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Domains for Dirac-Coulomb min-max levels

Maria J. Esteban, Mathieu Lewin and Éric Séré

Abstract. We consider a Dirac operator in three space dimensions,
with an electrostatic (i.e. real-valued) potential V (x), having a strong
Coulomb-type singularity at the origin. This operator is not always essen-
tially self-adjoint but admits a distinguished self-adjoint extension DV . In
a first part we obtain new results on the domain of this extension, comple-
menting previous works of Esteban and Loss. Then we prove the validity
of min-max formulas for the eigenvalues in the spectral gap of DV , in a
range of simple function spaces independent of V . Our results include the
critical case lim infx→0 |x|V (x) = −1, with units such that ~ = mc

2 = 1,
and they are the first ones in this situation. We also give the corresponding
results in two dimensions.
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Computing the eigenvalues in the gap of the essential spectrum of a self-adjoint
operator is notoriously more difficult than for those below or above the essential
spectrum. It is well-known that numerical artefacts can sometimes occur, a phe-
nomenon called spectral pollution [LS10]. For this reason, it is important to find
robust methods.
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In [ES97, GS99, DES00b, DES00a], variational min-max formulas were pro-
vided for the eigenvalues in gaps of self-adjoint operators. These formulas are
based on a decomposition H = Λ+H⊕Λ−H given by two orthogonal projectors Λ±

of the ambient Hilbert space H, and take the general form

(0.1) λ(k) = inf
W⊂F+

dim(W )=k

sup
ψ∈W⊕F−

〈ψ,Aψ〉
‖ψ‖2 .

Here, F± = Λ±F , with F a dense subspace of H such that the quadratic form
〈ψ,Aψ〉 is well-defined on F+ ⊕ F− .

The equation (0.1) is similar to the usual Courant-Fischer (a.k.a. Rayleigh-
Ritz) formula for the eigenvalues below the essential spectrum. The main difference
is that the infimum is restricted to vectors in the “positive” subspace F+ and that
the supremum is computed over the infinite-dimensional spaceW ⊕F− containing
the whole “negative” space F−. Some additional technical constraints on F are
needed, they are discussed in detail below.

From the spectral theorem one can see that formula (0.1) provides all the
eigenvalues above a number a′ in the gap and below the next threshold of the
essential spectrum, in nondecreasing order and counted with multiplicity, provided
that we use for Λ− the spectral projector 1(A 6 a′) and, for instance, F = D(A).
Intuitively, formula (0.1) should remain correct if Λ− is not too far from this
spectral projector. The main discovery of [DES00a] was that the correct criterion
for formula (0.1) to provide the eigenvalues, is the inequality

λ(1) > a := sup
ψ−∈F−

〈ψ−, Aψ−〉
‖ψ−‖2

.

In practical cases, such a condition can be fulfilled for projectors Λ− which are
quite far from the exact spectral projector 1(A 6 a′). Exploiting this freedom,
one can choose Λ− so that the evaluation of the supremum in (0.1) becomes very
easy, leading to stable discretization techniques.

The main motivation for these min-max formulas was to study the spectrum
of the free Dirac operator D0 in 3d perturbed by an electrostatic potential V with
Coulomb-type singularity at the origin,

DV = D0 + V (x).

The free Dirac operator D0 in 3d is a constant-coefficient, first-order differential
operator acting in L2(R3,C4) with spectrum (−∞,−1] ∪ [1,∞). Its precise defi-
nition and main properties are recalled below in Section 1.1. The potential V is
real-valued, bounded from above, and satisfies

lim inf
x→0

|x|V (x) > −1

in units such that ~ = mc2 = 1. This class of operators is both important from
the physical point of view and particularly challenging mathematically, due to
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the criticality of 1/|x| as compared with D0. The first min-max formulas of the
form (0.1) were proposed by Talman [Tal86] and Datta-Devaiah [DD88] in the
particular case of the operators DV , using the projectors Λ± associated with the
natural decomposition

Ψ =

(
ϕ
χ

)
=

(
ϕ
0

)
+

(
0
χ

)
∈ L2(R3,C4), ϕ, χ ∈ L2(R3,C2)

into upper and lower spinors. This choice leads to a particularly simple formula
for the supremum in (0.1). It provides efficient ways of computing Dirac eigenval-
ues [DESV00, DES03, KKR04, ZKK04, CD05].

When dealing with unbounded quantum-mechanical operators, the questions
of domain and self-adjointness are essential. These questions are delicate in the
case of DV and have been the subject of an extensive literature: see, e.g., [Tha92,
BE11, Hog13] and the references therein. For 0 6 ν <

√
3/2, if V is real-valued

and |V (x)| 6 ν/|x| then the minimal operator

ḊV := (D0 + V ) ↾ C∞
c (R3 \ {0},C4)

is essentially self-adjoint and the domain of its closure is H1(R3,C4). The minimal
exact Dirac-Coulomb operator Ḋ−ν/|x| is still essentially self-adjoint

1 for ν =
√
3/2,

but it has infinitely many self-adjoint extensions for
√
3/2 < ν 6 1. However, for

any value 0 6 ν < 1, if |V (x)| 6 ν/|x| then the minimal operator ḊV admits
a distinguished self-adjoint extension DV with domain D(DV ) characterized by
the property D(DV ) ⊂ H1/2(R3,C4), which is the space on which the energy is
well defined and continuous. The critical case ν = 1 is harder. It was considered
for the first time by Esteban and Loss in [EL07] who constructed a distinguished
self-adjoint extensionDV for real-valued potentials under the assumption −1/|x| 6
V (x) 6 0. The properties of their extension will be discussed in detail in Section 1.5
below.

As mentioned above, once the splitting H = H− ⊕ H+ is chosen, one also has
to choose the subspace F . In [DES00a], an abstract min-max theorem is proved,
assuming that F is a core (a dense subspace of D(A) for the graph norm) and
that F± are subspaces of D(|A|1/2). In the application to Talman’s principle when
−ν/|x| 6 V (x) 6 0 and ν < 1, a possible choice satisfying these requirements
is F = D(DV ) ⊂ H1/2(R3,C4). But the domain D(DV ) of the distinguished
extension is not always explicitly known, so a natural question is whether the min-
max can actually be performed on simpler spaces F which do not depend on V . An
attempt in this direction was made in [DES00a] where it was claimed that Talman’s
min-max formula holds for F = C∞

c (R3,C4) as a consequence of the abstract
theorem proved in the same paper. This was obvious for 0 6 ν <

√
3/2, indeed ḊV

is essentially self-adjoint, so C∞
c (R3,C4) is a core. But the case

√
3/2 6 ν 6 1 was

not properly justified in [DES00a]. An alternative approach was recently proposed
by Morozov and Mller [MM15, M1̈6], who proved a variant of the abstract min-max
formula allowing them to justify the choice F = H1/2(R3,C4) for any ν < 1.

1To our knowledge, essential self-adjointness is an open question for general real-valued po-

tentials such that |V (x)| 6
√

3

2|x| .
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In this paper we justify the application toDV of the abstract min-max of [DES00a],
for any subspace F such that

C∞
c (R3 \ {0},C4) ⊆ F ⊆ H1/2(R3,C4),

independently of the value of 0 6 ν 6 1. In the critical case ν = 1 this provides
the first min-max characterization of the eigenvalues. Our findings show that the
min-max formula (0.1) of the eigenvalues is valid for a wide range of spaces F , and
is insensitive to the properties of the domain of the distinguished operator DV .
This is a clear advantage of this characterization, which fully justifies its use in
practical computations.

In the first section we discuss domains of 3d Dirac-Coulomb operators with an
emphasis on the distinguished self-adjoint extension. Most of the content of Sec-
tions 1.1–1.3 is well known, and the results are presented here for the convenience
of the reader. To our knowledge, the only novelty there is Proposition A.1, which
is proved in Appendix A. In Sections 1.4 and 1.5 we complement some results of
Esteban-Loss [EL07] on the characterization of the distinguished self-adjoint exten-
sion, using a quadratic form qE related to the min-max formula (0.1). Describing
the domain of this quadratic form is important for knowing in which spaces the
min-max can be formulated. In [EL07] Esteban and Loss used the closure of C∞

c

for the norm induced by qE . We show here that this coincides with the maximal
domain on which the form qE is continuous. This is an important ingredient in
our proof of the validity of the min-max formula.

We also provide new results in the critical case ν = 1. In particular our proof
that the resolvents converge in norm if the potential V is truncated means that
the Esteban-Loss extension is the only physically relevant extension for ν = 1.

In Section 2 we state our main result about the min-max formula that was
claimed in [DES00a] and extend it to the critical case. Sections 3, 4, 5, 6 and
Appendices A, B are dedicated to the proof of our results. Our results are stated
and proved in detail in three space dimensions, but they can easily be adapted to
the two-dimensional setting. This is explained in Appendix C.

1. Domains of Dirac-Coulomb operators in 3d

In this section we discuss domains for Dirac-Coulomb operators in three space
dimensions, and provide some new properties of the distinguished self-adjoint ex-
tension. Some of these properties will be useful in Section 2 where we prove the
min-max formula for the eigenvalues.

1.1. The free Dirac operator in 3d

In a system of units such that ~ = m = c = 1, the free Dirac operator D0 in 3d is
given by

(1.1) D0 = −i α ·∇+ β = −i
3∑

k=1

αk∂k + β,
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where α1, α2, α3 and β are 4×4 Hermitian matrices satisfying the anticommutation
relations

(1.2)





αkαℓ + αℓαk = 2 δkℓ 1C4 ,
αkβ + βαk = 0,

β2 = 1C4 .

The usual representation in 2× 2 blocks is given by

β =

(
I2 0
0 −I2

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3 ,

with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The operator D0 is self-adjoint in L2(R3,C4) with domain H1(R3,C4) and its
spectrum is σ(D0) = (−∞,−1]∪ [1,∞), see [Tha92, ELS08]. In addition, the cor-
responding quadratic form 〈Ψ, D0Ψ〉 is well-defined and continuous on the Sobolev
space H1/2(R3,C4), which is also the domain of |D0|1/2 = (1−∆)1/4.

The Rellich-Kato theorem and the Sobolev inequality imply that

DV := D0 + V (x)

is also self-adjoint on H1(R3,C4) for any real-valued potential V ∈ L3(R3,R) +
L∞(R3,R). The purpose of this article is to discuss the case of Coulomb-type
potentials which behave like −ν|x|−1 near to the origin, and which just fail to be
in L3 at the origin. Using Hardy’s inequality

1

|x|2 6 4(−∆) 6 4(D0)
2 = 4(−∆+ 1)

we can use again the Rellich-Kato theorem and obtain that DV is self-adjoint
on H1(R3,C4) for potentials in the form V = V1 + V2 where V2 ∈ L3(R3,R) +
L∞(R3,R) and |V1(x)| 6 ν|x|−1 with |ν| < 1/2. However, the threshold 1/2 given
by this argument is not optimal and the proper limit is, rather,

√
3/2 (at least

for scalar potentials, see Remark 1.3 below for matrix potentials). In order to
understand the situation, it is enlightening to first look at the well-known case of
the exact Coulomb potential.

1.2. The exact Coulomb potential

Here we discuss the well-known exact Coulomb case

VC(x) = − ν

|x| .

Note that when V is a bounded perturbation of this potential, the self-adjoint
realizations of DV have the same domains as for VC.
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For a radial potential such as VC, one can use that the Dirac operator commutes
with the total angular momentum J = L + S = (J1, J2, J3), as well as with the
spin-orbit operator K = β(2S · L + 1), see [Tha92, Sec. 4.6]. Viewing K, J3 and
β as a complete set of commuting observables in the Hilbert space L2(S2,C4), one
finds an orthonormal basis of this space consisting of trigonometric polynomials in
the spherical coordinates (θ, ϕ), Φ±

κ,m, indexed by κ ∈ Z \ {0} and m ∈ {−|κ| +
1/2,−|κ|+3/2, · · · , |κ| − 1/2}. Using this basis, for any Ψ ∈ C∞

c (R3 \ {0},C4) we
get the L2-orthogonal decompositions

(1.3) Ψ(x) = r−1
∑

κ,m

uκ,m(r)Φ
+
κ,m(θ, ϕ) + vκ,m(r)Φ−

κ,m(θ, ϕ) ,

and

(1.4) D−ν/rΨ(x) = r−1
∑

κ,m

fκ,m(r)Φ
+
κ,m(θ, ϕ) + gκ,m(r)Φ−

κ,m(θ, ϕ),

where r = |x|, KΦ±
κ,m = −κΦ±

κ,m , J3Φ
±
κ,m = mΦ±

κ,m , βΦ
±
κ,m = ±Φ±

κ,m and

(1.5)

(
fκ,m
gκ,m

)
= hκν

(
uκ,m
vκ,m

)
,

and where we have introduced the radial Coulomb Dirac-type operator

(1.6) hκν =

(
1− ν

r − d
dr +

κ
r

d
dr +

κ
r −1− ν

r

)
.

As a consequence, the Dirac operator D−ν/r is unitarily equivalent to the direct
sum (with multiplicities 2|κ| − 1) of the radial Dirac-type operators hκν acting in
the Hilbert space L2((0,∞),C2). Using ODE techniques, the question of self-
adjointness is then reduced to the discussion of the possible boundary conditions
at r = 0, see [Rel43, Cas50, Wei87, Eva70, VGT07, Hog13, Tha92].

Let us discuss this in more detail. In order to find the self-adjoint extensions
of the minimal operator

ḣκν := hκν ↾ C∞
c ((0,∞),C2) ,

we compute its deficiency subspaces2 K± = ker
(
(ḣκν )

∗ ∓ i
)
. Since K− = K+, we

only have to determine K+. The corresponding eigenvalue equation is

(1.7)

{
(1− ν/r)u − v′ + κ

r v = iu,

u′ + κ
r u− (1 + ν/r)v = iv.

Plugging in the first equation the relation

v =
u′ + κ

r u

1 + ν/r + i

2Here we follow von Neumann’s theory of self-adjoint extensions [vN30]. We refer to the recent
paper [GM19] for an alternative approach based on the Krĕın-Vǐsik-Birman extension scheme.
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deduced from the second one (note that the denominator never vanishes), we obtain
an equation for u only:

(1.8)

(
− d

dr
+
κ

r

)
1

1 + ν/r + i

(
d

dr
+
κ

r

)
u+

(
1− ν

r
− i
)
u = 0.

Using standard ODE techniques, one finds that the solution space of (1.8) is
spanned by two independent functions behaving as r±s(1 + O(r)) at r = 0, with
s :=

√
κ2 − ν2. Another basis of this space consists of two independent solutions

behaving like

exp(±
√
2r)r∓iν/

√
2(1 +O(r−1))

when r → ∞ [Ple32, Cas50, Tit61]. At ν = 1, for κ = ±1 we have s = 0 and there
are two solutions behaving like 1 and log(r), respectively, near r = 0.

We first assume |ν| < 1. The solution u+ which behaves like rs at 0 must
diverge at infinity, hence is not in L2. Indeed, assuming by contradiction that u+
behaves as exp(−

√
2r)riν/

√
2 at infinity, we can multiply (1.8) by u+ and integrate

by parts (the boundary terms cancel due to the behavior at the origin and at
infinity), which gives

ˆ ∞

0

|u′+(r) + κu+(r)/r|2
1 + ν/r + i

dr =

ˆ ∞

0

(i− 1 + ν/r)|u+(r)|2 dr.

The imaginary part is negative for the first term and positive for the second, which
is a contradiction.

The solution u− which behaves like r−s is not square-integrable at the origin
when |ν| 6

√
κ2 − 1/4. The smallest value of this threshold is

√
3/2 which we have

mentioned before, and it is obtained for κ = ±1. We conclude that the deficiency
indices n± = dimK± vanish for |ν| 6

√
3/2 and that the operator is essentially

self-adjoint in this case. When |ν| <
√
3/2, the domain of the closure of ḣκν can be

shown to be H1
0 ((0,∞),C2), and that of Ḋ−ν/r to be

D(D−ν/r) = H1(R3,C4), for |ν| <
√
3/2,

see [LR79, LRK80]. The situation is more complicated at |ν| =
√
3/2. Although

the operator is essentially self-adjoint, its domain is larger than H1(R3,C4):

D(D−ν/r) ) H1(R3,C4), for |ν| =
√
3/2.

We explain all this in Proposition A.1 of Appendix A.
When

√
3/2 < |ν| 6 1 the arguments of [LR79, LRK80] apply for |κ| > 2 and

show that the operators ḣκν are all essentially self-adjoint, with domain

D
(
ḣκν
)
= H1

0

(
(0,∞),C2

)
, for |κ| > 2 and

√
3/2 < |ν| 6 1.

Only κ = ±1 pose some difficulties.
In the case

√
3/2 < |ν| < 1, the two functions r±

√
1−ν2

are now square-
integrable at 0 and there is one linear combination of u+ and u−, which we call uκ,
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which is square-integrable at infinity. From the previous argument, this function
must diverge like r−s at r = 0 and we can therefore always assume that uκ ∼ r−s

and vκ ∼ (κ − s)r−s/ν at 0. By von Neumann’s theory of self-adjoint extensions
(see, e.g., [RS75, p. 140]), we conclude that, for κ = ±1, ḣκν admits a family of
self-adjoint extensions parametrized by α ∈ [0, 2π), whose domains are given by

D
(
ḣκν

)
⊕
{(

uκ
vκ

)
+ eiα

(
uκ
vκ

)}
C, for κ = ±1.

In this formula, we have used that the solutions with eigenvalue +i and −i are
related by complex conjugation, since the operator hκν is real. In Proposition A.1
in Appendix A we will prove that for all

√
3/2 < |ν| 6 1,

D
(
ḣ±1
ν

)
= H1

0 ((0,∞),C2) .

The functions (uακ , v
α
κ ) = (uκ + eiαuκ, vκ + eiαvκ), κ = ±1, are more singular at

the origin. For α 6= π, they have the strong singularity (1 + eiα)r−
√
1−ν2

at r = 0.
The associated 4-spinors

Ψακ,m := |x|−1
(
uακ(r)Φ

+
κ,m(θ, ϕ) + vακ (r)Φ

−
κ,m(θ, ϕ)

)
, m = ±1/2 ,

will not have a finite Coulomb energy and will not be in H1/2(R3,C4) (the natural
space for which one can define the quadratic form of the free Dirac operator).
However, if we choose α = π, the function behaves like

uκ − uκ = 2iℑ
{
r−

√
1−ν2

(1 +O(r)) + ar
√
1−ν2

(1 +O(r))
}

= 2iℑ(a)r
√
1−ν2

+O(r1−
√
1−ν2

)

as r → 0, since 1/2 >
√
1− ν2. Therefore the associated 4-spinor has a finite

Coulomb energy as well as a well-defined free Dirac energy. This sounds more
satisfactory from a physical point of view. Note however that r

√
1−ν2

is not in H1

at the origin for
√
3/2 < |ν| < 1, hence the domain of this self-adjoint realization

is always bigger than H1.

The realization of the Dirac operator which has α = π in the four sectors
corresponding with the quantum numbers κ = ±1 and m = ±1/2 is called the
distinguished self-adjoint extension of the minimal Dirac-Coulomb operator Ḋ−ν/r.

For ν = ±1 the situation is slightly different since s = 0. The two functions
behave at the origin like 1 and log(r). Hence even for α = π, the Coulomb energy is
infinite since u±1 does not tend to 0 at 0. However it can be called a distinguished
extension since it is the least singular. It can also be shown that it is the one
obtained when ν → ±1∓, as we will discuss for general potentials in Section 1.5,
and the one for which the min-max characterization holds in any reasonable space
that one can think of.

If we now come back to the whole space and use [Tha92, Sec. 4.6.4], the corre-
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sponding domain of the distinguished extension reads

(1.9) D(D−ν/r) = D
(
Ḋ−ν/r

)
⊕




i U−1

(
Y 0
0

0

)

V−1√
3

(
Y 0
1

−
√
2 Y 1

1

)




⊕




i U−1

(
0
Y 0
0

)

V−1√
3

(√
2Y −1

1

−Y 0
1

)




⊕




i U1√
3

(
Y 0
1

−
√
2Y 1

1

)

V1

(
Y 0
0

0

)




⊕




i U1√
3

(√
2 Y −1

1

−Y 0
1

)

V1

(
0
Y 0
0

)



,

where the functions Y mℓ are the spherical harmonics normalized as in [Tha92,
Sec. 4.6.4] and Uκ = (uκ − uκ)/r, Vκ = (vκ − vκ)/r. Moreover, we prove in
Appendix A that

(1.10) D
(
Ḋ−ν/r

)
= H1(R3,C4) , for

√
3/2 < |ν| 6 1.

We conclude that, for
√
3/2 < |ν| 6 1, the domain of the distinguished self-adjoint

extension is just the usual Sobolev space H1(R3,C4) to which are added four
functions having an explicit singularity at the origin, which is so strong that these
are always outside of H1(R3,C4). They belong to H1/2(R3,C4) when

√
3/2 <

|ν| < 1, but just fail to do so when |ν| = 1.

1.3. General potentials with subcritical Coulomb-like singularity

It is natural to ask whether similar results hold for potentials which have a singu-
larity that can be controlled in absolute value by ν|x|−1 without being a bounded
perturbation of ±ν/|x|. In the seventies and eighties, many authors [Sch72, Wüs73,
Wüs75, Wüs77, Nen76, KW79, LR79, LRK80, Kat83, Tha92] have proved the ex-
istence of a distinguished self-adjoint extension when |ν| < 1 which has the same
properties as in the exact Coulomb case. The following statement is a summary
of several of these results, some of which will be useful for us later.

Theorem 1.1 (Distinguished extension of ḊV [Sch72, Wüs73, Wüs75, Wüs77,
Nen76, KW79, LR79, LRK80, Kat83, Tha92]). We assume that V = V1 +V2 +V3
with V2 ∈ L3(R3,R), V3 ∈ L∞(R3,R) and |V1(x)| 6 ν/|x|, with 0 6 ν < 1.

1. The minimal operator ḊV defined on C∞
c (R3 \ {0},C4) has a unique self-

adjoint extension DV such that

H1(R3,C4) ⊂ D(DV ) ⊂ H1/2(R3,C4).

It is also the unique self-adjoint extension for which

ˆ

R3

|Ψ(x)|2
|x| dx <∞, ∀Ψ ∈ D(DV ).
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2. For any Ψ,Ψ′ ∈ D(DV ), we have

(1.11) 〈Ψ, DVΨ
′〉 = 〈Ψ, D0Ψ

′〉+
ˆ

R3

VΨ∗Ψ′

where the right-side is understood in the form sense in H1/2(R3,C4).

3. If V3 → 0 at infinity, the essential spectrum is

σess(DV ) = (−∞,−1] ∪ [1,∞).

4. For Vε := min(max(V (x),−1/ε), 1/ε), the operator DVε converges to the
distinguished self-adjoint extension in the norm resolvent sense when ε→ 0.

5. If in addition 0 6 ν <
√
3/2, then the operator ḊV is essentially self-adjoint

on C∞
c (R3 \ {0},C4) and its domain is D(DV ) = H1(R3,C4).

Remark 1.2. We have H1(R3,C4) = D(|D0|) ⊂ D(|DV |). Since the square root
is operator monotone, we deduce that

D(|D0|1/2) = H1/2(R3,C4) ⊂ D(|DV |1/2).

This can be used to extend the formula (1.11) on the whole of H1/2(R3,C4), if
we interpret the left side in the sense of quadratic forms, that is, 〈Ψ, DVΨ

′〉 :=〈
|DV |1/2Ψ, UV |DV |1/2Ψ′〉 where UV = sgn(DV ).

Remark 1.3. The results are exactly the same for a Hermitian 4 × 4 matrix
potential V (x), with the exception of (5) in which

√
3/2 has to be replaced by 1/2.

There are examples of matrix-valued potentials satisfying |V (x)| 6 (1 + ε)/(2|x|)
for which DV is not essentially self-adjoint [Ara75].

In [Nen76], Nenciu defines the distinguished self-adjoint extension through its
resolvent, using the formula

(1.12)
1

DV − z
=

1

D0 − z
− 1

D0 − z
|V | 12 1

1 + SM(z)
|V | 12 1

D0 − z

where S = sgn(V ) and M(z) = |V |1/2(D0 − z)−1|V |1/2. From Kato’s inequality

(1.13)
1

|x| 6
π

2

√
−∆ 6

π

2
|D0|

and Sobolev’s inequality, one can prove that |V |1/2|D0|−1/2 and |D0|−1/2|V |1/2 are
bounded under the assumptions of Theorem 1.1. Then (D0−z)−1|V |1/2 (appearing
on the left of the last term in (1.12)) has its range in H1/2(R3,C4). This shows that
the range of (DV − z)−1 (that is, the domain of DV ) is included in H1/2(R3,C4),
as required. In addition, since (D0− z)−1|V |1/2 is compact under our assumptions
on V by [Dav07, Sec. 5.7], (DV − z)−1 is a compact perturbation of (D0 − z)−1,
and the two operators have the same essential spectrum [KW79].

The main condition necessary to give a meaning to (1.12) is that 1+ SM(z) is
invertible on L2(R3,C4). Nenciu proves that DV is uniquely defined from (1.12)



Domains for Dirac-Coulomb min-max levels 11

under the sole condition that ‖M(z0)‖ < 1 for one z0 ∈ C. Since z 7→ (1 +
SM(z))−1 is meromorphic on C \ (−∞,−1]∪ [1,∞), this is sufficient to define the
right side of (1.12) for a large set of values of z, and then to construct the operator
DV . In our case the bound on M(z0) follows from the two equalities

(1.14)
∥∥∥|x|−1/2(D0 + is)−1|x|−1/2

∥∥∥ = 1, ∀s ∈ R,

and

(1.15) lim
s→∞

∥∥∥|V2|1/2(D0 + is)−1|V2|1/2
∥∥∥ = 0 for V2 ∈ L3(R3).

The limit (1.15) follows from the Sobolev inequality. The equality (1.14) was con-
jectured by Nenciu in [Nen76] and later proved by Wst [Wüs77] and Kato [Kat83].
It has recently been rediscovered in [ADV13, Thm. 1.3]. The constraint that |ν| < 1
comes from the norm in (1.14) being equal to 1.

1.4. A different characterization of the distinguished extension

Now we turn to the description of a method which has been introduced in [EL07,
EL08] (further developed in [Arr11, AMV14, AMV15]), and is essential for our
discussion of min-max levels. We are going to make the stronger assumption

(1.16) − ν

|x| 6 V (x) < 1 +
√
1− ν2

for some 0 6 ν < 1. Here
√
1− ν2 is the first eigenvalue of the Dirac operator with

the Coulomb potential VC(x) = −ν/|x|. The lower bound in (1.16) means that
the attractive part of V is essentially Coulombic and it will imply that the first
“electronic” eigenvalue will be above

√
1− ν2. Here “electronic” means that it is

an eigenvalue which arises from the upper part of the spectrum when V is replaced
by tV and t is turned on progressively. The upper bound on V in (1.16) is here to
ensure that the positronic eigenvalues (those arising from the lower part) do not
go above

√
1− ν2. The fact that the electronic and positronic eigenvalues do not

cross is an important property for having a min-max formula of the eigenvalues
(see [DES06] for a discussion).

In this section we introduce a quadratic form for the upper spinor, which plays
a central role in the definition of the distinguished self-adjoint extension and for
the min-max formulation of the electronic eigenvalues.

Similarly as in Subsection 1.2, we consider the eigenvalue equation DVΨ = λΨ
with, this time, λ ∈ R, and which we write in terms of the upper and lower

components ϕ, χ ∈ L2(R3,C2) of the 4–spinor Ψ =

(
ϕ
χ

)
. We obtain

(1.17)

{
(1 + V )ϕ− iσ · ∇χ = λϕ,

−iσ · ∇ϕ+ (−1 + V )χ = λχ.
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We insert

χ =
−iσ · ∇ϕ
1− V + λ

in the first equation and get an equation for ϕ only:

(1.18) − iσ · ∇ −iσ · ∇ϕ
1− V + λ

+ (1 + V − λ)ϕ = 0.

This suggest to look at the quadratic form

(1.19) qλ(ϕ) :=

ˆ

R3

|σ · ∇ϕ(x)|2
1− V (x) + λ

dx+

ˆ

R3

(1 + V (x) − λ)|ϕ(x)|2 dx.

Note that the denominator in the first term is well defined for λ > sup(V ) − 1.
Without λ in the denominator of the first term, which comes from the lower compo-
nent χ, the quadratic form qλ would be associated with a usual eigenvalue problem.
With λ in the denominator this is more involved. Nevertheless we have gained that
the solution ϕ to (1.18) can be constructed by a minimization procedure, for any
λ > sup(V )− 1. In Section 2 we will explain the link between the quadratic form
qλ and the true eigenvalues of DV but, for the moment, we discuss the properties
of qλ for an arbitrary λ > sup(V )− 1.

In order to show that qλ is bounded from below, we write

qλ(ϕ) =(1− ν2)

ˆ

R3

|σ · ∇ϕ(x)|2
1− V (x) + λ

dx+ ν2
ˆ

R3

|σ · ∇ϕ(x)|2
1− V (x) + λ

dx

+

ˆ

R3

V (x)|ϕ(x)|2 dx + (1− λ)

ˆ

R3

|ϕ(x)|2 dx.

In [DES00a, DELV04] the following Hardy-type inequality was proved

(1.20)

ˆ

R3

|σ · ∇ϕ(x)|2
a+ 1/|x| dx+

ˆ

R3

(
a− 1

|x|

)
|ϕ(x)|2 dx > 0

for all a > 0. Using our assumption that V is bounded from below by the Coulomb
potential, we can estimate

ν2
ˆ

R3

|σ · ∇ϕ(x)|2
1− V (x) + λ

dx > ν2
ˆ

R3

|σ · ∇ϕ(x)|2
1 + ν/|x|+ λ

dx

>

ˆ

R3

(
ν

|x| − 1− λ

)
|ϕ(x)|2 dx

> −
ˆ

R3

V (x))|ϕ(x)|2 dx− (1 + λ)

ˆ

R3

|ϕ(x)|2 dx.(1.21)

Thus we have proved that

(1.22) qλ(ϕ) + 2λ

ˆ

R3

|ϕ(x)|2 dx > (1− ν2)

ˆ

R3

|σ · ∇ϕ(x)|2
1− V (x) + λ

dx.
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Since the right side is positive, this shows that qλ+2λ‖ϕ‖2L2 is positive as well. In
addition, we conclude from (1.21) that this defines a norm which is independent
of λ and is equivalent to that given by the quadratic form

(1.23) ‖ϕ‖2V :=

ˆ

R3

|σ · ∇ϕ(x)|2
2− V (x)

dx+

ˆ

R3

|ϕ(x)|2 dx.

The following result provides some new properties of this space which are going to
be useful for proving the min-max principle stated below in Section 2.

Theorem 1.4 (The quadratic form domain). Assume that

V (x) > − 1

|x| and sup(V ) < 2

and let

(1.24) V =
{
ϕ ∈ L2(R3,C2) ∩H1

loc(R
3 \ {0},C2) :

(2− V )−1/2σ · ∇ϕ ∈ L2(R3,C2)
}
.

Then C∞
c (R3 \ {0},C2) is dense in V for the norm (1.23). In addition, we have

the continuous embedding

V ⊂ H1/2(R3,C2).

Given the definition (1.24) of the space V , the proof of Theorem 1.4 reduces
to the study of a Sobolev-type space with a weight vanishing at the origin. This
type of question has attracted a lot of attention and plays an important role for
degenerate elliptic problems. In our proof given in Section 4, we follow ideas of
Zhikov [Zhi98, Zhi13].

Loosely speaking, Theorem 1.4 says that there is no ambiguity in the definition
of the domain of the quadratic form qλ. It is the same to start with the very
small space C∞

c (R3 \ {0},C2) and close it for the norm ‖·‖V (as done in [EL07]
for C∞

c (R3,C2)), or to directly start with the maximal domain V on which qλ is
naturally defined and continuous.

Remark 1.5. In (1.24), σ · ∇ϕ is understood in the sense of distributions on
R3. Since σ · ∇ϕ ∈ H−1(R3), it is the same to use distributional derivatives in
R3 \{0}. Moreover, since

√
2− V ∈ L2

loc(R
3), we deduce from the Cauchy-Schwarz

inequality that σ · ∇ϕ ∈ L1
loc for all the functions ϕ ∈ V.

Now that we have discussed the properties of the space V , we can come back to
the problem of characterizing the distinguished self-adjoint extension of DV . The
following is a reformulation of the main result of [EL07].

Theorem 1.6 (V and the distinguished extension [EL07]). Assume that for some
0 6 ν < 1

(1.25) V (x) > − ν

|x| and sup(V ) < 1 +
√
1− ν2.
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Then the distinguished self-adjoint extension DV of Theorem 1.1 is also the unique
extension of the minimal operator ḊV defined on C∞

c (R3 \ {0},C4), such that

D(DV ) ⊂
{
Ψ =

(
ϕ
χ

)
∈ L2(R3,C4) : ϕ ∈ V

}
.

More precisely, we have

D(DV ) =

{
Ψ =

(
ϕ
χ

)
∈ L2(R3,C4) : ϕ ∈ V , D0Ψ+ VΨ ∈ L2(R3,C4)

}
,

where D0Ψ and VΨ are understood in the sense of distributions.

This theorem was proved in [EL07] using a space denoted as H+1, defined as
the closure of C∞

c (R3,C2) for the norm ‖·‖V . From the density proved in our The-
orem 1.4 we infer that H+1 = V , the maximal domain on which qλ is continuous,
and therefore Theorem 1.6 is just a reformulation of the results in [EL07].

Since only the upper component ϕ ∈ V appears in the statement, this charac-
terization seems to provide less information on the domain D(DV ). However, the
following simple result says that we have χ ∈ V as well. Since ϕ, χ ∈ V implies that
ϕ, χ ∈ H1/2(R3,C2) by Theorem 1.4, this means that Theorem 1.6 actually pro-
vides more information on the domain of the distinguished self-adjoint extension
than Theorem 1.1.

Corollary 1.7. Assume that ϕ ∈ V and χ ∈ L2(R3,C2) are such that the distri-
bution

DV

(
ϕ
χ

)
belongs to L2(R3,C4),

where V satisfies (1.25). Then χ ∈ V as well. In particular, the distinguished
self-adjoint extension satisfies D(DV ) ⊂ V × V.

Proof. Since by assumption (1 + V )ϕ− iσ · ∇χ ∈ L2(R3,C2) and ϕ ∈ L2(R3,C2),
we also have

−(2− V )ϕ− iσ · ∇χ ∈ L2(R3,C2).

The function V is uniformly bounded outside of the origin, hence χ ∈ H1
loc(R

3 \
{0},C2). Also, since V ∈ L2

loc(R
3) we have V ϕ ∈ L1

loc(R
3,C2). Therefore σ · ∇χ ∈

L1
loc as well. Using that (2 − V )−1/2 is bounded, we deduce that

−(2− V )1/2ϕ− (2− V )−1/2iσ · ∇χ ∈ L2(R3,C2).

From (1.21) we know that (2−V )1/2ϕ ∈ L2(R3,C2) hence conclude, as we wanted,
that (2− V )−1/2σ · ∇χ ∈ L2(R3,C2).

1.5. The critical case ν = 1

We give in this section some new properties of the distinguished self-adjoint ex-
tension in the critical case. Although these will not all be needed for the min-max
formulas in Section 2, we state them because they complement [EL07, EL08] in an
interesting direction.
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The Esteban-Loss method presented in the previous section is general and it
was applied to the critical case already in [EL07]. The main difficulty here is to
understand the domain of qλ, since the inequality (1.22) does not give any useful
information when ν = 1. The terms in qλ will not necessarily be separately finite.
Following ideas from [DELV04, DEDV07], we first describe this domain with more
details.

It is useful to start with the exact Coulomb case VC(x) = −|x|−1, in which case
we use the notation

(1.26) qCλ (ϕ) =

ˆ

R3

{ |x|
1 + λ|x|+ |x| |σ · ∇ϕ(x)|2 +

(
1− λ− 1

|x|

)
|ϕ(x)|2

}
dx.

Our aim is to understand what is the maximal domain on which qCλ is well-defined
and continuous. To this end, we start with λ = 0 and follow [DELV04]. We involve
the operator k = 1 + σ · L, where

L = −ix ∧ ∇ = −i



x2∂3 − x3∂2
x3∂1 − x1∂3
x1∂2 − x2∂1




is the angular momentum. We recall that k = 1 + σ · L has the eigenvalues
±1,±2, ..., see [Tha92]. The negative and positive spaces are unitarily equivalent
and mapped to one another using the unitary σ · ωx where ωx = x/|x| is the unit
vector pointing in the same direction as x:

(1.27) σ · x|x|
(
1 + σ · L

)
σ · x|x| = −

(
1 + σ · L

)
.

In addition, we will use that the kernel of σ · L is composed of radial functions
(it coincides with the kernel of L), hence the kernel of σ · L+ 2 is given by σ · ωx
times radial functions. These are the two spaces for the upper spinor ϕ which
correspond to κ = ±1 for the full Dirac operator. The sectors κ = ±1 determine
the possible extensions, as we have recalled in Subsection 1.2. The following is
inspired by [DELV04, DEDV07] and proved in Appendix B below.

Theorem 1.8 (Writing qCλ as a sum of squares). For every ϕ ∈ L2(R3,C2) we
write

ϕ = ϕ+(x) + ϕ−(x) + ϕ0(|x|) + σ · x|x| ϕ1(|x|)

where ϕ+ = 1[1,∞)(σ · L)ϕ, ϕ− = 1(−∞,−3](σ · L)ϕ, ϕ0 = 1{0}(σ · L)ϕ and ϕ1 =
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σ · (x/|x|)1{−2}(σ · L)ϕ. Then

qC0 (ϕ) =

ˆ

R3

|x|
1 + |x|

∣∣∣∣σ · ∇ϕ+(x) +
σ · x
|x|2 (1 + |x|)ϕ+(x)

∣∣∣∣
2

dx

+

ˆ

R3

|x|
1 + |x|

∣∣∣∣σ · ∇ϕ−(x) −
σ · x
|x|2 (1 + |x|)ϕ−(x)

∣∣∣∣
2

dx

+ 2

〈
ϕ+,

σ · L
|x| ϕ+

〉
+ 2

〈
ϕ−,

−2− σ · L
|x| ϕ−

〉

+ 4π

ˆ ∞

0

r

1 + r
|rϕ′

0(r) + ϕ0(r) + rϕ0(r)|2 dr

+ 4π

ˆ ∞

0

r

1 + r
|rϕ′

1(r) + ϕ1(r) − rϕ1(r)|2 dr(1.28)

for every ϕ ∈ H1(R3,C2). On L2(R3,C2), the quadratic form qC0 is equivalent to

‖ϕ‖2L2 + qC0 (ϕ)

∼ ‖ϕ‖2L2 +

ˆ

R3

|x|
1 + |x|

∣∣σ · ∇ϕ+(x)
∣∣2 dx+

ˆ

R3

|x|
1 + |x|

∣∣σ · ∇ϕ−(x)
∣∣2 dx

+

ˆ ∞

0

r

1 + r

∣∣rϕ′
0(r) + ϕ0(r)

∣∣2dr +
ˆ ∞

0

r

1 + r

∣∣rϕ′
1(r) + ϕ1(r)

∣∣2 dr

∼ ‖ϕ‖2L2 +

ˆ

R3

1

|x|(1 + |x|)
∣∣σ · ∇|x|ϕ(x)

∣∣2 dx.
(1.29)

Finally, for all −1 < λ < 1, we have

(1.30) qCλ (ϕ) = qC0 (ϕ) − λ

ˆ

R3

|x|2|σ · ∇ϕ(x)|2
(1 + |x|)(1 + (1 + λ)|x|) dx − λ

ˆ

R3

|ϕ(x)|2 dx

which, in L2, is equivalent to the norm associated with ‖ϕ‖2L2 + qC0 (ϕ).

Note that all the terms in the formula (1.28) for qC0 are non-negative, which
enables us to identify its maximal domain. We see that the two functions ϕ+ and
ϕ− have the exact same regularity as before, namely they must belong to the space
VC, defined as in (1.24) with V (x) = VC(x) = −|x|−1:

ˆ

R3

|x|
1 + |x|

∣∣σ · ∇ϕ±(x)
∣∣2 dx <∞.

In particular, from Theorem 1.4 and the Hardy-type inequality (1.20), ϕ+ and ϕ−
have a finite Coulomb energy and a finite H1/2 norm. Only the functions ϕ0 and
σ · ωxϕ1 can be more singular at the origin. Those only satisfy the property that

ˆ

R3

1

|x|(1 + |x|)
∣∣σ · ∇|x|ϕ0(x)

∣∣2 dx <∞
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which can be written in radial coordinates as

(1.31)

ˆ ∞

0

r

1 + r

∣∣∣rϕ′
0/1(r) + ϕ0/1(r)

∣∣∣
2

dr <∞.

This is weaker than when |x| is pulled outside of the gradient as before. For in-
stance, the ground state of the Dirac-Coulomb operator at ν = 1 is given by [Tha92,
Sec. 7.4.2]

ϕ0(|x|) =
e−|x|

|x| v, v ∈ C2

and it satisfies qC0 (ϕ0) <∞ but

ˆ

R3

|x|
1 + |x|

∣∣∣∣σ · ∇e−|x|

|x|

∣∣∣∣
2

dx = 4π

ˆ ∞

0

r3

1 + r

∣∣∣∣
e−r + re−r

r2

∣∣∣∣
2

dr = +∞.

The condition (1.31) is enough to distinguish a self-adjoint extension, as we will
see. The main message is that ϕ0 and ϕ1 are allowed to behave like 1/r at r = 0,
but not like log(r)/r. This corresponds to taking α = π in Subsection 1.2.

Now we are able to define the spaces which will replace V in the critical case.
In the exact Coulomb case V (x) = −|x|−1 we introduce

(1.32) WC =

{
ϕ ∈ L2(R3,C2) :

σ · ∇|x|ϕ
|x|1/2(1 + |x|)1/2 ∈ L2(R3,C2)

}
.

Then we assume that V (x) > −|x|−1 and that sup(V ) < 1. The quadratic form
associated with V can be written in terms of qCλ as follows:

qλ(ϕ) =

ˆ

R3

(
1

1 + λ− V (x)
− |x|

1 + (1 + λ)|x|

)
|σ · ∇ϕ(x)|2 dx

+

ˆ

R3

(
V (x) +

1

|x|

)
|ϕ(x)|2 dx+ qCλ (ϕ),

for −1 + sup(V ) < λ < 1. The quadratic forms

ˆ

R3

(
1

1 + λ− V (x)
− |x|

1 + (1 + λ)|x|

)
|σ · ∇ϕ(x)|2 dx

are all equivalent when λ is varied in the interval (−1 + sup(V ), 1) and since the
same holds for qCλ by Theorem 1.8, we can simply use λ = 0 and define the space
W associated with V by

(1.33) W =

{
ϕ ∈ WC :

(
1

1− V (x)
− |x|

1 + |x|

)1/2

σ · ∇ϕ ∈ L2(R3,C2),

(
V (x) +

1

|x|

)1/2

ϕ ∈ L2(R3,C2)

}
.

The following is the equivalent of Theorem 1.4.
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Theorem 1.9 (Properties of WC and W). We assume that

(1.34) V (x) > − 1

|x| and sup(V ) < 1.

Then the space C∞
c (R3 \ {0},C2) is dense in WC and in W for their respective

norms. Also, we have the continuous embeddings

W ⊂ WC ⊂ Hs(R3,C2)

for every 0 6 s < 1/2.

The proof of Theorem 1.9 is provided below in Section 5 and it is much more
involved than that of Theorem 1.4. This is due to the criticality of the problem,
which prevents from using rough regularization techniques.

Remark 1.10. If V (x) = −|x|−1+O (|x|−α) with α < 1, as x→ 0, then we simply
have W = WC. Indeed the two additional terms are controlled by the WC-norm.
We have

ˆ

R3

(
1

1− V (x)
− |x|

1 + |x|

)
|σ · ∇ϕ(x)|2 dx

.

ˆ

R3

|x|2
|x|α(1 + |x|)2 |σ · ∇ϕ(x)|2 dx

.

ˆ

R3

1

|x|α(1 + |x|)2 |σ · ∇|x|ϕ(x)|2 dx+

ˆ

R3

|ϕ(x)|2
|x|α(1 + |x|)2 dx

and, similarly,

ˆ

R3

(
V (x) +

1

|x|

)
|ϕ(x)|2 dx .

ˆ

R3

|ϕ(x)|2
|x|α dx

which are all finite for ϕ ∈ WC. Hence in this case there is no difference between
W and WC.

Contrary to the subcritical case where one can use the space H1/2, we cannot
distinguish the extension from the sole property that it is included in Hs for
s < 1/2. This would not make the difference between 1/r and log(r)/r. We need
the more precise norm associated with q0. The main result on the distinguished
self-adjoint extension is the following.

Theorem 1.11 (W and the distinguished extension in the critical case). We
assume that

(1.35) V (x) > − 1

|x| and sup(V ) < 1.

(a) [EL07] The minimal operator ḊV = (D0+V ) ↾ C∞
c (R3 \ {0},C4) has a unique

self-adjoint extension DV such that

D(DV ) ⊂
{
Ψ =

(
ϕ
χ

)
∈ L2(R3,C4) : ϕ ∈ W

}
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and this extension has the domain

D(DV ) =

{
Ψ =

(
ϕ
χ

)
∈ L2(R3,C4) : ϕ ∈ W , D0Ψ+ VΨ ∈ L2(R3,C4)

}

where D0Ψ and VΨ are understood in the sense of distributions.

(b) Let Vε(x) := max(V (x),−1/ε) or Vε = (1 − ε)V . Then, the self-adjoint oper-
ator DVε converges in the norm resolvent sense to the operator DV defined in the
previous item.

Although the first part is just a reformulation of the results in [EL07] (relying
on the closure H+1 of C∞

c (R3,C2) for the norm induced by q0, which is equal to W
by Theorem 1.9), the convergence of the resolvents is completely new. In the same
spirit as what was achieved for ν < 1 in [Wüs73, Wüs75, Wüs77, KW79, Kat83],
it means that the Esteban-Loss extension is the only physically relevant one in the
critical case. The proof of the resolvent convergence is given in Section 6 below.

2. Domains for min-max formulas of eigenvalues

In this section we finally discuss min-max principles for Dirac eigenvalues. In
[DES00a] an abstract variational characterization of the eigenvalues of operators
with gaps was shown. Let H be a Hilbert space and A : D(A) ⊂ H → H be a
self-adjoint operator. Let H+, H− be two orthogonal Hilbert subspaces of H such
that H = H+⊕H−. We denote by Λ± the two corresponding orthogonal projectors.
We assume the existence of a core F (a subspace of D(A) which is dense for the
norm ‖ · ‖D(A)), such that

(i) F+ = Λ+F and F− = Λ−F are two subspaces of D(|A|1/2),

(ii) a = sup
ψ−∈F−\{0}

〈ψ−, Aψ−〉
H

‖ψ−‖2H
< +∞ .

We then consider the sequence of min-max levels

(2.1) λ
(k)
F := inf

W subspace of F+

dim W=k

sup
ψ∈(W⊕F−)\{0}

〈ψ,Aψ〉
H

‖ψ‖2
H

, k > 1.

Our last assumption is

(iii) λ
(1)
F > a.

Everywhere 〈ψ,Aψ〉 =
〈
|A|1/2ψ,U |A|1/2ψ

〉
is always understood in the form

sense, which is possible since F± ⊂ D(|A|1/2). Let

b = inf (σess(A) ∩ (a,+∞)) ∈ [a,+∞]

be the bottom of the essential spectrum above a. The following gives a character-
ization of the eigenvalues in the gap (a, b).
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Theorem 2.1 (Min-max formula for the kth eigenvalue [DES00a]). With the above

notations, and under assumptions (i)—(iii), we have b > a. The number λ
(k)
F is

the kth eigenvalue of A in (a, b), counted with multiplicity, or is equal to b if A has
less than k eigenvalues in (a, b).

For the Dirac operator, it was suggested by Talman [Tal86] and Datta-Devaiah [DD88]
to use the decomposition into upper and lower spinors, that is, to take for the two
subspaces H±

(2.2) H
+ =

{(
ϕ
0

)
: ϕ ∈ L2(R3,C2)

}
, H

− =

{(
0
χ

)
: χ ∈ L2(R3,C2)

}
.

The first rigorous result for this decomposition was obtained by Griesemer and
Siedentop [GS99], who dealt with bounded potentials V . In [DES00a] the above ab-
stract result was applied to the case of Coulomb singularities. However,in [DES00a]
it was stated that it is possible to use the space F = C∞

c (R3,C4). From (4) in
Theorem 1.1, this is true when 0 6 ν <

√
3/2, because in this range the opera-

tor Dν is essentially self-adjoint on C∞
c (R3 \ {0},C4). When

√
3/2 6 ν < 1, the

argument in [DES00a] was not complete.
Of course, Theorem 2.1 can still be applied in the domain D(DV ) of the dis-

tinguished self-adjoint extension or in any core F on which DV is essentially self-
adjoint. Unfortunately, except for bounded perturbations of the exact Coulomb
potential, for which the domain is well understood as we have seen in Subsec-
tion 1.2, D(DV ) is not so easy to grasp for a general potential V . From a numeri-
cal point of view, it is indeed important to be able to use simple spaces F in the
min-max formula.

In [MM15, M1̈6], Mller and Morozov proved the validity of the min-max formula
for

√
3/2 6 ν < 1 in F = H1/2(R3,C2), using a variant of the abstract min-max

theorem in a setting adapted to form domains, inspired by Nenciu [Nen76].
Another min-max principle based on the free-energy projectors Λ+

0 = 1(D0 >

0) and Λ−
0 = 1(D0 6 0) was first introduced in [ES97]. Using an inequality proved

in [BE98] and [Tix98], it was shown in [DES00a] that the eigenvalues satisfy the

min-max principle (2.3) in the range 0 6 ν < 2
(
π
2 + 2

π

)−1 ≃ 0.9. Recently, the

free projections have also been covered in [MM15, M1̈6] for ν < 1.
In this section we prove a result similar to [MM15, M1̈6], by a completely

different method. We will show that the min-max is valid on any space between
C∞
c (R3 \ {0},C4) and H1/2(R3,C4). Contrary to [MM15] we will not modify the

abstract theorem, but simply use density results in the spirit of Theorem 1.4. We
will also treat the critical case ν = 1 and obtain the first results in this setting, to
our knowledge.

In order to properly state our main result, we introduce the two projections

Λ+
T

(
ϕ
χ

)
=

(
ϕ
0

)
, Λ−

T

(
ϕ
χ

)
=

(
0
χ

)

corresponding to the Talman decomposition (2.2) and the spectral projections

Λ+
0 = 1(D0 > 0), Λ−

0 = 1(D0 6 0)
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of the free Dirac operator. For a space F ⊆ H1/2(R3,C4), we define the min-max
levels

(2.3) λ
(k)
T/0,F = inf

W subspace of Λ+
T/0

F

dim W=k

sup
Ψ∈W⊕Λ−

T/0
F

Ψ 6=0

〈Ψ, DVΨ〉
‖Ψ‖2

L2

, k > 1.

We remark that the four projections Λ±
T/0 stabilize H1/2(R3,C4), hence 〈Ψ, DVΨ〉

is always well defined in the sense of quadratic forms. Indeed

〈Ψ, DVΨ〉 = 〈Ψ, D0Ψ〉+
ˆ

R3

V |Ψ|2

by Theorem 1.1 (ii) and Remark 1.2. The same property as in Remark 1.2 holds
in the critical case ν = 1, since H1(R3,C4) ⊂ D(DV ) as well. We could actually
work in D(|DV |1/2) but we refrain from doing it since our goal is to state a result
in simple spaces that do not depend on V .

Our main result is the following

Theorem 2.2 (Min-max formula for eigenvalues). Let 0 < ν 6 1. We assume
that

(2.4) V (x) > − ν

|x| and sup(V ) < 1 +
√
1− ν2.

Let

(2.5) C∞
c (R3 \ {0},C4) ⊆ F ⊆ H1/2(R3,C4).

Then, the number λ
(k)
T,F defined in (2.3), is independent of the subspace F and

coincides with the kth eigenvalue of the distinguished self-adjoint extension of DV

larger than or equal to
√
1− ν2, counted with multiplicity (or is equal to b =

inf (σess(DV ) ∩ (
√
1− ν2,+∞)) if there are less than k eigenvalues below b). In

addition, we have

λ
(k)
T,F = λ

(k)
0,F

for all F as above and all k > 1.

That we can take any space F satisfying (2.5) shows how the min-max char-
acterization of the eigenvalues is insensitive to F , even for the distinguished self-
adjoint extension which has a non trivial domain D(DV ). The space F can be as
small as C∞

c (R3 \ {0},C4) which is not dense in D(DV ) for
√
3/2 < ν 6 1, or as

large as H1/2(R3,C4) which does not even contain the domain for ν = 1.

Before turning to the proof of the theorem (given in Section 3), we would like
to comment on the role of the quadratic form qλ discussed in Sections 1.4–1.5, in
the Talman case Λ±

T . One important argument in [DES00a] was to solve the sup
part of (2.3) using the method of Lagrange multipliers. For any λ > sup(V ) − 1
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we consider the maximization problem

sup
(

0
χ

)

∈Λ−

T F

{〈(
ϕ
χ

)
, DV

(
ϕ
χ

)〉
− λ
(
‖ϕ‖2L2 + ‖χ‖2L2

)}

=

ˆ

R3

|σ · ∇ϕ(x)|2
1− V (x) + λ

dx+

ˆ

R3

(
1 + V (x)− λ

)
|ϕ(x)|2 dx = qλ(ϕ),

which is exactly the quadratic form which we have studied in Section 1.4. The
unique maximizer is

χ =
−iσ · ∇ϕ
1− V + λ

.

This can be used to prove that supremum

(2.6) sup
(

0
χ

)

∈Λ−

T F

〈(
ϕ
χ

)
, DV

(
ϕ
χ

)〉

‖ϕ‖2 + ‖χ‖2

appearing in the min-max formula (2.3), is the unique number λ such that qλ(ϕ) =
0. For this reason, our proof of Theorem 2.2 relies on the density of C∞

c (R3 \
{0},C2) in the quadratic form domains V , shown in Theorem 1.4. In the critical
case, our proof does not rely on the density in W , stated before in Theorem 1.9.
This is because we have assumed that F ⊂ H1/2(R3,C4) and W ∩H1/2(R3,C4) =
V .

The rest of the paper is dedicated to the proofs of our results.

3. Proof of Theorem 2.2 on the min-max levels

Admitting temporarily our other results, we start with the proof of Theorem 2.2.
One possible route is to apply the abstract Theorem 2.1 in the domain F0 = D(DV )
and then to show that F0 can be replaced by any other F as in the statement.
Another strategy is to truncate the potential into Vε, apply Theorem 2.1 for Vε
and then pass to the limit ε→ 0 in the min-max formula for the eigenvalues. This
argument uses the norm-convergence of the resolvent in Theorems 1.1 and 1.11
which implies the convergence of the eigenvalues.

The first method requires to know the domain F0 = D(DV ) quite precisely,
whereas the second one does not involve the domain at all. It is more robust and
more appropriate in the critical case ν = 1 for which we have less information on
D(DV ). For this reason, we use the second method.
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3.1. Proof for the Talman projections Λ±

T

We split the proof into several steps. To simplify our proof, with an abuse of
notation we write ϕ ∈ F+ = Λ+

TF instead of
(
ϕ
0

)
∈ Λ+

TF

and similarly we write χ ∈ F−. In the proof we approximate the (upper bounded)
potential V by Vε := max(V,−1/ε) ∈ L∞(R3,R) and we start by recalling some
well-known facts for Vε.

Step 1. Upper bound. First we compute

a := sup
χ∈F−

χ6=0

〈(
0
χ

)
, DV

(
0
χ

)〉

‖χ‖2 = sup
χ∈F−

χ6=0

´

R3(−1 + V )|χ|2
‖χ‖2 = sup(−1 + V )

since F− contains C∞
c (R3 \ {0},C2) by assumption. Thus a <

√
1− ν2 since

sup(V ) < 1 +
√
1− ν2. The same property holds when V is replaced by Vε.

Following [DES00a, Lem. 2.2], we write the min-max levels for a potential V
(truncated or not) in the form

(3.1) λ
(k)
T,F (V ) = inf

W+⊂F+

dim(W+)=k

sup
ϕ∈W+

SF−(V, ϕ).

where

(3.2) S(V, ϕ) :=

sup
χ∈F−

‖ϕ‖2+‖χ‖2 6=0

´

R3(|ϕ|2 − |χ|2) +
´

R3 V (|ϕ|2 + |χ|2) + 2ℜ〈χ,−iσ · ∇ϕ〉
´

R3 |ϕ|2 + |χ|2 .

All the terms are well defined since F ⊂ H1/2(R3,C4). Indeed, by continuity of
the function appearing in the definition (3.2) for the norm of H1/2, the value of
S(V, ϕ) does not depend on F− which can be replaced by any space dense in H1/2.
This is why our notation for S(V, ϕ) does not involve F−. By monotonicity with
respect to V we have

(3.3) λ
(k)
T,F (Vε) > λ

(k)
T,F (V )

for all ε > 0. Using a continuation principle, it was proved in [DES00a] that

(3.4) λ
(1)
T,F (Vε) >

√
1− ν2 > a

for all ε > 0 and all C∞
c (R3 \ {0},C4) ⊂ F ⊂ H1/2(R3,C4). So we can apply The-

orem 2.1 and conclude that, under our assumptions on V , λ
(k)
T,F (Vε) is independent

of F and coincides with the kth eigenvalue of DVε .
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In the limit ε → 0, λ
(k)
T,F (Vε) converges to the kth eigenvalue µ(k)(V ) of DV ,

due to the convergence in norm of the resolvents, shown in Theorem 1.1 for the
subcritical case 0 < ν < 1 and in Theorem 1.11 in the critical case ν = 1. So
passing to the limit ε→ 0 in (3.3) we obtain the upper bound

µ(k)(V ) > λ
(k)
T,F (V ).

Step 2. Lower bound. Now we come back to (3.1). In order to prove the reverse
inequality we have to show that

sup
ϕ∈W+

S(V, ϕ) > µ(k)(V )

for every k-dimensional subspace W+ ⊂ F+. The next lemma follows from the
arguments in [DES00a, Lemma 2.2].

Lemma 3.1 (Computation of S(V, ϕ) [DES00a]). Let ϕ ∈ H1/2(R3,C2). Then
S(V, ϕ) is finite if and only if ϕ ∈ V. In this case, E = S(V, ϕ) is the unique
solution to the nonlinear equation qE(V, ϕ) = 0.

Note that even in the critical case ν = 1 we conclude that ϕ must be in V . This
is because we have assumed that ϕ ∈ H1/2(R3,C2) and W ∩H1/2 = V .

By Lemma 3.1 and the monotonicity of qE with respect to E, it suffices to show
that

(3.5) sup
ϕ∈W+

qµ(k)(V )(V, ϕ) > 0

for any k-dimensional space W+ ⊂ F+ ∩ V . Since C∞
c (R3 \ {0},C2) is dense

in V by Theorem 1.4, it suffices to prove (3.5) for a k-dimensional space W+ ⊂
C∞
c (R3 \{0},C2). For any such space, we have from the min-max characterization

for Vε
sup
ϕ∈W+

qµ(k)(V )(Vε, ϕ) > sup
ϕ∈W+

qµ(k)(Vε)(Vε, ϕ) > 0.

So passing to the limit ε→ 0 (in the fixed finite-dimensional spaceW+ ⊂ C∞
c (R3\

{0},C2)) we find
sup
ϕ∈W+

qµ(k)(V )(V, ϕ) > 0

as we wanted.

3.2. Proof for the free Dirac projections Λ±
0

The proof follows along the same lines as for the Talman projections, and we only
outline it. In this case we have as before

a := sup
ψ−∈Λ−

0 F
ψ− 6=0

〈ψ−, DV ψ−〉
‖ψ−‖2

= sup
ψ−∈Λ−

0 F
ψ− 6=0

〈
ψ−,

(
−
√
1−∆+ V

)
ψ−
〉

‖ψ−‖2

6 sup(V )− 1 <
√
1− ν2.
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Following step by step the argument of the previous section, we have to study the
quadratic form

(3.6) q̃E(ψ+) :=
〈
ψ+,

√
1−∆ψ+

〉
+

ˆ

R3

(V − E)|ψ+|2

+

〈
Λ−
0 V ψ+,

(
Λ−
0 (

√
1−∆+ E − V )Λ−

0

)−1

Λ−
0 V ψ+

〉

in place of qE which appeared in (1.19). Let us remark that q̃E is continuous on
H1/2 since, by the operator monotonicity of the inverse, we have

(
Λ−
0 (

√
1−∆+ E − V )Λ−

0

)−1

6
Λ−
0√

1−∆+ E − 1−
√
1− ν2

.

Therefore by Kato’s inequality

(3.7)

〈
Λ−
0 V ψ+,

(
Λ−
0 (

√
1−∆+ E − V )Λ−

0

)−1

Λ−
0 V ψ+

〉
.

ˆ

R3

|V ||ψ+|2

and ∣∣q̃E(ψ+)
∣∣ .

〈
ψ+,

√
1−∆ψ+

〉
.

In addition the map E 7→ q̃E(ψ+) is C
1 on (0,∞) with

(3.8)
∂

∂E
q̃E(ψ+) = −

ˆ

R3

|ψ+|2 −
∥∥∥∥
(
Λ−
0 (

√
1−∆+ E − V )Λ−

0

)−1

Λ−
0 V ψ+

∥∥∥∥
2

L2

.

Using (3.7) and the fact that
(
Λ−
0 (

√
1−∆+ E − V )Λ−

0

)−2

6
1

E

(
Λ−
0 (

√
1−∆+ E − V )Λ−

0

)−1

the right side of (3.8) is well-defined and continuous on H1/2.
In [DES00a, Sec. 4.2] it was proved that

(3.9) q̃E(ψ+) > 0

for all sup(V ) − 1 < E 6
√
1− ν2 and all ψ+ ∈ Λ+

0 H
1/2(R3,C4). From (3.9) we

can first deduce that the domain of the quadratic form q̃E is exactly Λ+
0 H

1/2.

Lemma 3.2 (The domain of q̃E is Λ+
0 H

1/2 for ν < 1). We have

(3.10) q̃E(ψ+) > (1 − ν)2
〈
ψ+,

√
1−∆ψ+

〉
− 4Eν2‖ψ+‖2

for every ψ+ ∈ Λ+
0 H

1/2(R3,C4) and every E > max(0, sup(V )− 1).

The bound (3.10) can be improved for max(0, sup(V ) − 1) < E 6
√
1− ν2

but it is sufficient for our purposes. From the lemma we obtain that the maximal
domain of q̃E is Λ+

0 H
1/2(R3,C4), hence C∞

c (R3 \ {0},C2) is dense in this domain.
The rest of the proof is then exactly the same as in the Talman case. Note that in
the equivalent of Lemma 3.1, the corresponding supremum S̃(V, ϕ) is always finite
since the quadratic form is this time defined on H1/2.

It therefore remains to provide the
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Proof of Lemma 3.2. Using (3.9) for V = −ν/|x| and passing to the limit ν → 1,
we get the following Hardy-type inequality [DES00a]

(3.11)
〈
ψ+,

√
1−∆ψ+

〉
−
ˆ

R3

|ψ+|2
|x|

+

〈
Λ−
0

1

|x|ψ+,
(
Λ−
0 (

√
1−∆+ |x|−1)Λ−

0

)−1

Λ−
0

1

|x|ψ+

〉
> 0

for all ψ+ ∈ Λ−
0 H

1/2. Now we would like a similar inequality with an additional
E > max(0, sup(V ) − 1) in the denominator of the second term. We start by
writing

〈
Λ−
0

1

|x|ψ+,
(
Λ−
0 (

√
1−∆+ E + |x|−1)Λ−

0

)−1

Λ−
0

1

|x|ψ+

〉

>

〈
Λ−
0

1

|x|ψ+,
(
Λ−
0 (

√
1−∆+ |x|−1)Λ−

0

)−1

Λ−
0

1

|x|ψ+

〉

− E

∥∥∥∥
(
Λ−
0 (

√
1−∆+ |x|−1)Λ−

0

)−1

Λ−
0

1

|x|ψ+

∥∥∥∥
2

since (A+ E)−1 > A−1 − EA−2. Now we claim that the operator

(3.12) BE :=
(
Λ−
0 (

√
1−∆+ E + |x|−1)Λ−

0

)−1

Λ−
0

1

|x|

is bounded as follows:
‖BE‖ 6 2.

Using (3.11), this eventually implies

(3.13)
〈
ψ+,

√
1−∆ψ+

〉

+

〈
Λ−
0

1

|x|ψ+,
(
Λ−
0 (

√
1−∆+ E + |x|−1)Λ−

0

)−1

Λ−
0

1

|x|ψ+

〉

>

ˆ

R3

|ψ+|2
|x| − 4E ‖ψ+‖2 .

Before providing the proof that BE in (3.12) is bounded, we first come back
to q̃E(ψ+). We note that it is a monotone function of the potential V . This is
perhaps not so obvious from the formula (3.6), but it becomes clear if we recall
that

q̃E(ψ+) = sup
ψ−∈Λ−

0 F
−

0

{
〈ψ+ + ψ−, D0(ψ+ + ψ−)〉

+

ˆ

R3

V |ψ+ + ψ−|2 − E(‖ψ+‖2 + ‖ψ−‖2)
}
.
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So for a lower bound, we may replace V by −ν/|x| and we obtain, for every E > 0,

q̃E(ψ+) >
〈
ψ+,

√
1−∆ψ+

〉
− ν

ˆ

R3

|ψ+|2
|x| − E

ˆ

R3

|ψ+|2

+ ν2
〈
Λ−
0

1

|x|ψ+,
(
Λ−
0 (

√
1−∆+ E + |x|−1)Λ−

0

)−1

Λ−
0

1

|x|ψ+

〉

>(1− ν2)
〈
ψ+,

√
1−∆ψ+

〉
− ν(1 − ν)

ˆ

R3

|ψ+|2
|x| − 4Eν2

ˆ

R3

|ψ+|2

>(1− ν)
(
1 + ν − π

2
ν
)〈

ψ+,
√
1−∆ψ+

〉
− 4Eν2

ˆ

R3

|ψ+|2.

In the second inequality we have used (3.13) and in the last one we have used
Kato’s inequality (1.13). Using π/2 6 2 yields the simpler inequality (3.10).

So it remains to prove that BE in (3.12) is bounded and since

BE =
Λ−
0 (

√
1−∆+ |x|−1)Λ−

0

Λ−
0 (

√
1−∆+ E + |x|−1)Λ−

0

B0

where the left side has a norm 6 1 by the spectral theorem, it suffices to do it for
E = 0. We compute

{
Λ−
0

(√
1−∆+

1

|x|

)
Λ−
0

}2

= Λ−
0 (1−∆) +

(
Λ−
0

1

|x|Λ
−
0

)2

+ Λ−
0

(
1

|x|
√
1−∆+

√
1−∆

1

|x|

)
Λ−
0 .

It was proved by Lieb in [Lie84] that

1

|x|
√
1−∆+

√
1−∆

1

|x| > 0

and therefore we have the operator inequality

{
Λ−
0

(√
1−∆+

1

|x|

)
Λ−
0

}2

> Λ−
0 (1−∆).

The inverse being operator monotone, we deduce that

{
Λ−
0

(√
1−∆+

1

|x|

)
Λ−
0

}−2

6
Λ−
0

1−∆

or, equivalently, that

∥∥∥∥∥

(
Λ−
0

(√
1−∆+

1

|x|

)
Λ−
0

)−1

Λ−
0

√
1−∆

∥∥∥∥∥ 6 1.
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So we can write

B0 =
(
Λ−
0 (

√
1−∆+ |x|−1)Λ−

0

)−1

Λ−
0

√
1−∆

1√
1−∆

1

|x|
which proves using Hardy’s inequality that

‖B0‖ 6

∥∥∥∥
1√

1−∆

1

|x|

∥∥∥∥ 6 2.

This ends the proof of Lemma 3.2.

4. Proof of Theorem 1.4 on the subcritical domain V

4.1. Proof that C∞
c (R3 \ {0},C2) is dense in V

We are going to adapt [Zhi98, proof of Theorem 4.1]. Zhikov considers a scalar
function ϕ, with |∇ϕ|2 instead of |σ · ∇ϕ|2. A crucial step in his proof is to
approximate ϕ by a function ϕε bounded in a neighbourhood of 0. This is easily
done in his case, just by taking ϕε = ϕ1(|ϕ| 6 ε−1), with ε small. In our case
this simple argument fails. Instead we change our unknown and remove the Pauli
matrices.

For every ϕ ∈ L2(R3,C2), there is a unique u in the homogeneous Sobolev
space Ḣ1(R3,C2) such that ϕ = (σ · ∇)u. Then,

‖ϕ‖2V =

ˆ

R3

|∆u|2
2− V

+

ˆ

R3

|∇u|2 .

Note that the matrices σk have disappeared. Now, for 0 < ε < 1 we let ϕε =
(σ · ∇)uε where uε is the solution in Ḣ1(R3,C2) of the equation

∆uε(x) = 1(|x| > ε)∆u(x) .

Obviously ϕε ∈ V and

‖ϕ− ϕε‖2V =

ˆ

Bε

|∆u|2
2− V

+

ˆ

R3

|∇(u− uε)|2

where Bε is the ball of radius ε. The first term converges to zero and the second
term can be written in the form

ˆ

R3

|∇(u− uε)|2 = −
ˆ

Bε

(u− uε)∆u

=
1

4π

ˆ

Bε

ˆ

Bε

∆u(x)∆u(y)

|x− y| dx dy . ‖∆u‖2L6/5(Bε)

by the Hardy-Littlewood-Sobolev inequality. Now

‖∆u‖2L6/5(Bε)
6
∥∥(2− V )−1/2∆u

∥∥2
L2(Bε)

‖2− V ‖1/2
L3/2(Bε)
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which tends to zero.
We have proved that ϕε → ϕ strongly in V . The function ϕε is well behaved

close to the origin. Indeed, for each 0 < ε < 1, uε is harmonic on B(0, ε), so there
is Mε > 0 such that |ϕε| 6 |∇uε| 6Mε on Bε/2. Then we can follow [Zhi98]. For

0 < δ < ε/2 we consider the cut-off function θδ(x) := max
(
0,min(1, 2|x|δ − 1)

)
and

let ϕδε(x) = θδ(x)ϕε(x). We write

||ϕε − ϕδε||2V =

ˆ

Bδ

|(σ · ∇)(1− θδ)ϕε|2
2− V

+ (1− θδ)
2|ϕε|2

≤ 2

ˆ

Bδ

|(σ · ∇)ϕε|2
2− V

+ 2

ˆ

Bδ

|∇θδ|2|ϕε|2
2− V

+

ˆ

Bδ

|ϕε|2

≤ 8M2
ε

4πδ

3
+

ˆ

B(0,δ)

2|(σ · ∇)ϕε|2
2− V

+ |ϕε|2,

and for a fixed ε > 0, this quantity tends to 0 as δ → 0. To end the proof, note
that ϕδε vanishes on B(0, δ/2), so we can regularize it using a convolution product,
which ends the proof that C∞

c (R3 \ {0},C2) is dense in V .
Remark 4.1. If we make the further assumption that V (x) 6 −η/|x| in a neigh-
borhood of the origin, we can use a much simpler argument. Namely we replace ϕ
by θδϕ with the same θδ as before and estimate

ˆ

R3

|σ · ∇(1− θδ)ϕ|2
2− V

6 2

ˆ

R3

(1− θδ)
2|σ · ∇ϕ|2

2− V
+ 2

ˆ

|x|6δ

(θ′δ)
2|ϕ|2

2− V
.

The first term goes to 0 by the dominated convergence theorem and the second can
be bounded by

ˆ

|x|6δ

(θ′δ)
2|ϕ|2

2− V
.

ˆ

|x|6δ

|x|(θ′δ)2|ϕ|2
1 + |x| .

ˆ

|x|6δ

|ϕ|2
|x|

since |x|θ′δ is uniformly bounded.

4.2. Proof that V ⊂ H1/2

Using again our assumption that V is bounded from below by the Coulomb po-
tential, we see that

‖ϕ‖2V >

ˆ

R3

|σ · ∇ϕ(x)|2
2 + 1/|x| dx.

Hence ϕ is in H1 outside of the origin, and |x|1/2∇ϕ is in L2 in a neighborhood of
the origin. This turns out to imply that ϕ ∈ H1/2, using the following Hardy-type
inequality for the part close to the origin.

Lemma 4.2 (Another Hardy-type inequality). We have

(4.1)

ˆ

R3

∣∣(−∆)1/4ϕ(x)
∣∣2 dx 6

π

2

ˆ

R3

|x| |σ · ∇ϕ(x)|2 dx,

for every ϕ in C∞
c (R3 \ {0},C2).
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Proof. Using that (σ · p)2 = |p|2 with p = −i∇, we can write ϕ = |p|−2σ · p(σ · p)ϕ.
Calling η = σ · ∇ϕ, it remains to show the inequality

〈
η, |p|−1η

〉
L2 =

∥∥∥|p|−3/2σ · pη
∥∥∥
2

L2
6
π

2

ˆ

R3

|x| |η(x)|2 dx

which is just Kato’s inequality (1.13) for η̂.

5. Proof of Theorem 1.9 on the critical domains WC and W

5.1. A pointwise estimate on ϕ0 and ϕ1

We start by giving a useful pointwise estimate on ϕ0 and ϕ1 at the origin.

Lemma 5.1 (Pointwise estimates on the spherical averages ϕ0 and ϕ1). Let ϕ ∈
WC and let ϕ0 = 1{0}(σ · L)ϕ and ϕ1 = σ · ωx1{−2}(σ · L)ϕ. Then we have the
pointwise estimate

(5.1) ∀r 6 e−1, |ϕ0(r)| + |ϕ1(r)| .
√
log(1/r)

r

(√
qC0 (ϕ) + ‖ϕ‖L2

)
.

Proof. Let v = rϕ0 which belongs to L2(0,∞) since ϕ0(|x|) ∈ L2(R3,C2). Using
Lebesgue’s differential theorem, we get, for 0 < r < 1/2 < r′ < 1,

|v(r) − v(r′)| 6
(
ˆ r′

r

s

1 + s
|v′|2ds

)1/2(
ˆ r′

r

1 + s

s
ds

)1/2

.‖ϕ‖WC

√
1− r + log(1/r)

which gives the result, after integrating over r′ ∈ (1/2, 1).

5.2. Proof that C∞
c (R3 \ {0},C2) is dense in WC

Let ϕ ∈ WC. For the functions ϕ+ and ϕ− we can apply Theorem 1.4 (or even
Remark 4.1). Only ϕ0 and ϕ1 need a new argument. Since the norms are the
same for those two, we only deal with ϕ0 and call it ϕ throughout the proof, for
shortness.

First we approximate ϕ = ϕ0 by a function supported outside of a neighborhood
of the origin. We use ϕn = θnϕ with θn a radial function equal to 0 close to 0,
equal to 1 on [e−1,∞) and which converges to 1 almost surely. We have to estimate
the norm of ϕ− ϕn = (1− θn)ϕ, which is

ˆ ∞

0

r

1 + r

∣∣∣(1 − θn)(rϕ
′ + ϕ)− rϕθ′n

∣∣∣
2

dr

6 2

ˆ ∞

0

r

1 + r
(1 − θn)

2 |rϕ′ + ϕ|2 dr + 2

ˆ ∞

0

r3θ′n(r)
2

1 + r
|ϕ|2 dr.
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The term involving 1−θn goes to zero by the dominated convergence theorem. For
the second term we cannot use a simple θn such as θ(nr) because we are lacking
estimates on ϕ. Inserting the bound (5.1) gives

ˆ e−1

0

r3θ′n(r)
2

1 + r
|ϕ|2 dr .

ˆ e−1

0

θ′n(r)
2r log(1/r) dr

which is divergent if we take a function in the form θ(nr). Using the fact that
(r log(1/r))−1 is not integrable at r = 0, it is possible to construct a θn such that
the right side goes to 0. Let

(5.2) ξn(r) =





1
n

(
1

αn log(1/αn)
− e
)
r−αn/2
αn

for αn/2 6 r 6 αn,

1
n

(
1

r log(1/r) − e
)

for αn 6 r 6 e−1,

0 for r ∈ [0, αn/2] ∪ [e−1,∞).

where αn = exp(−en) → 0 is chosen such as to have

log(log(1/αn)) =

ˆ e−1

αn

ds

s log(1/s)
= n.

Then we have

ˆ e−1

0

ξn(r) dr =
αn
8n

(
1

αn log(1/αn)
− e

)
+

1

n

ˆ e−1

αn

1

r log(1/r)
dr − 1− eαn

n

=1 +O(1/n)

and

ˆ e−1

0

r log

(
1

r

)
ξn(r)

2 dr

=
1

n2

(
1

αn log(1/αn)
− e

)2

α2
n

ˆ 1

1
2

r log

(
1

αnr

)(
r − 1

2

)2

dr

+
1

n2

ˆ e−1

αn

r log

(
1

r

)(
1

r log(1/r)
− e

)2

dr

=
1

n
+O(1/n2).

Therefore we can take

θn(r) =

ˆ r

0

ξn(r) dr

ˆ ∞

0

ξn(r) dr

.

As a last step, since the function θnϕ is now supported outside of a neighbor-
hood of the origin, it can be approximated by functions in C∞

c (R3 \ {0},C2) by
usual convolution arguments.
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5.3. Proof that C∞
c (R3 \ {0},C2) is dense in W

The proof for an arbitrary potential V is more complicated. Since ϕ± ∈ V we can
use Theorem 1.4 for those functions and we only have to approximate ϕ0 and ϕ1.
Writing ϕ0 = θϕ0 + (1 − θ)ϕ0 for a smooth radial function θ of compact support,
which equals 1 in a neighborhood of 0, we know that (1− θ)ϕ0 ∈ H1 ⊂ W . So we
can prove the result for ϕ0 supported in, say, the interval (0, e−1), an assumption
that we make for the rest of the proof. For simplicity of notation we just assume
in the rest of the proof that ϕ = ϕ(|x|) is radial and supported on (0, e−1). In
radial coordinates, our norm is then equivalent to
(5.3)
ˆ e−1

0

g(r)r2
∣∣ϕ′(r)

∣∣2dr +
ˆ e−1

0

r
∣∣rϕ′(r) + ϕ(r)

∣∣2dr +
ˆ e−1

0

r2
(
1 + h(r)

)
|ϕ(r)|2dr

where

g(r) =
1

4π

ˆ

S2

dω

1− V (rω)
− r

1 + r
> 0, h(r) =

1

4π

ˆ

S2

V (rω) dω +
1

r
> 0.

The difficulty is of course that we have little information on g and h, except from
the fact that g and rh are bounded close to 0.

As a first step we approximate ϕ by a function ϕδ on which we have more infor-
mation. Let 0 < δ < e−1 and uδ be the unique solution of the elliptic minimization
problem

(5.4) inf
u(δ)=ϕ(δ)

{
ˆ δ

0

g(r)r2
∣∣u′(r)

∣∣2 dr +
ˆ δ

0

r
∣∣ru′(r) + u(r)

∣∣2 dr

+

ˆ δ

0

r2(1 + h(r))|u(r)|2 dr
}
.

Multiplying ϕ by a phase we can assume that ϕ(δ) > 0 and then we conclude that
uδ > 0 on [0, δ]. This is because the functional in the parenthesis decreases when
u is replaced by |u|. We then let ϕδ = ϕ(r)1(r > δ) + u(r)1(r 6 δ) which satisfies
ϕδ ∈ W with

‖ϕ− ϕδ‖2W

.

ˆ δ

0

g(r)r2
∣∣ϕ′(r)

∣∣2 dr +
ˆ δ

0

r
∣∣rϕ′(r) + ϕ(r)

∣∣2 dr +
ˆ δ

0

r2
(
1 + h(r)

)
|ϕ(r)|2 dr.

This tends to zero when δ → 0.
Next we are going to work with ϕδ, using the additional properties coming from

the fact that ϕδ = uδ solves the variational problem (5.4) on [0, δ]. To shorten our
notation, we simply write u = uδ. The function u solves in a weak sense the
degenerate elliptic ordinary differential equation

(5.5) −
(
r2(g(r) + r)u′(r)

)′
= r(1 − r − rh(r))u(r)
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and satisfies the Neumann-type boundary condition that

lim
r→0

r2(g(r) + r)u′(r) + r2u(r) = lim
r→0

r2(g(r) + r)u′(r) = 0.

Indeed, note that

(5.6) |u(r)| 6 C‖ϕ‖W
√
log(1/r)

r

by Lemma 5.1 since ϕδ ∈ W , hence r2u(r) → 0 at the origin. Thus, integrat-
ing (5.5) we find that

−r2(g(r) + r)u′(r) =

ˆ r

0

s
(
1− s− sh(s)

)
u(s) ds

.

ˆ r

0

√
log(1/s) ds = r

√
log(1/r) + o(r

√
log(1/r)).

Multiplying by u(r) > 0 and using (5.6) we find

−r2(g(r) + r)
(
u2
)′

. log(1/r)

and therefore

(5.7) u(r) .

(
ˆ δ

r

log(1/s) ds

s2(s+ g(s))
+ ϕ(δ)2

)1/2

.

(
ˆ δ

r

log(1/s) ds

s2(s+ g(s))

)1/2

for r 6 δ/2. Note that the integral on the right diverges as r → 0 since g is
bounded and

(5.8)

ˆ δ

r

log(1/s) ds

s2(s+ g(s))
>

1

δ + ‖g‖L∞

ˆ δ

r

log(1/s) ds

s2
∼r→0

1

δ + ‖g‖L∞

log(1/r)

r
.

The estimate (5.7) is better than (5.6) if g(r) is much larger than r at the origin.
For instance when g has a finite limit at r = 0, we get

√
log(1/r)/

√
r instead of√

log(1/r)/r.
Now we follow the proof of the previous section in the Coulomb case. We need

to find a sequence θn which is equal to 0 close to 0, is equal to 1 on [δ/2,∞),
converges to 1 almost surely, and such that

lim
n→∞

ˆ δ

0

(g(r) + r)r2u(r)2θ′n(r)
2 dr = 0.

Plugging our bound (5.7) on u, it is sufficient to show that

lim
n→∞

ˆ δ

0

(g(r) + r)r2

(
ˆ δ

r

log(1/s) ds

s2(s+ g(s))

)
θ′n(r)

2 dr = 0.
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Following the construction (5.2) of θn in the previous section, this is possible when

ˆ δ

0

dr

(g(r) + r)r2
´ δ

r
log(1/s) ds
s2(s+g(s))

= +∞.

In order to check that this integral is infinite, we introduce for simplicity

F (r) :=

ˆ δ

r

log(1/s) ds

s2(s+ g(s))

and rewrite

ˆ δ

0

dr

(g(r) + r)r2
´ δ

r
log(1/s) ds
s2(s+g(s))

= −
ˆ δ

0

F ′(r)

F (r)

dr

log(1/r)

> − logF (δ)

log(1/δ)
+

ˆ δ

0

logF (r)

r log2(1/r)
dr

after integrating by parts. From (5.8) we obtain logF (r) > log(1/r)+ o
(
log(1/r)

)

and therefore the integral on the right diverges, as we wanted.

5.4. Proof that WC ⊂ Hs(R3,C2) for 0 6 s < 1/2

We have shown in Theorem 1.4 that VC ⊂ H1/2(R3,C2), hence ϕ± ∈ H1/2(R3,C2)
and it suffices to show the result for ϕ = ϕ0(|x|) + σ · ωxϕ1(|x|). In addition, by
density we can assume that ϕ0 and ϕ1 ∈ C∞

c (0,∞). Again we can prove the result
for ϕ0 supported in, say, the interval (0, e−1/2), an assumption that we make for
the rest of the proof.

Now it is actually easier to prove that the compactly-supported ϕ0(|x|) belongs
to W 1,α(R3) for every 1 6 α < 3/2, which implies that it belongs to Hs(R3) for
0 6 s < 1/2, by the classical Sobolev embeddings. So we have to prove that

ˆ e−1

0

r2|ϕ′
0(r)|α dr =

ˆ e−1

0

r2−α|rϕ′
0(r)|α dr <∞.

Note that by Lemma 5.1

ˆ e−1

0

r2−α|ϕ0(r)|α dr .
ˆ e−1

0

r2(1−α)| log(1/r)|α/2 dr

is convergent under the assumption that α < 3/2. So it suffices to estimate

ˆ e−1

0

r2−α|rϕ′
0(r) + ϕ0(r)|α dr

6

(
ˆ e−1

0

r
4−3α
2−α dr

) 2−α
2
(
ˆ e−1

0

r|rϕ′
0(r) + ϕ0(r)|2 dr

)α
2

,
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where the first integral is again finite when α < 3/2.
For σ · ωxϕ1(|x|) we have

∣∣∇σ · ωxϕ1(|x|)
∣∣ 6 |ϕ′

1(|x|)| +
|ϕ1(|x|)|

|x| 6 |ϕ′
1(|x|)| + C

√
log(1/|x|)
|x|2

and the result is the same. This concludes the proof of Theorem 1.9.

6. Proof of the resolvent convergence in Theorem 1.11

We assume for simplicity that Vε = max(V,−1/ε). The proof for the other case
Vε = (1 − ε)V is very similar. Using the min-max formula for the eigenval-
ues [DES00a] and the fact that q0,Vε > q0,V > qC0 > 0, it is known that

(
sup(V )− 1,

√
1− ν2

)
∩ σ(DVε) = ∅, ∀0 < ε < 1.

The construction of the distinguished self-adjoint extension in [EL07] actually pro-
vides the information that

(sup(V )− 1,
√
1− ν2) ∩ σ(DV ) = ∅

as well. We therefore fix an energy E ∈ (sup(V ) − 1,
√
1− ν2) and prove the

norm convergence of the resolvent (DVε −E)−1 towards (DV −E)−1. By [Kat95,
Chap. IV, Sec. 2.6] this implies the convergence in norm of (DVε − z)−1 towards
(DV − z)−1 for any z /∈ σ(DV ).

As a first step we provide a quantitative bound which follows arguments from [EL07]
but is not explicitly written there. Let f, g ∈ L2(R3,C2) be two vectors and
ϕε, χε ∈ H1(R3,C2) be such that

(
DVε − E

)(ϕε
χε

)
=

(
f
g

)
,

that is,

(6.1)

{
(1 − E + Vε)ϕε − iσ · ∇χε = f,

(−1− E + Vε)χε − iσ · ∇ϕε = g.

Inserting

χε = − 1

1 + E − Vε
iσ · ∇ϕε −

g

1 + E − Vε

we get the equation in H−1

(6.2) (1− E + Vε)ϕε − σ · ∇ 1

1 + E − Vε
σ · ∇ϕε = f + iσ · ∇ 1

1 + E − Vε
g.

Integrating against ϕε, we find that
ˆ

R3

(1− E + Vε)|ϕε|2 +
ˆ

R3

|σ · ∇ϕε|2
1 + E − Vε

=

ˆ

R3

ϕ∗
εf − i

ˆ

R3

σ · ∇ϕ∗
ε

1 + E − Vε
g.
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We can rewrite this in the form

− E

ˆ

R3

|ϕε|2 − E

ˆ

R3

|σ · ∇ϕε|2
(1− Vε)(1 + E − Vε)

+ q0,Vε(ϕε)

=

ˆ

R3

ϕ∗
εf − i

ˆ

R3

σ · ∇ϕ∗
ε

1 + E − Vε
g.

From this we conclude that there exists a constant C (depending on E and V but
otherwise independent of ε) such that

‖ϕε‖2L2 + q0,Vε(ϕε) +

ˆ

R3

|σ · ∇ϕε|2
(1 + E − Vε)2

6 C
(
‖f‖2L2 + ‖g‖2L2

)
.

Since (1+E−Vε)−1 is uniformly bounded, we also have that χε is bounded in L2.
Writing (6.1) in the form

(6.3)

{
(−1− E + Vε)ϕε − iσ · ∇χε = f − 2ϕε,

(1− E + Vε)χε − iσ · ∇ϕε = g + 2χε.

we get all the same information with ϕε and χε interchanged. In other words, we
have shown that the embedding D(DVε) ⊂ W ×W is continuous with a constant
independent of ε:

(6.4) ‖ϕε‖W + ‖χε‖W +

∥∥∥∥
σ · ∇ϕε

1 + E − Vε

∥∥∥∥
L2

+

∥∥∥∥
σ · ∇χε

1 + E − Vε

∥∥∥∥
L2

6 C

∥∥∥∥
(
f
g

)∥∥∥∥
L2

= C

∥∥∥∥(DVε − E)

(
ϕε
χε

)∥∥∥∥
L2

, ∀ϕε, χε ∈ H1(R3,C2).

Now we can pass to the weak limit ε → 0. Since W ⊂ Hs for all 0 6 s < 1/2,
we have W ⊂ Lp for 2 6 p < 3 with a locally compact embedding. Hence we can
find a subsequence εn → 0 such that ϕn := ϕεn ⇀ ϕ ∈ W and χn := χεn ⇀ χ
weakly in W , weakly in Lp and strongly in Lploc for every 2 6 p < 3. Passing to
the weak limit in (6.1), we find

(6.5)

{
(1− E + V )ϕ− iσ · ∇χ = f,

(−1− E + V )χ− iσ · ∇ϕ = g.

Since Ψ = (ϕ, χ) is in L2 and satisfies ϕ ∈ W and DVΨ ∈ L2, we have Ψ ∈ D(DV ).
We know from the selfadjointness of DV and the fact that E /∈ σ(DV ) [EL07] that
the equation (6.5) has a unique solution. Hence the weak limit is independent of
the subsequence and we must have ϕε ⇀ ϕ and χε ⇀ χ. This proves the weak
convergence of the resolvents. In addition, we have, after passing to the weak limit,

(6.6) ‖ϕ‖W + ‖χ‖W +

∥∥∥∥
σ · ∇ϕ

1 + E − V

∥∥∥∥
L2

+

∥∥∥∥
σ · ∇χ

1 + E − V

∥∥∥∥
L2

6 C

∥∥∥∥
(
f
g

)∥∥∥∥
L2

= C

∥∥∥∥(DV − E)

(
ϕ
χ

)∥∥∥∥
L2

.
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This tells us that D(DV ) is continuously embedded into the spaces corresponding
to the norms on the left. This is already present in the proof of [EL07], but not
explicitly written.

Now we prove the norm convergence of the resolvents. Let Fε = (fε, gε) be any
sequence in L2(R3,C4) such that ‖Fε‖2 = ‖fε‖2 + ‖gε‖2 = 1, Fε ⇀ F weakly in
L2 and

∥∥(DVε − E)−1 − (DV − E)−1
∥∥ =

∥∥((DVε − E)−1 − (DV − E)−1
)
Fε
∥∥ .

Let then

(
ϕε
χε

)
= (DVε − E)−1

(
fε
gε

)
,

(
ϕ′
ε

χ′
ε

)
= (DV − E)−1

(
fε
gε

)
,

which implies that

(6.7)

{
(1 − E + V )(ϕε − ϕ′

ε)− iσ · ∇(χε − χ′
ε) = (V − Vε)ϕε,

(−1− E + V )(χε − χ′
ε)− iσ · ∇(ϕε − ϕ′

ε) = (V − Vε)χε.

From the previous uniform estimates we know that ϕε, ϕ
′
ε, χε and χ

′
ε are uniformly

bounded in the norms appearing on the left of (6.6). Passing to weak limits as
previously, we find that ϕε − ϕ′

ε ⇀ ϕ̃ and χε − χ′
ε ⇀ χ̃ weakly with

(DV − E)

(
ϕ̃
χ̃

)
= 0

and ϕ̃ ∈ W , hence ϕ̃ = χ̃ = 0. Our goal is to prove that the convergence is strong
in L2. Because of the locally compact embedding into L2, it only remains to prove
the compactness at infinity. Let then θ be a smooth radial function which is 0 in
the ball of radius R and 1 outside of the ball of radius 2R, for any fixed R > 0.
We multiply (6.7) by θ and get

(6.8)

{
(1− E + V )θ(ϕε − ϕ′

ε)− iσ · ∇θ(χε − χ′
ε) = −i(χε − χ′

ε)σ · ∇θ,
(−1− E + V )θ(χε − χ′

ε)− iσ · ∇θ(ϕε − ϕ′
ε) = −i(ϕε − ϕ′

ε)σ · ∇θ.

since θ(V − Vε) = 0 for ε small enough (we use here that V can only diverge at
the origin). This can be written in the form

(6.9)
(
DV − E

)
θ

(
ϕε − ϕ′

ε

χε − χ′
ε

)
= −iθ′σ · ωx

(
χε − χ′

ε

ϕε − ϕ′
ε

)

where the right side has a compact support, hence converges strongly to 0 in L2.
SinceDV −E is invertible we conclude as we wanted that θ(ϕε−ϕ′

ε) → 0 and θ(χε−
χ′
ε) → 0 strongly in L2. Together with the locally compact embedding this proves

the norm-convergence of the resolvents and ends the proof of Theorem 1.11.
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A. Domains of closures in the exact Coulomb case

In this appendix we characterize the domains of the closures of the minimal oper-
ators Ḋ−ν/r and ḣκν . We prove the following

Proposition A.1 (Closures of the minimal operators Ḋ−ν/r and ḣκν ). If

{
|ν| ∈ [0, 1] \ {

√
3/2} for κ = ±1,

|ν| ∈ [0, 1] for |κ| > 2,

then we have

(A.1) D
(
ḣκν
)
= H1

0

(
(0,∞),C2

)
.

When |ν| =
√
3/2 and κ = ±1, we have

D
(
ḣ±1
ν

)
) H1

0

(
(0,∞),C2

)
.

In addition,

(A.2) D
(
Ḋ−ν/r

)
= H1(R3,C4) for |ν| ∈ [0, 1] \ {

√
3/2},

and
D
(
Ḋ−ν/r

)
) H1(R3,C4) for |ν| =

√
3/2.

Proof. Note that by Hardy’s inequality, the operator norms of the Dirac-Coulomb
operators Ḋ−ν/r and ḣκν are controlled by the H1 norms, so the two inclusions

H1(R3,C4) ⊂ D
(
Ḋ−ν/r

)

and
H1

0 (0,∞) ⊂ D
(
ḣκν
)

are obvious. The only nontrivial conclusions in Proposition A.1 are the reverse
inclusions.

In [LR79, LRK80] it is proved that ḣκν is self-adjoint with same domain as ḣκ0 ,

provided |ν| <
√
κ2 − 1/4. Using the identity

ˆ ∞

0

∣∣∣∣u
′(r) + κ

u(r)

r

∣∣∣∣
2

dr =

ˆ ∞

0

|u′(r)|2 dr + κ(κ+ 1)

ˆ ∞

0

|u(r)|2
r2

dr

for u ∈ C∞
c

(
(0,∞),C2

)
, this domain is just found to be H1

0 ((0,∞),C2). In addi-
tion, using resolvent estimates, it was proved in [LR79, LRK80] that

D(Ḋ−ν/|x|) = D(Ḋ0) = H1(R3,C4), for |ν| <
√
3/2 .

When |ν| =
√
3/2, it is easy to see that H1

0 (0,∞) is a strict subspace of D
(
ḣ±1
ν

)
.

Indeed, since essential self-adjointness still holds, ḣ±1
ν coincides with the adjoint
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operator (ḣ±1
ν )∗. But D

(
(ḣ±1
ν )∗

)
contains a function behaving like r1/2 near 0, and

the derivative of such a function cannot be square integrable.
Finally, we study the case of strong fields

√
3/2 < |ν| 6 1. For |ν| <

√
15/2

one can consider the restriction of Ḋ−ν/|x| to the orthogonal space E|κ|>2 of
the subspace ker(K2 − 1) in L2(R2,C4). Then the arguments and estimates of
[LR79, LRK80] immediately imply that this restriction is self-adjoint with domain
H1(R3,C4) ∩ E|κ|>2. So

D(Ḋ−ν/|x|) ∩E|κ|>2 = H1(R3,C4) ∩ E|κ|>2

and we only have to characterize D
(
ḣ±1
ν

)
in the case

√
3/2 < |ν| 6 1. To our

knowledge, this last point is the only novelty of the present Appendix. Our claim
is that

(A.3) D
(
ḣ±1
ν

)
⊂ H1

0

(
(0,∞),C2

)
, ∀

√
3/2 < |ν| 6 1 .

Before proving (A.3), let us explain why this inclusion ends the proof of Proposition
A.1. Using formula (1.3), together with the classical identity |∇Ψ|2 = |∂rΨ|2 +
|LΨ|2
r2 and the bound

‖LΨ(r, ·)‖2L2(S2) 6 2‖Ψ(r, ·)‖2L2(S2) , ∀Ψ ∈ ker(K2 − 1) ,

we see that ‖∇Ψ‖2L2(R3) is controlled on ker(K2 − 1) by a finite sum of inte-

grals of the forms
´∞
0 | ddr (r−1u, r−1v)|2r2dr and

´∞
0 |(u, v)|2r−2dr. Using the one-

dimensional Hardy inequality, one then finds that such integrals are dominated by
´∞
0 | ddr (u, v)|2dr on C∞

c (0,∞). So (A.3) implies that

D
(
Ḋ−ν/|x|

)
∩ ker(K2 − 1) ⊂ H1(R3,C4) ,

and finally proves that D
(
Ḋ−ν/|x|

)
⊂ H1(R3,C4).

We now prove (A.3). Without any loss in generality, we can assume that κ = 1
and

√
3/2 < ν 6 1. Indeed, one can change the sign of κ by interchanging u

and v, and the sign of ν by replacing (u, v) by (u,−v). Let then (un, vn) be a
sequence in C∞

c (0,∞), of limit (u∞, v∞) for the norm of the domain of ḣ1−ν/r.

Then (un, vn) → (u∞, v∞) in ∩ε>0H
1(ε,∞) and

(an, bn) :=

(
−νun

r
− dvn

dr
+
vn
r
,−νvn

r
+
dun
dr

+
un
r

)

converges in L2(0,∞) to

(a∞, b∞) :=

(
−νu∞

r
− dv∞

dr
+
v∞
r
,−νv∞

r
+
du∞
dr

+
u∞
r

)
.

On the other hand, the homogeneous system
(
−νu
r

− dv

dr
+
v

r
,−νv

r
+
du

dr
+
u

r

)
= (0, 0)



40 M.J. Esteban, M. Lewin & É. Séré

admits the solutions (ν, 1± s)r±s with s =
√
1− ν2 when ν < 1, and the solutions

(1, 1), (log(r), log(r)+1) when ν = 1. So, remembering that (un, vn) vanishes near
0, the method of variation of the constant gives the formula

(A.4)

(
un(r)
vn(r)

)
=

(
ν

1 + s

)
ˆ r

0

(ρ
r

)s
αn(ρ)dρ+

(
ν

1− s

)
ˆ r

0

(
r

ρ

)s
βn(ρ)dρ

in the case ν < 1, with

(αn, βn) =
1

2s

(
−an − bn

1− s

ν
, an + bn

1 + s

ν

)

convergent in L2(0,∞). In the case ν = 1 the formula is

(A.5)

(
un(r)
vn(r)

)
=

ˆ r

0

(
bn(ρ)
−an(ρ)

)
dρ+

ˆ r

0

log(ρ/r)

(
an(ρ) + bn(ρ)
an(ρ) + bn(ρ)

)
dρ .

Our last step is to prove the convergence of (dun

dr ,
dvn
dr ) to (du∞

dr ,
dv∞
dr ) in L2(0, 1).

Considering the derivatives in r of formulas (A.4) and (A.5), we see that we just
need to estimate integrals of the form

ˆ 1

0

(
rs−1

ˆ r

0

ρ−sF (ρ)dρ

)2

dr and

ˆ 1

0

(
r−1

ˆ r

0

F (ρ)dρ

)2

dr

in terms of
´ 1

0
F 2(r)dr for all F ∈ L2(0, 1).

For the first estimate we take p > 2 such that ps < 1 (this is possible since we
assume

√
3/2 < ν < 1). We denote q = p

p−1 ∈ (1, 2). By Hölder’s inequality,

rs−1

ˆ r

0

ρ−sF (ρ)dρ 6

(
ˆ r

0

(
r

ρ

)ps
d(ρ/r)

)1/p (
r−1

ˆ r

0

F q(ρ)dρ

)1/q

= (1− ps)−1/p

(
r−1

ˆ r

0

F q(ρ)dρ

)1/q

.

Hence, applying the one-dimensional Hardy inequality

ˆ ∞

0

(
r−1

ˆ r

0

G(ρ)dρ

)2/q

dr 6

(
2

2− q

)2/q ˆ ∞

0

G2/q(r)dr

to G(r) = F q(r)106r61, we find

ˆ 1

0

(
rs−1

ˆ r

0

ρ−sF (ρ)dρ

)2

dr 6 (1 − ps)−2/p

(
2

2− q

)2/q ˆ 1

0

F 2(r)dr .

This is the needed estimate in the case
√
3/2 < ν < 1. The second estimate

(needed for ν = 1) is much easier. It follows directly from Hardy’s inequality

ˆ ∞

0

(
r−1

ˆ r

0

G(ρ)dρ

)2

dr 6 4

ˆ ∞

0

G2(r)dr

applied to G(r) = F (r)106r61. This concludes the proof of (A.3), hence of Propo-
sition A.1.
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B. Proof of Theorem 1.8 on qC

λ
in the critical case

In this section we compute the quadratic form qCλ for V (x) = −|x|−1, following the
method introduced in [DELV04].

B.1. Computation of qC

0

First we note that the operator σ · L commutes with (σ · ∇)f(|x|)(σ · ∇) for any
radial function f . Indeed, we have

(B.1) σ · L σ · ∇+ σ · ∇ σ · L = −2σ · ∇.

Using that σ · L commutes with scalar radial functions and inserting (B.1), we
easily conclude that

(B.2)

[
σ · ∇ 1

1 + |x|−1
σ · ∇ , σ · L

]
= 0.

Therefore, recalling that ωx = x/|x|, we have

qC0 (ϕ) = qC0 (ϕ+) + qC0 (ϕ0) + qC0 (ϕ−) + qC0
(
σ · ωxϕ1

)
.

We compute these four terms separately. We use the formula

[
σ · ∇ , σ · h(|x|)x

]
= h(|x|) + |x|h′(|x|) + 2h(|x|)

(
1 + σ · L

)

which, in the particular case h(r) = 1/r, becomes

(B.3)

[
σ · ∇, σ · x|x|

]
=

2

|x|
(
1 + σ · L

)
.

Denoting

f(r) =
r

1 + r
and g(r) = rer,

which satisfy fg′ = g, we obtain
ˆ

R3

f

g2

∣∣∣σ · ∇(gu)
∣∣∣
2

=

ˆ

R3

f

g2

∣∣∣gσ · ∇u+ u
g′

r
σ · x

∣∣∣
2

=

ˆ

R3

f
∣∣∣σ · ∇u

∣∣∣
2

+

ˆ

R3

|u|2
f

−
〈
u,

[
σ · ∇, σ · x|x|

]
u

〉

=

ˆ

R3

|x|
1 + |x|

∣∣∣σ · ∇u
∣∣∣
2

+

ˆ

R3

(
1− 1

|x|

)
|u|2 − 2

〈
u,
σ · L
|x| u

〉

=qC0 (u)− 2

〈
u,
σ · L
|x| u

〉
.(B.4)

This gives what we wanted for u = ϕ+ and u = ϕ0, after computing

σ · ∇(gϕ+) = g

(
σ · ∇ϕ+ +

1 + |x|
|x| σ · ωxϕ+

)



42 M.J. Esteban, M. Lewin & É. Séré

and

σ · ∇(gϕ0) = g σ · ωx
(
ϕ′
0 +

1 + |x|
|x| ϕ0

)
.

Similarly, we have
ˆ

R3

fg2
∣∣∣σ · ∇(g−1u)

∣∣∣
2

=

ˆ

R3

fg2
∣∣∣g−1σ · ∇u− u

g′

rg2
σ · x

∣∣∣
2

=

ˆ

R3

f
∣∣∣σ · ∇u

∣∣∣
2

+

ˆ

R3

|u|2
f

+ 〈u, [σ · ∇, σ · ωx]u〉

=qC0 (u) + 2

〈
u,

2 + σ · L
|x| u

〉
(B.5)

which gives the result for ϕ−, after inserting

σ · ∇(g−1ϕ−) = g−1

(
σ · ∇ϕ− − 1 + |x|

|x| σ · ωxϕ−

)
.

For u = σ · ωxϕ1(|x|) we have to use in addition that

σ · ∇σ · ωxϕ1 = [σ · ∇, σ · ωx]ϕ1 + ϕ′
1 =

2

|x| (1 + σ · L)ϕ1 + ϕ′
1 =

2

|x|ϕ1 + ϕ′
1.

since ϕ1 is radial.

B.2. Simplification of the norm associated with qC

0

In this section we prove that the norm induced by qC0 on L2 is equivalent to the
ones given in (1.29). Let ϕ ∈ L2(R3,C2) be such that all the terms in (1.28) are
finite. First we remark that

ˆ

R3

|x|
1 + |x|

∣∣∣∣
σ · x
|x|2 (1 + |x|)ϕ±(x)

∣∣∣∣
2

dx =

ˆ

R3

1 + |x|
|x| |ϕ±(x)|2 dx

which is controlled by the L2 norm and by the term involving σ ·L. So we conclude
that

ˆ

R3

|x|
1 + |x|

∣∣σ · ∇ϕ±(x)
∣∣2 dx <∞.

Using (1.28) we have

(B.6)

ˆ

R3

|x|
1 + |x|

∣∣σ ·∇ϕ+(x)
∣∣2 dx+‖ϕ+‖2L2 >

ˆ

R3

|ϕ+(x)|2
|x| dx+2

〈
ϕ+,

σ · L
|x| ϕ+

〉

and a similar inequality for ϕ−. Therefore there is no need to keep the term
involving σ · L. For ϕ0 and ϕ1 we only use the L2 norm to control the terms
involving rϕ0 and rϕ1.

Lastly, we see that the quadratic form

(B.7)

ˆ

R3

1

|x|(1 + |x|)
∣∣σ · ∇|x|ϕ(x)

∣∣2 dx
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is also the sum of the similar terms for ϕ+, ϕ−, ϕ0 and σ · ωxϕ1(|x|), since σ · L
commutes with the corresponding operator in the same way as in (B.2). Therefore
the norm associated with qC0 is equivalent in L2 to that given by (B.7). However,
in practice it will often be more convenient to use the more precise information
contained in (1.29) for ϕ0, ϕ1 and ϕ±.

B.3. Estimate on qC

λ for λ 6= 0

It is possible to provide a formula for qCλ (ϕ) using the two functions

fλ(r) =
r

1 + (1 + λ)r
and gλ(r) = re(1+λ)r

in (B.4) and (B.5), and the arguments are exactly the same as before. We can also
use (1.30) and notice that, for λ > 0,

λ

ˆ

R3

|x|2|σ · ∇ϕ±(x)|2
(1 + |x|)(1 + (1 + λ)|x|) dx

6 λ(1 + η)

ˆ

R3

|σ · ∇|x|ϕ(x)|2
(1 + |x|)(1 + (1 + λ)|x|) dx+ λ(1 + η−1)

ˆ

R3

|ϕ(x)|2 dx

6
λ(1 + η)

1 + λ

ˆ

R3

|σ · ∇|x|ϕ(x)|2
|x|(1 + |x|) dx+ λ(1 + η−1)

ˆ

R3

|ϕ(x)|2 dx

where the coefficient in front of the first integral is < 1 for η small enough. This
concludes the proof of Theorem 1.8.

C. The two-dimensional case

In two space dimensions, the free Dirac operator

(C.1) d0 = −i σ1∂1 − iσ2∂2 + σ3 =

(
1 −2i∂z

−2i∂z̄ −1

)

is self-adjoint in L2(R2,C2) with domain H1(R2,C2). Here z = x1 + ix2, z̄ =
x1 − ix2, ∂z = 1

2 (∂1 − i∂2) , ∂z̄ = 1
2 (∂1 + i∂2) . In this section, we consider Dirac-

Coulomb operators of the form

dV = d0 + V (x)

where V (x) is a real-valued function satisfying V (x) > −ν/|x|, as in three dimen-
sions. The results are very similar to the three-dimensional case, the algebra is
simpler and the proofs do not involve any new idea. So we will only state the
theorems for completeness, pointing out the main differences. Note that the two-
dimensional case is relevant in solid state physics: although the low-energy elec-
tronic excitations in graphene are modeled by a massless two-dimensional Dirac
equation [NGP+09], the study of strained graphene involves a massive Dirac op-
erator [VKG10].
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We would like to emphasize four main differences of the 2d case, as compared
with the 3d case:

• The differential operator −2i∂z is not formally self-adjoint (contrary to −iσ ·
∇ in 3d). Its formal adjoint is −2i∂z̄.

• When V = −ν/|x|, the operator dV is unitarily equivalent to a direct sum
of the same radial Dirac operators hℓν as in 3d, but now ℓ (which replaces
κ) is an eigenvalue of the orbital momentum operator L, taking all relative
integer values including ℓ = 0.

• The minimal operator ḋ−ν/|x| := d−ν/|x| ↾ C
∞
c (R2 \{0},C2) is not essentially

self-adjoint for ν 6= 0. In 3d, the operator Ḋ−ν/|x| is essentially self-adjoint

when |ν| 6
√
3/2. This difference is due to the presence of the radial Dirac

operator h0ν in the direct sum mentioned above.

• The condition for the existence of a unique distinguished self-adjoint exten-
sion is |ν| 6 1/2 instead of |ν| 6 1.

• For 0 6 ν 6 1/2 the first eigenvalue of the distinguished extension d−ν/|x|
is
√
1− 4ν2 (also eigenvalue of h0ν) instead of

√
1− ν2 (eigenvalue of h±1

ν ) in
3d.

With this in mind, one can prove that Formulas (A.1) and (A.2) still hold in

2d for the domains of the closures ḋ−ν/r and ḣℓν (ℓ ∈ Z), provided |ν| < 1/2.

Theorem 1.1 stays true in 2d, with appropriate modifications and we do not
state it explicitly. In particular we need to ask that V2 ∈ L2(R2) and there is no
equivalent of (5). These results have been mainly proved by Cuenin and Sieden-
top [CS14] (see also [War11]). In particular, they showed that

(C.2)
∥∥∥|x|−1/2(D0 + is)−1|x|−1/2

∥∥∥ = 2, ∀s ∈ R.

Here, the norm is 2 instead of 1, this is the reason why the critical coupling
parameter is ν = 1/2 instead of ν = 1.

The two-dimensional analogue of the Esteban-Loss method for self-adjoint ex-
tensions [EL07, EL08] was discussed in [MM15, M1̈6, War11]. As in 3d, we make
the stronger assumptions

(C.3) − ν

|x| 6 V (x) and sup(V ) < 1 +
√
1− 4ν2

for some 0 6 ν 6 1/2. Here
√
1− 4ν2 is the first eigenvalue of the Dirac operator

with the Coulomb potential VC(x) = −ν/|x|. As in three space dimensions, it is
important to study the quadratic form

(C.4) qλ(ϕ) := 4

ˆ

R2

|∂z̄ϕ(x)|2
1− V (x) + λ

dx+

ˆ

R2

(1 + V (x)− λ)|ϕ(x)|2 dx.
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The two-dimensional analogue of the Hardy-type inequality (1.20) is

(C.5)

ˆ

R2

4|∂z̄ϕ(x)|2
a+ 1/2|x| dx+

ˆ

R2

(
a− 1

2|x|

)
|ϕ(x)|2 dx > 0

for all a > 0. This inequality was proved recently by Müller [M1̈6], using the
indirect method introduced by Dolbeault-Esteban-Séré [DES00a] in their proof of
(1.20). But a more direct proof can be given by “completing the square” in the
spirit of [DELV04, DEDV07], as we will explain later.

Using (C.5) and our assumption that V is bounded from below by the Coulomb
potential, we can prove that qλ+2λ‖ϕ‖2L2 > 0. In addition, as in three dimensions,
it defines a norm which is equivalent to the one given by the quadratic form

(C.6) ‖ϕ‖2V :=

ˆ

R2

|∂z̄ϕ(x)|2
2− V (x)

dx+

ˆ

R2

|ϕ(x)|2 dx.

The corresponding space is, therefore,

(C.7) V =
{
ϕ ∈ L2(R2,C) ∩H1

loc(R
2 \ {0},C) :

(2 − V )−1/2∂z̄ϕ ∈ L2(R2,C)
}
.

Later we will state a result saying that C∞
c (R2 \ {0},C) is dense in V for the

norm (C.6), but for shortness we immediately turn to the discussion of the critical
case.

Following ideas from [DELV04, DEDV07] and Appendix B, we can provide a
more direct proof of (C.5). It is useful to start with the Coulomb case VC(x) =
−|2x|−1, in which case we use the notation

(C.8) qCλ (ϕ) =

ˆ

R2

{
8|x|

1 + 2(1 + λ)|x| |∂z̄ϕ|
2 +

(
1− λ− 1

2|x|

)
|ϕ|2

}
dx.

We use the orbital momentum operator L = −i(x1∂2 − x2∂1). Note that 2z∂z =
(x · ∇) + L, 2z̄∂z̄ = (x · ∇) − L. We recall that the set of eigenvalues of L is Z,
and the eigenspace of eigenvalue l consists of functions taking the form eilθϕ(r)
in polar coordinates. The following is the analogue of Theorem 1.8 and its very
similar proof will be omitted.

Theorem C.1 (Writing qCλ as a sum of squares in 2d). For every ϕ ∈ L2(R2,C)
we write

ϕ = ϕ+(x) + ϕ−(x) + ϕ0(r) + e−iθ ϕ1(r)

where ϕ+ = 1[1,∞)(L)ϕ, ϕ− = 1(−∞,−2](L)ϕ, ϕ0 = 1{0}(L)ϕ and e−iθ ϕ1(r) =
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1{−1}(L)ϕ. Then

qC0 (ϕ) =

ˆ

R2

2|x|
1 + 2|x|

∣∣∣∣2∂z̄ϕ+ +
(2|x|+ 1)z

2|x|2 ϕ+

∣∣∣∣
2

dx

+

ˆ

R2

2|x|
1 + 2|x|

∣∣∣∣2∂z̄ϕ− − (2|x|+ 1)z

2|x|2 ϕ−

∣∣∣∣
2

dx

+ 2

〈
ϕ+,

L

|x|ϕ+

〉
+ 2

〈
ϕ−,

−1− L

|x| ϕ−

〉

+ 4π

ˆ ∞

0

1

1 + 2r

∣∣∣∣rϕ
′
0(r) +

ϕ0(r)

2
+ rϕ0(r)

∣∣∣∣
2

dr

+ 4π

ˆ ∞

0

1

1 + 2r

∣∣∣∣rϕ
′
1(r) +

ϕ1(r)

2
− rϕ1(r)

∣∣∣∣
2

dr(C.9)

for every ϕ ∈ H1(R2,C). Moreover

‖ϕ‖2L2 + qC0 (ϕ) ∼ ‖ϕ‖2L2 +

ˆ

R2

|x|
1 + |x|

∣∣∂z̄(ϕ+ + ϕ−)
∣∣2 dx

+

ˆ ∞

0

1

1 + r

(∣∣rϕ′
0(r) +

ϕ0(r)

2

∣∣2 +
∣∣rϕ′

1(r) +
ϕ1(r)

2

∣∣2
)
dr

∼ ‖ϕ‖2L2 +

ˆ

R2

∣∣∂z̄|x|1/2ϕ(x)
∣∣2

(1 + |x|) dx.(C.10)

Finally, for all −1 < λ < 1, (2λ + 1)‖ϕ‖2L2 + qCλ (ϕ) is a positive quadratic form
equivalent to ‖ϕ‖2L2 + qC0 (ϕ).

The critical spaces in the 2d case are defined similarly as in 3d. In the Coulomb
case V (x) = −|2x|−1 we introduce

(C.11) WC =

{
ϕ ∈ L2(R2,C) :

∂z̄|x|1/2ϕ
(1 + |x|)1/2 ∈ L2(R2,C)

}
.

Then we assume that V (x) > −|2x|−1 and that sup(V ) < 1. We define the critical
space W associated with V by

(C.12) W =

{
ϕ ∈ WC :

(
1

1− V (x)
− 2|x|

1 + 2|x|

)1/2

∂z̄ϕ ∈ L2(R3,C2),

(
V (x) +

1

2|x|

)1/2

ϕ ∈ L2(R3,C2)

}
.

The following is the equivalent of Theorems 1.4 and 1.11 in 2d.

Theorem C.2 (The quadratic form domains in 2d). We assume that

(C.13) V (x) > − 1

2|x| and sup(V ) < 2.
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Then the space C∞
c (R2 \{0},C) is dense in V, in WC and in W for their respective

norms. In addition we have the continuous embeddings V ⊂ H1/2(R2,C) and
W ⊂ WC ⊂ Hs(R2,C), for every 0 6 s < 1/2.

The proof of Theorem C.2 is very similar to the proofs of Theorems 1.4 and 1.9.
Note however that for the density in V , we have to take a different cutoff function:
θδ(x) := max(0, 1 − log2(max(1, logδ |x|)). Moreover, the pointwise estimate on
spherical averages of ϕ is slightly different in 2d, compared to that in Lemma 5.1.
Instead of (5.1), we have

(C.14) ∀r 6 e−1, |ϕ0(r)| + |ϕ1(r)| .
√

log(1/r)

r

(√
qC0 (ϕ) + ‖ϕ‖L2

)
.

As in 3d, applying the Esteban-Loss method allows to distinguish and define a
unique self-adjoint extension from the property that

D(dV ) ⊂
{
Ψ =

(
ϕ
χ

)
∈ L2(R2,C2) : ϕ ∈ V

}

in the case 0 < ν < 1/2 and

D(dV ) ⊂
{
Ψ =

(
ϕ
χ

)
∈ L2(R2,C2) : ϕ ∈ W

}

when ν = 1/2. For shortness we do not state the equivalent of Theorems 1.1
and 1.11. As in Theorem 1.11 we can prove the convergence of the resolvents in
norm in the 2d case, by following the proof given in Section 6. In the subcritical
case, as in Corollary 1.7 one can infer some information on χ under the assumption
that dVΨ ∈ L2(R2,C) and that ϕ ∈ V . However, due to the fact that the adjoint
of i∂z is i∂z̄, the proper conclusion is that

D(dV ) ⊂ V × V, for 0 < ν < 1/2.

We conclude with the min-max characterization of eigenvalues in the spectral
gap. As in 3d, we denote Λ+

T (resp. Λ−
T ) the Talman projectors corresponding to

the Talman decomposition

Ψ =

(
ϕ
χ

)
=

(
Λ+
TΨ

Λ−
TΨ

)
.

We also consider the spectral projections

Λ+
0 = 1(d0 > 0), Λ−

0 = 1(d0 6 0).

For a space F ⊆ H1/2(R3,C4), we consider the min-max levels given by the same
formula as (2.3), but with dV instead of DV . We get the same result as in three
dimensions, but with the critical value ν = 1/2.
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Theorem C.3 (Min-max formula for eigenvalues in 2d). Let 0 < ν 6 1/2. We
assume that

(C.15) V (x) > − ν

|x| and sup(V ) < 1 +
√
1− 4ν2.

Let

(C.16) C∞
c (R2 \ {0},C2) ⊆ F ⊆ H1/2(R2,C2).

Then, the number λ
(k)
T,F defined in (2.3), is independent of the subspace F and

coincides with the kth eigenvalue of the distinguished self-adjoint extension of dV
larger than or equal to

√
1− 4ν2, counted with multiplicity (or is equal to b =

inf (σess(dV ) ∩ (
√
1− 4ν2,+∞)) if there are less than k eigenvalues below b). In

addition, we have

λ
(k)
T,F = λ

(k)
0,F

for all F as above and all k > 1.
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