Sun (2015), the multicore global scheduling in discrete time is
not robust with respect to the selection of the time granularity and guarantees
are not retained if a smaller step is selected (or against drifts or inaccuracies
in the assumptions). For example, given a set of tasks that are schedulable
by G-FP (assuming discrete time), schedulability may not be preserved if all
task parameters are scaled up by a common factor (such as 10). Different from
the above exact solutions, Sun and Lipari (2014) solved the G-FP schedulabil-
ity analysis relying on the Linear Hybrid Automata model in continuous time.
Further, Sun and Lipari (2015a) managed to prove that the exact analysis of a
set of sporadic tasks under a G-FP scheduler can be decided within a bounded
time interval.

Unfortunately, nowadays exact solutions suffer from the fact that they can
only deal with very small systems, thus the major effort from the community has
been on providing over-approximate analysis results. Among the large number
of available results, we refer to those that are most influential and we believe
most related to our work.

Baker (2003) developed a schedulability analysis method that consists of se-
lecting a time interval (or problem window) and computing the maximum work-
load and interference that the task under analysis may suffer within it. Bertogna
et al (2005) observed that if an interfering task’s workload is too large, then the
part that executes in parallel with the task under analysis should not be taken
into account for bounding the maximum interference. This simple observation
is often used as the main approach to reason on the parallel execution of tasks
in the schedulability analysis of multicores. In Bertogna and Cirinei (2007),
the Response Time Analysis (RTA) technique was applied to the schedulability
analysis of multicore global scheduling. Within the problem window, the inter-
fering tasks can be divided into two classes: i) carry-in (CI) tasks with a job
that is released before the start of the window but finishes within the window,
and ii) non-carry-in (NC) tasks. An interfering task can bring more interference
if it has carry-in. Baruah (2007) developed the limited carry-in technique by
formulating a problem window such that the number of of CI tasks within it
is bounded by the number of cores minus by one. Although the technique in
Baruah (2007) was originally designed for G-EDF scheduling, Guan et al (2009)
combined it with the RTA in Bertogna and Cirinei (2007) and improved the
schedulability analysis for G-FP scheduling. Similarly as in Guan et al (2009),
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the RTA procedure and the limited carry-in technique have been integrated
in Sun and Lipari (2015b) for improving the schedulability analysis of G-EDF
scheduling. Lee and Shin (2013) made the attempt to apply the limited carry-in
technique to the general class of global scheduling policies.

The test in Guan et al (2009) has been regarded as the state-of-the-art G-FP
schedulability analysis. Sun et al (2014) demonstrated and fixed the optimism
for the formulation of the workload in Guan et al (2009) in the case of arbitrary-
deadline tasks (that is, a task is allowed to release a new job even before its
current job finishes its execution), and developed a carry-in enumeration tech-
nique that explicitly considers every possible combination of CI tasks within the
problem window. Though this analysis method suffers of exponential time com-
plexity, Sun et al (2014) confirmed its applicability and performance improve-
ment for rather large systems. Later, Huang and Chen (2015) also discovered the
issue in Guan et al (2009), and proposed a new G-FP test for arbitrary-deadline
tasks. Another G-FP test has been proposed in Liu and Anderson (2013), but
its authors reported that there was an error in the workload formulation, and its
performance was never re-validated. The G-FP test in Guan et al (2015) tries
to estimate the CI task’s interference more carefully; however, the improvement
it brings may not be justified by its additional runtime complexity.

Most state-of-the-art tests for G-EDF are incomparable with each other. An
empirical evaluation in Bertogna and Baruah (2011) showed that the tests in
Bertogna and Cirinei (2007) and Baruah (2007) have better average performance
than others. Recently, Sun and Lipari (2015b) proposed a G-EDF test that
strictly dominates Bertogna and Cirinei (2007) and Baruah (2007) (if a taskset
is judged to be schedulable by the latter is always found schedulable by Sun and
Lipari (2015b)). However, the proposed method is incomparable with G-EDF
tests like those in Baker and Baruah (2009a) and Baruah et al (2009).

To improve the accuracy of existing sufficient schedulability tests, Lee et al
(2015) developed a compositional theory to apply a schedulability test after
isolating an interfering task (typically with a very large load) on a dedicated
core. Indeed, when there is a significantly large parallel execution between the
interfering task and the one under analysis, some sufficient tests can be so pes-
simistic that it is better to assume that the interfering task always runs upon a
dedicated core. In Lee et al (2015) the performance of this compositional theory
was studied with several specific schedulability tests. A similar method has also
been used in Pathan and Jonsson (2014) to improve the priority assignment
scheme in Davis and Burns (2011a) for G-FP scheduling.

In Lee (2014), the execution time of the task under analysis is considered as
the composition of two segments, and the interference is separately analyzed for
each part. However, applicability of this solution is restricted to the context of
the G-EDF test in Bertogna and Cirinei (2007).

Many of the above mentioned works (e.g., Guan et al (2009); Sun et al
(2014)) assume discrete time and, as shown in Sun (2015) they are not robust
with respect to the granularity of the time step or the violation of the discrete
time assumption.
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Organization of this paper In Section 2 we formally describe the system
model in this paper. Section 3 introduces the state-of-the-art multicore global
schedulability analysis and Section 4 emphasizes its limitation. To tackle such
a limitation, the new schedulability analysis scheme is developed in Section 5.
In Section 6, this new technique is compared with previous works. Section 7
concludes the paper.

2 System Model

A real-time task is characterized by a tuple τi = (Ci, Di, Ti), where Ci is its
Worst-Case Execution Time (WCET), Di is the relative deadline and

• if τi is a sporadic task, Ti is the minimum time interval between two
successive instances of the task;

• if τi is periodically activated, Ti is its period.

For simplicity, we assume that Ci ≤ Di ≤ Ti. The utilization of a task is defined
as Ui = Ci

Ti
.

Each task instance is denoted as a job. A job is further defined by its arrival
(release) time ri,j ∈ R+ ∪ {0}, its finish time fi,j , and its absolute deadline
di,j = ri,j + Di, where j represents the job index. The duration of a job’s
execution, i.e., fi,j − ri,j , is the job response time: the Worst-Case Response
Time (WCRT) Ri of a task is the maximum response time among all its jobs. A
task is said to be schedulable if its jobs always complete before their respective
deadlines, that is, the task WCRT does not exceed its Di.

We discuss the scheduling problem in the continuous time domain, meaning
that the job arrival time ri,j and finish time fi,j are non negative real values.

A real-time system consists of a set T = {τ1, . . . , τn} of n real-time tasks
running upon m (m < n) identical cores. Tasks are scheduled by the Global
Fixed Priority (G-FP) scheduling policy. By convention, we assume that a task
with lower index has a higher priority, that is, if i < k, then τi has higher
priority than τk. A system is said to be schedulable if every task is schedulable.

It is demonstrated in Baker and Baruah (2009b) that the G-FP scheduling
of sporadic real-time tasks is sustainable with respect to the execution time: by
decreasing the execution time of tasks in a schedulable system, the resulting
system is still schedulable. Sustainability also holds for periodic tasks (the
periodic activation is a special instance of the more general general case). Thus,
we simply assume that every task activation requires exactly its WCET.

3 Multicore Global Schedulability Analysis

In this section, we introduce the state-of-the-art schedulability analysis methods
for multicore global scheduling, and then we provide evidence of their pessimism.
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We focus on the schedulability of a task τk, also defined as target task. More
specifically, we analyze one arbitrary job of τk, or target job. The execution of
the target task is interfered by higher priority tasks.

Multicore global schedulability analysis is based on the concept of problem
window. A problem window is a time interval [a, b) such that a is the arrival
time of the target job, b is a generic value ≤ a+Dk and x = b−a is the length of
the window. The target job is schedulable if it can complete its WCET within
the problem window.

The workload of a task τi in a problem window of length x is the amount
of time in which τi can execute during this time interval. Wi(x) denotes the
maximum workload of τi. The interference from a higher priority task τi upon
the target job within the problem window is the cumulative time in which the
target job cannot execute because of the execution of τi.

For multicore global schedulability analysis, it is extremely hard to exactly
compute the worst case interference that the target job experiences. A simplistic
upper bound on the interference from a higher priority task τi is the maximum
workload of τi within the problem window. However, in Bertogna et al (2005)
the bound is improved by observing that the execution of τi that is performed in
parallel with the target job should not be considered as part of the interference.

In a discrete-time system, if the target job can complete its WCET within
the problem window [a, b) of length x, then the interference from each higher
priority task τi can be upper bounded as:

Ii,k(x) = min{Wi(x), x− Ck + 1}.

This constraint is the main approach that is used in the global multicore
analysis to bound the interfering workload. The unit that is added in the con-
straint is justified by the discrete time assumption. In continuous time, the term
(x − Ck + 1) can be replaced by (x − Ck + ε) with ε > 0 and arbitrarily small
and Ii,k(x) can be bounded as:

Ii,k(x) = min{Wi(x), x− Ck + ε}. (1)

Given the formulation of the interference in (1), multicore analysis requires
that the interference is used in a condition that allows to check completion of
the target job before the deadline and also that a suitable bound for the higher
priority workload in (1) is defined.

As for the feasibility condition, in Baruah (2007), Γk is used to denote a
collection of intervals, not necessarily contiguous, of cumulative length (x−Ck)
over [a, b), during which all m cores are occupied by higher priority tasks. For
each i, 1 ≤ i < k, let I(τi) denote the time in which a higher priority task τi
executes in Γk. In order for the target job not to execute its WCET within
[a, b), it is necessary that the total amount of execution from higher priority
tasks in Γk satisfies ∑

i<k

I(τi) ≥ m · (x− Ck).
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A sufficient condition for the feasibility of the target job in [a, b) is thus∑
i<k

Ii,k(x) < m · (x− Ck). (2)

This inequality is used as a schedulability condition. As a shortcut, we will
use the notation

Ωk(x) =
∑
i<k

Ii,k(x). (3)

We assume the availability of a function Fk(·) that returns the minimum
value of x that satisfies the schedulability condition in (2) or Fk(·) =∞ if τk is
not schedulable:

Fk(·) = min{x} s.t.

x ≥ Ck and Ωk(x) < m · (x− Ck).
(4)

By definition, the value of Fk(·) is also an upper bound for the WCRT of τk
and the task is schedulable if

Fk(·) ≤ Dk. (5)

However, in many works including Guan et al (2009), instead of inequality
(2), an optimistic schedulability condition is used for judging the schedulability
of a task, as in: ⌊

Ωk(x)

m

⌋
≤ x− Ck

that is only valid for a discrete-time assumption.
Most efforts in recent research on multicore schedulability analysis have been

dedicated to the problem of finding a suitable bound for the workload Wi(x).
The results in this paper are independent from the specific method that is

used to upper bound Wi(x). However, it is worth recalling that the problem of
estimating the workload is complicated by the absence of a time critical instant
(Baker (2003)). Hence, interfering tasks can be divided in two sets. Tasks that
have a carry-in job that is in execution at the time when the target task arrives
(or carry-in tasks, CI, see Figure 1) and tasks that do not have a carry-in job
and in the worst case arrive together with the target task (or non-carry-in tasks,
NC). The contribution to the workload of a task can be larger if the task is of
type carry-in, that is, WCI

i (x) ≥WNC
i (x).

TiTi −Ri

a b

Figure 1: The worst-case arrival pattern for Wi(x) with carry-in
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4 Evaluating the Pessimism of Current Multi-
core Global Schedulability Analysis

We provide a theorem to show how global multicore FP analysis is still affected
by significant pessimism. A simple task partitioning policy, denoted as P, is
used in the demonstration.

Partitioning algorithm P: Assume a relative task priority order is defined
in T . Tasks are selected in order starting from the highest priority until the
last (lowest priority) task. Each task is tentatively allocated to one of the cores,
and its schedulability is checked using the single-core analysis for FP. If it is
schedulable, then it is allocated to the core and its affinity is fixed. If all tasks
can be allocated the algorithm succeeds, otherwise it fails.

Clearly, P is not optimal and quite simplistic.

Theorem 1 Given a system with m cores, if a taskset T is found to be schedu-
lable by G-FP scheduling according to (5), then the partitioning policy P defines
a static allocation that is always schedulable.

Proof 1 The demonstration is by contradiction. Let us assume that the taskset
T is schedulable by G-FP according to (5), but the partitioning defined by P for
the tasks in T is not schedulable.

The latter assumption means that the partitioning algorithm P fails to find a
suitable core for one task. Let τk be the first task that fails to be allocated by P.
This means that on all the cores, the single-core analysis fails for τk. In single-
core systems, the worst-case interference is caused when all tasks (including τk)
are simultaneously released.

Consider a generic core p and use Tp,k to denote the set of tasks with priority
higher than τk that have been allocated to p. Since τk is not schedulable, the
interference it experiences is larger than x− Ck for all Ck ≤ x ≤ Dk.

∀p ∀Ck ≤ x ≤ Dk

∑
τi∈Tp,k

I∗p,i,k(x) > x− Ck.

The term I∗p,i,k(x) denotes the single-core interference from the higher pri-
ority task τi within the time interval of length x starting from task τk’s arrival
time, and the index of the core p to which τi is allocated is added to I∗p,i,k for
convenience. Because of the critical instant theorem, τi and τk are released
simultaneously, and τi is an NC task.

We use I∗i,k(x) for the single core interference as opposed to Ii,k(x) for the
multicore case because for single-core systems it is I∗i,k(x) = W ∗i (x), where
W ∗i (x) is the single core workload and is computed according to the time critical
instant.

The difference between I∗i,k(x) and Ii,k(x) is that Ii,k(x) = min{Wi(x), x −
Ck + ε} and Wi(x) can be larger than W ∗i (x) when τi is regarded as the CI task
in the multicore analysis. For the tasks that P allocates on a generic core p
there are two possibilities.
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• 1) Wi(x) ≤ x−Ck + ε holds for all the tasks with higher priority than τk.
In this case, for all the tasks that have been allocated to core p, it is∑

τi∈Tp,k

Ip,i,k(x) > x− Ck

in which Ip,i,k(x) is the interference that task τi would contribute in the
global multicore case, since it is I∗i,k(x) = W ∗i (x) ≤ Wi(x) = Ii,k(x),
and according to (1) . We put some explanations on the relation between
W ∗i (x) and Wi(x). There are two possibilities for the value of Wi(x):
Wi(x) = WCI

i (x) when τi has carry-in and Wi(x) = WNC
i (x) if τi is a

NC task that does not bring carry-in into the problem window. As we have
discussed in the end of last section, there is always WCI

i (x) ≥ WNC
i (x).

On the other hand, in order to maximize WNC
i (x), τi shall be activated

at the beginning of the problem window and all its jobs are required to
arrive as soon as possible. This matches the critical instant and worst-
case scenario in the single-core case and impiles that WNC

i (x) = W ∗i (x).
As a result, there is Wi(x) ≥W ∗i (x).

• 2) Wi(x) > x−Ck+ ε for at least one of the higher priority tasks allocated
to p by P. In this case, for the multicore interferences it would still be∑

τi∈Tp,k

Ip,i,k(x) > x− Ck

when the summation is extended to all the tasks that the policy P has
allocated to the core p up to task τk, since at least one task contributes
with a term greater than x− Ck + ε to the summation on the left side.

When you consider that none of the cores would be schedulable since P ter-
minates because it cannot find a feasible core, it is

∀p
∑

τi∈Tp,k

Ip,i,k(x) > x− Ck

Consider now the global schedulability analysis. For any time Ck ≤ x ≤ Dk,
it is ∑

i<k

Ii,k(x) =
∑

1≤p≤m

∑
τi∈Tp

Ip,i,k(x) > m · (x− Ck).

hence,

Ω(x) > m · (x− Ck).

Thus, the schedulability condition in (5) is not satisfied with any x ∈ [Ck, Dk]
and τk’s schedulability cannot be guaranteed according to the global FP analysis,
which contradicts the original assumption.

�
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In the end, we prove that a taskset is globally schedulable only if it is schedu-
lable by partitioned scheduling, too.

As a matter of fact, the multicore global scheduling and partitioned schedul-
ing are incomparable: a taskset that is not schedulable under the global schedul-
ing may or may not be schedulable by the partitioned scheduling and vice versa.
Unfortunately, Theorem 1 reveals the fact that state-of-the-art analysis fails to
reflect the possible advantage of multicore G-FP scheduling. The only reason
for this is the excessive pessimism of the current analysis techniques.

When estimating the interference, the available schedulability analysis meth-
ods lack a fine-grained knowledge on the possible parallel execution of tasks
among multiple cores. In the following, we are going to explain how to ex-
plore the parallel execution of different tasks for multicore global schedulability
analysis to solve the problem highlighted in Theorem 1.

5 Improving Multicore G-FP Analysis

In case of a single-core system, when the execution of a task is preempted by
a higher priority task, the task cannot resume execution until the interfering
task finishes. This is not true in multicore global scheduling, where the higher
priority task may only interfere with a portion of the preempted task’s unfinished
execution. After some time, one core may become idle and the preempted
task resumes execution in parallel with the preempting task. We may use this
consideration to analyze the execution of the target job in a more controllable
way.

In this section, we investigate the relation between the execution of different
fragments that compose the WCET of the target task. We demonstrate that
the consideration of segments helps reduce the pessimism when upper bounding
the interference upon the execution of the target job.

However, note that it is not the intention of this paper to develop a brand new
schedulability test to replace existing ones, and the main purpose of this section
is to provide people some hints on where the pessimism shown in Theorem 1
comes from.

5.1 The 2-part execution scenario

Given the target task τk = (Ck, Dk, Tk), we explicitly divide the execution of
its jobs into two parts with worst case execution times Ck,1 and Ck,2 such that
Ck,1, Ck,2 ∈ N and Ck,1 + Ck,2 = Ck.

Within the problem window [a, b), we define a time instant z < b with
z− a ∈ N+ such that τk completes an amount of execution over [a, z) of at least
Ck,1.

This results in the 2-part execution scenario depicted in Figure 2. We denote
x1 = z − a and x2 = b − z. For convenience, we use the notion x-window
to denote the time interval [a, b); similarly, the x1-window and x2-window are
defined. Given a value for Ck,1, a simple approach to compute the corresponding
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x1 is x1 = dFk′(·)e (simply obtained by replacing τk with the virtual task
τk′ = (Ck,1, Dk, Tk).)

b

x
x1

x2

za

Figure 2: The 2-part execution scenario

The benefit of the 2-part execution scenario is that partial information on
the target job execution (about the first part) is available, and this information
can be used to improve the bound on the overall interference suffered by the
target job.

Subject to the fact that τk finishes (at least) its first Ck,1 amount of execution
time within the x1-window, we can refine the calculation of the interference from
a higher priority task τi upon the target job over the x-window.

Lemma 1 Assume the 2-part execution scenario as in Figure 2, and τk executes
for exactly γ1 ∈ [Ck,1, Ck]1 in the x1-window, then the interference from a higher
priority task τi on the target job can be bounded as:

I ′i,k(x) = Ii,k1(x1) + min{Ii,k(x)− Ii,k1(x1), Ii,k2(x2)} (6)

where
Ii,k1(x1) = min{Wi(x1), x1 − γ1}

and

Ii,k2(x2) = min{Wi(x2), x2 − (Ck − γ1)}.

Proof 2 We follow the reasoning in Section 3. Γk is a set of time intervals
over [a, b) with cumulative length (x−Ck) such that inside Γk all cores are busy
executing of higher priority tasks. The formulation of I ′i,k(x) is required to upper
bound the execution that τi can conduct within Γk.

In the 2-part execution scenario, the set of time intervals Γk can be divided
into two parts, the first part Γk,1 inside the x1-window, and the second part Γk,2
inside the x2-window. τk completes for γ1 execution units inside the x1-window.
Hence, Γk,1 has an overall length of (x1−γ1) and Γk,2 is of length (x2−Ck+γ1).

Within the x1-window, the maximum workload of a higher priority task τi
is Wi(x1). Since τk executes for γ1 units, then τi executes in Γk,1 for at most
Ii,k1(x1) = min{Wi(x1), x1 − γ1}.

To compute the maximum execution of τi inside the Γk,2, we consider two
cases.

• If the execution of τi in Γk,1 is maximized, then the execution of τi inside
Γk,2 is bounded by Ii,k(x) − Ii,k1(x1), where Ii,k(x) is the conventional

1For simplicity, x1 ≥ γ1 and x2 ≥ Ck − γ1.
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interference estimation as discussed in Section 3 and is re-used here. On
the other hand, by the workload τi can generate in the x2-window, its
execution inside Γk,2 cannot exceed min{Wi(x2), x2−Ck + γ1}. Thus, the
maximum execution of τi within Γk is as in (6).

• If the execution of τi in Γk,1 is not maximized, the value of Ii,k1(x1) de-
creases, and Ii,k(x) − Ii,k1(x1) increases by the same amount; because
Ii,k2(x2) does not change, the overall value of the interference cannot be
larger than the formulation in (6).

In the end, the formulation of the interference upper bound is as in Equation
(6).

�

It is easy to see that the new interference formulation in (6) never exceeds
the original one in (1).

The 2-part execution scenario allows to analyze the possible parallel exe-
cution between the target task and the interfering task in a more fine-grained
approach.

The formulation in (6) considers only the case in which τk completes a specific
portion of its execution inside the x1-window. To verify the schedulability of
τk, we need to consider all the possible executions of τk within the x1-window.

Given a pair Ck,1 and Ck,2, the function Fk(Ck,1) returns the minimum
x value such that for all the possible executions of τk with γ1 units (γ1 ∈
[Ck,1, Ck]) in the x1-window, the schedulability condition in (2), after replacing
the interference term Ii,k with the new formulation I ′i,k, is satisfied .

Fk(Ck,1) = min{x} s.t.

x ≥ Ck and ∀γ1 ∈ [Ck,1, Ck] (2) is satisfied.

By definition, Fk(Ck,1) is an upper bound on the response time of the target
job.

5.2 Integer assumption and early termination condition

If we assume that all task parameters (including Ck,1 and Ck,2) are integers,
and if we restrict to an integer upper bound on the WCRT of τk, the values of
x1, x2 and x can also be assumed to be integers. Still, the scheduling decisions
(e.g., preemption) are made in continuous time domain. Finally, all the available
methods for bounding the workload Wi(x) of a higher priority task consist of
adding an integer multiple of its WCET (an integer) with a possible additional
execution of a carry in instance (again, an integer) and a fractional execution
right before the end of the window of length x and assuming execution at the
highest rate (arrivals multiple of integer values). Hence, being the sum of integer
values, also the bound on the maximum workload Wi(x) is an integer value. As
a result, we only need to consider the possible integer values of γ1 for computing
Fk(Ck,1).
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To understand why, let us assume that γ1 increases from the integer value n
to n+ δ with δ ∈ R and δ ∈ (0, 1], the value of I ′i,k(x) in (6) increases to I ′′i,k(x).

In addition, the workload term Wi(·) and the interference term Ii,k(x) are
not affected, and the only possibilities are that Ii,k1(x1) remains the same or
decreases by δ, and Ii,k2(x2) remains the same or increases by δ, as in the right
side of Equation (6).

However, since the value of I ′i,k(x) increases to I ′′i,k(x), the only possibility
is that the value of Ii,k1(x1) does not change and Ii,k2(x2) increases by δ. In
this case, the increase in the overall interference is I ′′i,k(x) − I ′i,k(x) = δ, which
is maximized when δ = 1.

In practice, instead of checking every integer γ1 ∈ [Ck,1, Ck], (suppose we go
from smaller to larger values of γ1) we can stop as soon as the following early
termination condition is satisfied and returns a schedulability decision:∑

i<k

Ii,k2(x2) < m · (x2 − Ck + γ1).

This says that in case τk completes an amount of execution γ1 within the
x1-window, and if the total interference within the x2-window is maximized, τk
can still complete the remaining (Ck−γ1) execution time within the x2-window.
According to the sustainability property (Baker and Baruah (2009b)), there is
no need to further increase the γ1 value.

5.3 An improved test

Given an arbitrary selection of Ck,1 and Ck,2, the value Fk(Ck,1) is an upper
bound for the WCRT of τk. By considering all the possible combinations of Ck,1
and Ck,2, the minimum value for Fk(Ck,1) is a safe upper bound for the WCRT
of τk.

Theorem 2 The WCRT of the target task τk’s is upper bounded by

min
∀Ck,1∈N∧Ck,1∈[0,Ck]

{Fk(Ck,1)}.

The proposed schedulability analysis improves on the state of the art, as the
new analysis in Theorem 2 strictly dominates the traditional analysis, which
can be considered as a special instance of the 2-part execution scenario with
Ck,1 = 0 and Ck,2 = Ck.

If we use O(Fk(·)) to denote the complexity of the Fk(·) function, then,
computing the corresponding function Fk(Ck,1) for all the possible values of
γ1 has complexity Ck ·O(Fk(·)). The 2-part execution scenario itself does not
require a new methodology to formulate the workload in the problem window,
but provides a new perspective to convert the workload to interference more
precisely with a limited additional cost in terms of complexity. The complexity
of the final test in Theorem 2 is pseudo-polynomial. The test in Theorem 2
is regarded as a baseline test for applying the 2-part execution scenario. It
considers all the Ck possibilities to divide the WCET of τk (Ck,1 = 0 and
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Ck,1 = Ck are equivalent cases). In reality, when applying the analysis on the
2-part execution scenario, heuristics for exploring first more promising values
for Ck,1 and Ck,2 could be found.

6 Comparison

In this section, we show the key advantage of the new analysis based on the 2-
part execution scenario. Besides, we show empirical comparison results between
the new analysis and the traditional multicore G-FP schedulability analysis. In
our experiments, the workload is computed following the algorithms presented
in Guan et al (2009). The baseline test based on the 2-part execution scenario
has been implemented in the open source software tool RTSCAN (Lipari and
Sun (2013)).

6.1 An example showing the improvements in the analysis

Theorem 1 states that state-of-the-art G-FP schedulability analysis is dominated
by the (suboptimal) partitioning algorithm P followed by single-core analysis,
despite the fact that multicore global scheduling and partitioned scheduling are
incomparable. Our 2-part execution analysis overcomes such a limitation for
multicore global schedulability analysis since the dominance criterion of Theo-
rem 1 does not apply to it.

As an example, let us consider a real-time system with m = 2 and 3 tasks:
τ1 = (10, 20, 20), τ2 = (15, 30, 30) and τ3 = (24, 50, 50). By the exact single
core RTA in Audsley et al (1991), it is easy to check that under the partitioned
FP scheduling, there is no partitioning that can guarantee all three tasks meet
their deadlines. Also, according to Theorem 1, the system is also not schedulable
by conventional G-FP schedulability analysis. Even if we assume discrete-time
scheduling, the RTA tests in Guan et al (2009) and Sun (2015) result in an
unschedulable decision.

Using the 2-part execution scenario, the system (i.e., its lowest priority task
τ3) is indeed schedulable. Below we outline the procedure to assess the schedula-
bility of τ3. In this simple case, most of the computations can be done manually.

The schedulability condition is met when C3 is divided into two parts with
C3,1 = 9 and C3,2 = 15. It is easy to verify that a value for x1 such that τ3
completes the execution of its first part C3,1 is x1 = 20,

In a time interval of length 20, W1(20) = 10 and W2(20) = 15. As a result,
the interferences added by τ1 and τ2 on the execution of the first part of τ3
are 10, and 11 (min{W2(20), x1 − C3,1}), respectively. Given that 10 + 11 <
m · (20 − C3,1), τ3 is guaranteed to complete at least Ck,1 units of execution
within a window of x1 = 20 time units.

Table 1 shows the interference computed according to the 2-part execution
analysis under the hypothesis of γ1 = C3,1 = 9. The interference in the second
window of size x2 = 30 of both τ1 and τ2 is 15 units, and the WCRT of τ3 can be
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upper bounded by x = 50 for γ1 = 9. Details on how to compute the workload
can be referred to Guan et al (2009).

At this point, to test the schedulability of τ3, we need to consider all the
remaining γ1 values in the range [C3,1, C3] (or until the early termination ap-
plies). When all the remaining values are considered (results are similar to those
in Table 1), the schedulability of τ3 can be verified.

τi I ′i,3(x) Ii,3(x) Ii,k1(x1) Ii,k2(x2) Wi(x) Wi(x2)

τ1 25 26 10 15 30 20

τ2 26 26 11 15 30 15

Table 1: A case study for 2-part execution scenario

6.2 Performance comparison on randomly generated tasksets

In this part, we evaluate the possible advantage of the test in Theorem 2 with
respect to the state-of-the-art analysis in (5) by conducting a set of experiments
on randomly generated tasksets. Due to the guarantee that our test strictly
dominates the traditional analysis, the analysis results are always going to im-
prove on existing analysis methods. On the other side, as we are going to see,
the improvement brought by the new analysis is very limited. Consequently,
even though the new test breaks the limitation on the pessimism as shown in
Theorem 1, it is not sufficient enough for practical use and more efforts are still
needed for enhancing the performance of the global schedulability analysis.

We used two methods for the generation of the taskset. The first builds the
set incrementally and follows the approach traditionally used in many papers on
multicore analysis. The second method consists in the generation of independent
tasksets.

Tasksets incrementally generated In our experiments, the system consists
of m = 16 identical cores. The minimum inter-arrival time Ti is (uniformly) ran-
domly selected in the range [1, 2000]. Each task is defined by a tuple (Ui, Di, Ti)
such that Di = Ti or Di is randomly selected in [Ci, Ti] with Ci = Ui · Ti. Task
priorities are assigned according to the deadline monotonic policy, that is, a
task with a smaller deadline is given a higher priority.

The utilization Ui of each task is extracted according to an exponential
distribution with parameter λ = 0.1 and the values of Ui are clipped within
the range [Umini , Umaxi ] with Umini = 0.05 and Umaxi = 0.45 such that when
Ui < Umini (resp. Ui > Umaxi ), Ui is set to Umini (resp. Umaxi ).

The taskset generation follows the approach that is commonly used (as in
Bertogna and Baruah (2011), Guan et al (2009) et al.) when comparing schedu-
lability tests for multicore global scheduling.

1. At first, a taskset of size m+ 1 tasks is generated.

16



2. The tests in (5) and Theorem 2 are applied and the results of the schedu-
lability analyzes recorded. If at least one test finds the taskset to be
schedulable, then the taskset is extended by adding one more randomly
generated task and a new analysis is performed; otherwise, a new taskset
of size m+ 1 is generated and the step 2 continues.

The generation of tasksets and the analysis comparison continues until the
target number of cases is reached.
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Figure 3: Analysis performance comparison for incrementally generated
tasksets with m = 16

The results are shown in Figure 3, where the upper line denotes the results
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from our test (in Theorem 2) and the lower line represents results from state-of-
the-art analysis in (5). The results confirm a (limited) advantage for the 2-part
execution analysis, as our test admits a substantial larger fraction of tasksets
in a range of utilizations of width approximately 0.5. This is true for the case
of implicit deadlines (Figure 3a) and, to a more limited degree, for the case of
deadlines smaller than the periods (Figure 3b).

Independent tasksets Because of the way the tasksets are generated, the
previous comparative analysis (as well as those that appeared in the cited pa-
pers) is biased in favor of any method that provides a possible improvement
(since as soon as a task configuration provides an advantage to one method, the
following set immediately provides one more opportunity to extend the advan-
tage).

In the second set of experiments, we fix the number of tasks in each taskset
to n = 100, and we generate the tasks in each set in order to achieve a target
value for the overall system utilization (sum of utilizations of all tasks in a
set). For each system utilization value (with step 0.4), we randomly generate
100 independent tasksets using the Randfixedsum algorithm in Emberson et al
(2010), which ensures a fair distribution for the utilization of each task in the
set. As shown in Figure 4, for independent sets and a relatively large number
of tasks the advantages of our analysis are extremely small.
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Figure 4: Another comparison with m = 16, n = 100 and Di = Ti

7 Conclusion

In this work, we point out the limitation of current methodology for multicore
G-FP schedulability analysis, by demonstrating its pessimism with respect to
a particular strategy for partitioning tasks upon multicores. This result is the
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main contribution of this paper, and we believe it helps people understand better
the analysis problem in case of multicore global scheduling. Although in this
paper we cannot tackle the such pessimism, we show the most likely cause of
the problem and open an opportunity for improving the quality of multicore
global scheduling analysis and overcoming the dominance in terms of analysis
guarantees of partitioned scheduling.
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