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Abstract

We devise a multi-scale Hybrid High-Order (HHO) method. The method hinges
on (hybrid) discrete unknowns that are polynomials attached to mesh elements and
faces, and on a multi-scale reconstruction operator, that maps onto a fine-scale space
spanned by oscillatory basis functions. The method handles arbitrary orders of ap-
proximation k > 0, and is applicable on general meshes. For face-based unknowns
that are polynomials of degree k, we devise two versions of the method, depending on
the polynomial degree (k — 1) or k of cell-based unknowns. We prove, in the case of
periodic coefficients, an energy-error estimate of the form (81/ 2y MY Y 2).

1 Introduction

Over the last few years, a great deal of effort has been devoted to the design of new-
generation arbitrary-order polytopal discretization methods. Such methods are approaches
that are capable of handling meshes with polytopal cells of (almost) arbitrary shapes.
Classical approaches encompass the (polytopal) Finite Element (FE) [40, 38|, and the
Discontinuous Galerkin (DG) [5, 15, 9] methods. Classical methods however suffer from
some drawbacks: for the FE method, the difficulty to construct basis functions (due to
continuity requirements) and the fact that they are usually non-polynomial, and for the
DG method, the rapidly increasing (with respect to the order of the method) number of
globally coupled degrees of freedom.

More recently, a new paradigm has emerged. The main idea is to consider, locally in
each cell, a discrete function space that encompasses all the functions that are solution
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of the equation under study, supplemented by polynomial right-hand side and polynomial
(Dirichlet or Neumann) boundary conditions of given degrees. The discrete unknowns are
thus polynomials attached to the cells and to the faces of the mesh. The global space can
be either continuous along the skeleton, or discontinuous. The specificity of new-generation
polytopal discretization methods then comes from the fact that one can only keep the func-
tions from the discrete space that are sufficient to give optimal approximation properties to
the method (typically, polynomial functions of one degree higher in the cell). At the end of
the day, the basis functions that enter the computations are all polynomial, and the non-
polynomial ones are handled in a finely tuned stabilization term. These methods can be
referred to as skeletal, since cell-based discrete unknowns can always be locally eliminated
by static condensation, hence leading to global systems posed in terms of skeletal unknowns
only. This obviously reduces (compared, e.g., to DG methods) the dependency with respect
to the order of the method of the number of globally coupled degrees of freedom. A globally
conforming example of a new-generation polytopal discretization method is the Virtual Ele-
ment (VE) [8] method, whereas globally non-conforming examples include the Hybridizable
Discontinuous Galerkin (HDG) [14] method, the related Weak Galerkin (WG) [41] method
(proved equivalent to HDG in [12]), and the Hybrid High-Order (HHO) [17] method, that
has been bridged to HDG in [13] (the latter reference also fits into the HHO framework
the non-conforming VE method of [6], up to equivalent stabilization).

The focus here is on HHO methods. These methods offer several assets, like, e.g., a
dimension-independent construction, and local conservativity. We are interested in diffu-
sion problems featuring heterogeneous/anisotropic coefficients. The case of mildly hetero-
geneous (i.e., slowly varying) coefficients has already been treated in [16] (see also [18]),
where error estimates tracking the dependency of the approximation with respect to the
local heterogeneity /anisotropy ratios have been derived. In this article, we are interested
in highly oscillatory problems. Let €2 be an open, bounded, connected polytopal subset of
RY, d € {2,3}. Let ¢ > 0, supposedly much smaller than the diameter of the domain €.
We consider the problem

(1)

—div(A.Vu.) = f in Q,
u. =0 on 02,

where f € L?*() is non-oscillatory, and A, is an oscillatory, uniformly elliptic and bounded
matrix-valued field on 2. The parameter ¢ is meant to encode the fine-scale oscillations
of the coefficients. It is well-known that the H**2-norm of the solution u. to Problem (1)
scales as e~ (**1) meaning that mono-scale methods (including the mono-scale HHO method
of order k = 0 of [16]) provide an energy-norm decay of the error of order (h/e)*™'. To
be accurate, such methods must hence rely on a mesh resolving the fine scale, i.e. with
size h « e. Since ¢ is supposedly much smaller than the diameter of ), an accurate
approximation necessarily implies an overwhelming number of degrees of freedom. In a
multi-query context, where the solution is needed for a large number of right-hand sides
(think, e.g., of a time-dependent model), a mono-scale solve is hence unaffordable. In that
context, multi-scale methods may be preferred. Multi-scale methods aim at resolving the
fine scale in an offline step, reducing the online step to the solution of a system of small



size (based on an approximation on a coarse mesh with size H » &, using oscillatory basis
functions computed in the offline step).

Multi-scale approximation methods on classical element shapes (such as simplices or
quadrangles/hexahedra) have been extensively studied in the literature. Examples in-
clude, e.g., the Multi-scale Finite Element (MsFE) 28, 29, 20] method (with lowest-order
error bound of the form (81/ >+ H4elHY 2) in the periodic case), its variant using over-
sampling [28, 21| (with improved error bound of the form (51/2 + H + SH’l) in the pe-
riodic case), the Petrov-Galerkin variant of MsFE using oversampling [30], and more re-
cently, the MSsFE method a la Crouzeix—Raviart of [33, 34] (with upper bound of the
form ("2 + H + 2H~"?) in the periodic case). This list is far from being exhaustive.
Present research directions mainly focus on reducing the cell resonance error by propos-
ing adequate local decompositions (see, e.g., [35, 32|). Note that there exist also different
paradigms to approximate oscillatory problems, like the Heterogeneous Multi-scale Method
(HMM) [19, 1], whose focus is more on computing an approximation of the homogenized
solution instead of computing the oscillatory one; in that sense, HMM is more a numerical
homogenization approach. Back to multi-scale methods, attempts to design multi-scale
(arbitrary-order) polytopal methods include the work of Efendiev et al. |23, 22] in the HDG
context (see also [10], and [36] in the WG context), and the work of Paredes, Valentin and
Versieux [37] in the context of Multi-scale Hybrid-Mixed (MHM) [4] methods.

In this work, we devise a multi-scale HHO (MsHHO) method, which can be seen as
a generalization to arbitrary order and general element shapes of the MsFE method a la
Crouzeix—Raviart of Le Bris, Legoll and Lozinski |33, 34]. Thus, our goal is to propose and
analyze (under the classical assumption of periodic coefficients) a multi-scale arbitrary-
order and polytopal method, using the quite general framework of HHO methods. Two
MsHHO methods are proposed. Both employ polynomials of order k > 0 for the face-based
unknowns, whereas the cell-based unknowns can be polynomials of order (k—1) (if k > 1) or
k. We prove for both methods an energy-error estimate of the form (61/2 + HFL 4 81/2H*1/2)
in the periodic case. To motivate the use of a high-order method, we note that this upper
bound, say fx(H), is minimal for Hy = (¢72/2(k + 1))2/(2k+3), and as k > 0 increases, H,
increases while fi(Hy) decreases. We also track in the error bounds the dependency upon
the global heterogeneity /anisotropy ratio, exhibiting a dependency that is reminiscent of
the mono-scale HHO method of [16] with piecewise non-constant diffusivity. The error
estimates we derive are sharper (in the sense that they describe all the regimes observed
in practice) than the one derived in [37] in the context of MHM methods. Our fine-scale
space construction is close to the (polynomial-based) one advocated in [23] in the HDG
context. However, the two methods differ, both in the construction and in the analysis (in
the latter reference, the analysis is sharp only for H « ).

The article is organized as follows. In Sections 2 and 3 we introduce, respectively,
the continuous and discrete settings. In particular, we define the notion of admissible
mesh sequence. In Section 4, we introduce the fine-scale approximation space, exhibiting
its (oscillatory) basis functions and studying, locally, its approximation properties. In
Section 5, we introduce the two versions of the MsHHO method, analyze their stability,



and derive energy-error estimates. We also detail the offline/online organization of the
computations. Finally, in Appendix A we collect some useful estimates on the first-order
two-scale expansion.

2 Continuous setting

From now on, and in order to lead the analysis, we assume that the diffusion matrix A,

satisfies A.(-) = A(:/e) in €, where A is a symmetric and Z%periodic matrix field on R?.

Letting @ := (0, 1)d, we define, for 1 < p < 400 and m € N*, the following periodic spaces:
P (Q) :={ve L} (RY) |vis Z%periodic},

per loc

Wir(Q) == {ve WP(RY) | v is Zd-periodic} ,

per loc

with the classical conventions that W/%?(Q) is denoted H}? (Q) and that the subscript “loc”

can be omitted for p = +00. Letting S4(R) denote the set of real-valued d x d symmetric
matrices, we also define, for real numbers 0 < a < b,

Sq 1= {Me Su(R) | V€ € RY, al€|” < ME-€ < bJ¢f} .
We assume that there exist real numbers 0 < o < [ such that
A(-) e 87 a.e. in R% (2)

Assumption (2) ensures that A, € L¥(Q;R%*?) is such that A.(-) € S? a.e. in Q for any
e > 0, and hence guarantees the existence and uniqueness of the solution to (1) in H}(Q) for
any € > 0. More importantly, the assumption (2) ensures that the (whole) family (A.)..,
G-converges |3, Section 1.3.2] to some constant symmetric matrix Ay € S2. Henceforth,
we denote p := [/a > 1 the (global) heterogeneity/anisotropy ratio of both (A.)__, and
Ay. Letting (e, ..., eq) denote the canonical basis of RY, the expression of Ag is known to
read, for integers 1 < 1i,j < d,

[Ao],; = LA(%‘ + Vu;)-(ei+ Vi) = JQA(BJ + Vu)-e, (3)

where, for any integer 1 < [ < d, the so-called corrector y; € H;er(Q) is the solution with
zero mean-value on () to the problem

{_mWMvm+mD=OinW> (4)

w is Z%-periodic.

For further use, we also define the linear operator R. : L2 (Q) — LP(2), 1 < p < 4,

per

such that, for any function x € L2, (Q), R:(x) € LP(Q) satisfies R.(x)(:) = x(-/¢) in . In

per

particular, for any integers 1 < i,j < d, we have [A.] = Re (A;j). A useful property of R,



is the relation ;(R-(x)) = 1R<(x), valid for any function x € W,2(Q) and any integer
1<i<d.
The homogenized problem reads

—div(AgVuy) = f in Q,
ug =0 on 0.

We introduce the so-called first-order two-scale expansion

L (ug) 1= g + & Y Re(u)rto. (6)

=1

Note that (u. — L£1(ug)) does not a priori vanish on the boundary of Q.

3 Discrete setting

We denote by ‘H < R’ a countable set of meshsizes having 0 as its unique accumulation
point, and we consider mesh sequences of the form (7)., For any H € H, a mesh Ty
is a finite collection of nonempty disjoint open polytopes (polygons,/polyhedra) T', called
elements or cells, such that Q = UTGT T and H = maxrer;, Hr, Hr standing for the
diameter of the cell T. The mesh cells being polytopal, their boundary is composed of a
finite union of portions of affine hyperplanes in R? called facets (each facet has positive
(d—1)-dimensional measure). A closed subset F' of Q is called a face if either (i) there
exist 17, Ty € Ty such that F' = 0Ty n 015 n Z where Z is an affine hyperplane supporting
a facet of both T} and T, (and F is termed interface), or (ii) there exists T € Ty such that
F = 0T n 02 n Z where Z is an affine hyperplane supporting a facet of both 7" and €2
(and F is termed boundary face). Interfaces are collected in the set Fi;, boundary faces in
Fb, and we let Fy := Fi; U F5. The diameter of a face F' € Fy is denoted Hp. For all
T € Ty, we define Fp := {F € Fy | F < 0T} the set of faces lying on the boundary of T
For any T € Ty, we denote by nyr the unit normal vector to 0T pointing outward T', and
for any F' € Fr, we let nrp 1= nonr (by definition, ny p is a constant vector on F).

We adopt the following notion of admissible mesh sequence; cf. [15, Section 1.4] and [18,
Definition 2.1].

Definition 3.1 (Admissible mesh sequence). The mesh sequence (T )y @5 admissible
if, for oll H € H, Ty admits a matching simplicial sub-mesh Ty (meaning that the cells
in Ty are sub-cells of the cells in Ty and that the faces of these sub-cells belonging to the
skeleton of Ty are sub-faces of the faces in Fy ) such that there exists a real number v > 0,
called mesh regularity parameter, such that, for all H € H, the following holds:

(i) For all simplex S € Ty of diameter Hg and inradius Rg, YHg < Rg;
(i) For allT € Ty, and all S € Tp:={Se%y| ST}, yHr < Hg.



Two classical consequences of Definition 3.1 are that, for any mesh Ty belonging to an
admissible mesh sequence, (i) the quantity card(Fr) is bounded independently of the
diameter Hry for all T € Ty [15, Lemma 1.41|, and (ii) mesh faces have a comparable
diameter to the diameter of the cells to which they belong [15, Lemma 1.42].

For any ¢ € N, and any integer 1 <[ < d, we denote by P} the linear space spanned by
[-variate polynomial functions of total degree less or equal to q. We let

N¢ :— dim(PY) — (q ; l) .

Let a mesh Ty be given. For any T € Ty, P4(T) is composed of the restriction to 7" of
polynomials in P? and for any F' € Fy, P4 [ (F) is composed of the restriction to F of
polynomials in PY (this space can also be described as the restriction to F' of polynomials
in P! | 0©7! where © is any affine bijective mapping from R~! to the affine hyperplane
supporting F'). We also introduce, for any T' € Ty, the following broken polynomial space:

P! (Fr) :={ve L*(0T) | yr e Pi_(F)VF € Fr}.

The term ‘broken’ refers to the fact that no continuity is required between adjacent faces
for functions in Pj_,(Fr). For any T' € Ty, we denote by (®F'),_, < & set of basis

functions of the space P4(T'), and for any F € Fp, we denote by (@%j)lgjgNg_l a set of

basis functions of the space PY | (F). We define, for any T € Ty and F € Fy, II%, and TI%
as the L*-orthogonal projectors onto P%(T) and PY_,(F), respectively.

We conclude this section by recalling some classical results, that are valid for any mesh
T belonging to an admissible mesh sequence in the sense of Definition 3.1. For any T" € Ty
and F' € Frp, the trace inequalities

[0l 2y < naHp 0] 2y Vo € PY(T), (7)
_ v
[l 2y < e (Hz lolFacry + Hrl W olFar.) voe H'(T),  (8)

hold [15, Lemmas 1.46 and 1.49|, as well as the local Poincaré inequality

[Vl g2y < P Hr| V[ 120010 Vv E H*(T) such that J v=0, 9)
T
where cp = 7! for convex elements |7]; estimates in the nonconvex case can be found,
e.g., in [39]. Finally, proceeding as in [24, Lemma 5.6], one can prove using the above trace
and Poincaré inequalities that

1 S—m S
[0 = T (0) oy + H |0 = T (0) | on ) < CappH3 ™[V oy Vv € H(T), (10)
for integers 1 < s < g+ 1 and 0 < m < s (for m = s, (10) is a stability property). All of
the above constants are independent of any meshsize and can depend on ¢, d, and on the
mesh regularity parameter .



Henceforth, we use the symbol ¢ to denote a generic positive constant, whose value can
change at each occurrence, provided it is independent of the micro-scale ¢, any meshsize Hyp
or H, the homogenized solution ug, and the parameters «, 5 characterizing the spectrum of
the diffusion matrices; the value of ¢ can depend on the space dimension d, the underlying
polynomial degree, the mesh regularity parameter v, and some higher-order norms of the
diffusion matrix A or the correctors y; that will be made clear from the context. A recent
hp-analysis of the mono-scale HHO method can be found in [2].

4 Fine-scale approximation space

Let £ € N and let Ty be a member of an admissible mesh sequence in the sense of Def-
inition 3.1. In this section, we introduce the fine-scale approximation space on which we
will base our multi-scale HHO method. We first construct in Section 4.1 a set of cell-based
and face-based basis functions, then we provide in Section 4.2 a local characterization of
the underlying space, finally we study its approximation properties in Section 4.3.

4.1 Oscillatory basis functions

The oscillatory basis functions consist of cell- and face-based basis functions.

4.1.1 Cell-based basis functions

Let T € Ty. If k = 0, we do not define cell-based basis functions. Assume now that £ > 1.
Forall 1 <i < NZ’l, we consider the problem

inf {J l%AEV<p-V<p — i 90] L e HY(T), Th(p) =0 VF € ]—“T} : (11)
T

Problem (11) admits a unique minimizer. This minimizer, that we will denote gpf}l’i €

H'(T), can be proved to solve, for real numbers ()\}? i) satisfying the compat-

FeFp,1<j<Nk_,

ibility condition

Ni—1
T kg k—1,i
IOV R
Ferp YE j=1 T

the continuous problem

( —div(AEVgof}l’i) = i in T,
NG,
AV e = YA @ onall Fe Fr, (12)
j=1
\ I (pE ) = 0 for all F e Fr.



The superscript k + 1 is meant to remind us that the functions gpkH " are used to generate

a linear space which has the same approximation capacity as the polynomial space of order
at most k£ + 1, as will be shown in Section 4.3.

Remark 4.1 (Practical computation). To compute gp“ foralll < i < Ns_l, one
considers in practice a (shape-reqular) matching simplicial mesh T,L of the cell T, with size
h smaller than €. Then, one can solve Problem (12) approzimately by using a classical
(mono-scale) HHO method (or any other mono-scale approximation method). One can
either consider a weak formulation in {¢ € H'(T), I} (p) = OVE € Fr}, which leads to a
coercive problem, or a weak formulation in HY(T), which leads to a saddle-point system
with Lagrange multipliers. Equivalent considerations apply below to the computation of the
face-based basis functions. Note that the error estimates we provide in this work for our
approach do not take into account the local approzimations of size h and assume that (12)
and (14) below are solved exactly.

4.1.2 Face-based basis functions

Let T € Ty. For all F e Fr and all 1 < j < N | we consider the problem

wt { [ [589090| o ), Mh) - 0 b~ 0vo e AR (3)

Problem (13) admits a unique minimizer. This minimizer, that we will denote gpk;ll’ﬁ €

H'(T), can be proved to solve, for real numbers (AL[") satisfying the compat-

oeFr,1<q<Nk_,

ibility condition

2 J le )\TFq)k,q

oeFr g
the continuous problem
( —diV(A5V<pf}?1’§) =0 inT,
d 1
AVt ing, = 2 ALEQhka onall 0 € Fy, 14)
M3t = CI"FJ,
\ E(pf ) =0 for all o € Fp\{F}.
4.2 Discrete space
We introduce, for any T' € T, the space
V= {ve € HY(T) | div(A:Vve) € PyTH(T), A-Vu.nor € P (Fr)}, (15)

with the convention that P;'(T) := {0}. We recall that the condition A.Vv.nyr €
Pk (Fr) is equivalent to A.Vu.-npp e Pt | (F) for all F e Fr.

8



Proposition 4.2 (Characterization of Vf}rl) For any T € Ty, the following holds:

k+1,5

k+1 k+1,i
V> —‘Span{<¢eT )kq<Nk17(@5TPJPFfT1<]<Nd1}'

(16)

Moreover, the dimension of Vf}rl is (N5™' + card(Fr) x Nk_) (or card(Fr) if k = 0).
Proof. To establish (16), we only need to prove that

k+1,5

k+1 k+1,
Vor® < Span {@ET )1<z<Nk L (%TF)FEJTT 1<j<Nj_ 1}’

since the converse inclusion follows from the definition of the oscillatory basis functions. Let

v, € VFI. Then, there exist real numbers (6%),_,_y+—1 (only if & > 1) and (O7.7) per L<jent
: seslNg g T, 1<j<NE_ |

satisfying the compatibility condition

k-1
Nd

> J dje PP = —J D005 (= 0 k = 0),
T =1

FeFr
such that

k—1
Nd

—div(A.Vv,) = Z 0rr V(= 0ifk=0) inT,

d 1
ANVuv.npp = Z 05, P on all F e Fr.

Let us now introduce

Nkl

o k+1, k+1,5
- —ZGTsT ZZ )iy

oeFr j=1

where, for all o € Fr, the real numbers (a:fjj (UE)) solve the linear system

1<j<Nk

d—1
Ni 4
Z (J P CI>’“"’> I(ve) = J v, OF forall 1 <q <N .
j=1 o o

It can be easily checked that —div(A.V() = 0 in T and that A.V{npp € PE_(F)
and TI%(¢) = 0 on all F' € Fp. Using the compatibility conditions, we also infer that
S(}T A.V(-nsr = 0, which means that the previous system for ( is compatible. Hence,
¢ = 0, which proves the converse inclusion. Finally, that the oscillatory basis functions are
linearly independent can be shown by reasoning as above. [



Remark 4.3 (Space Vf}rl) The definition of the space Vf}rl is reminiscent of that con-
sidered in the non-conforming VE method in the case where A. = ly; see [6] and also [13].

We define Hor € PY_, (Fr) such that, for any F € Fr, Horjp := Hp. We will need the
following inverse inequality on the normal component of A.Vwv. for a function v, € quf L
for completeness, we also establish a bound on the divergence.

Lemma 4.4 (Inverse inequalities). The following holds for all v. € Vf}“ 1,

(17)

. 1/
Hy|[div(A-V0.) | 2 + HG;A€Vv€-naTHL2(aT) < 8|V Ly

with ¢ independent of €, Hr, a and [5.

Proof. Note that the functions on the left-hand side are (piecewise) polynomials, but the
function on the right-hand side is not a polynomial in general. Let us first bound the diver-
gence. Let d. := div(A.Vv.) € PX"1(T). Let S be a simplicial sub-cell of T. Considering
the standard bubble function bg € H}(S) (equal to the scaled product of the barycentric
coordinates in S taking the value one at the barycenter of S), we infer using integration
by parts that, for some ¢ > 0 depending on mesh regularity;,

cllde] 7 < L d.bsd. = L div(A. Vv, )bsd.
= fs Aevve'v(bsda) < /81/2HA2/2VUEHL2(5)dH§1HdaHLQ(S)a

where the last bound follows by applying an inverse inequality to the polynomial function
bsd.. Summing over all the simplicial sub-cells and invoking mesh regularity, we conclude
that [[div(A-Vve)| 20 < cﬁl/QHfl)Aé/Qva Loy Let us now bound the normal compo-
nent at the boundary. Let o be a sub-face of a face F' € Fr, and let S < T be the simplex of
the sub-mesh such that o is a face of S. Then, rg := [div(A. Vv.)]|s € Pi7(S) = P5(S) and
To 1= [A:Vu-nor], € Pt (o). Note that Norje = MNosle- Invoking [25, Lemma A 3], we
infer that there is a vector-valued polynomial function q in the Raviart—Thomas—Nédélec
(RTN) finite element space of order k in S so that div(q) = rg in S, qNnyris = T5 ON O,
and

lqllz2(s)e < ¢ zeIr{I(lciigf;S) |2 2(s)e;
div(z)=rg in S
Z2MyT|e =Ty ON T

with ¢ depending on ~ (but not on k) and H/(div;S) := {z € L?(S)? | div(z) € L*(5)}.
Since the function [A.Vu.]is is in H(div;S) and satisfies the requested conditions on
the divergence in S and the normal component on o, we conclude that [gqrzg¢ <
C|A- V.| 2(sya. A discrete trace inequality in the RTN finite element space shows that

AV v-mor | 2y = @ mor oy < ¢ Hy P lal paggya < ¢ Hy AV V] o,

where ¢ depends on 7 and k. We conclude by invoking mesh regularity. [
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4.3 Approximation properties

We now investigate the approximation properties of the space ng;f L for all T € Tyy. Our
aim is to study how well the first-order two-scale expansion £!(ug) can be approximated in

the discrete space V', Let us define 727" (ug) € VX" such that J w2 (o) = | L1(uo)
T T
and

{ —div(A.Vat i (ug)) = —div(AoVIIF (ug)) e PEH(T)  in T, 18)

AEVﬂ's—;} (Uo)"naT = A0VH§+1(U0)'TL6T € PI;fl(‘FT) on 0T
Note that the data in (18) are compatible. From (18) we infer that, for any w e H'(T),

f AVl (ug)- Vw = f AgVTIE (ug)- Vw. (19)
T T

Lemma 4.5 (Approximation in Vf;fl) Assume that there is k > 0 so that A € C%F(R%; R¥*9)
and that ug € H™>¥*+23) (T Then,

HA;/QV(‘C; (Uo) - Wf,—;l (’LLO)) HLQ(T)d sc BI/QPVQ (Héﬁ_l |u0|Hk+2(T)
+ (e + (eHr)"?) |uol gro gy + € Hrluo| sy + 51/2H;1/2|u0H1(T)), (20)

with ¢ independent of €, Hr, ug, a and 3, and possibly depending on d, k, ~v and HAHCO,H(Rd;Rdxd).

Proof. Subtracting/adding A)Vug and using (19) with w = LL(uo)jr — 755" (ug) which is
in H'(T), we infer that

2

|27 (L2 (uo) — Wf,?l(uo)wp(w = JT(AaV/Ji (u0) — AgVug)-V (L (o) — w5t (uo))
¥ j AoV (g — TIE (1)) V(L1 (i) — 75 (wp)).

Using the Cauchy—Schwarz inequality and the fact that £ (ug)r — Wf}l (up) has zero mean-
value on T" by construction, we infer that

|AL2% (L2 (o) = mEH (u0)) | aggya < B0V (w0 = T3 (0)) | oy

+ a71/2 sup |"r€(w>‘ ’
weH(T) HVWHL?(T)d

with Fo(w) = §,(A-VLL(ug) — A)Vug)-Vw and HN(T) = {w e H(T) | {,w = 0}. The
first term in the right-hand side is bounded using the approximation properties (10) of
Hf}“ with m =1 and s = k + 2, and the second term is bounded in Lemma A.3. ]
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5 The MsHHO method

In this section, we introduce and analyze the multi-scale HHO (MsHHO) method. We
consider first in Section 5.1 a mixed-order version and then in Section 5.2 an equal-order
version concerning the polynomial degree used for the cell- and face-based unknowns. In
Section 5.3 we detail the solution strategy. Let Ty be a member of an admissible mesh
sequence in the sense of Definition 3.1.

5.1 The mixed-order case

Let £ > 1. For all T' € Ty, we consider the following local set of discrete unknowns:
Uy = Pg ' (T) x Py (Fr). (21)

Any element v, € U% is decomposed as vy = (vp,vg,). For any F € Fr, we denote
vp = Vrur € P5_ (F). We do not consider the case k = 0 since this corresponds to the
method already analyzed in [33| (up to a slightly different treatment of the right-hand side;
cf. Remark 5.4). We introduce the local reduction operator I¥. : H'(T) — U% such that,
for any v e HY(T), kv := (15 ' (v), 15,(v)), where TT5.(v) € P%_ | (Fr) is defined, for any
F e Fr, by H’gT(v)|F := II%(v). Reasoning as in [13, Section 2.4], it can be proved that,
for all T € Ty, the restriction of I to Vf;f is an isomorphism from Vf}“ 'to Uk. Thus, the
triple (7T, Vf;f L I%) defines a finite element in the sense of Ciarlet.

We define the local multi-scale reconstruction operator pf}l Uk ng;f ! such that,
for any v, = (v, vr,) € Up, ph!(vy) € VI satisfies f PE (vy) = J vy and solves the
T T

well-posed local Neumann problem

J AEfo_f}1 (vy)Vw, = —f vr div(A.Vw,) + J ve, A-Vw.nor  Yw, € Vf}’l (22)
T T oT

Note that (22) can be equivalently rewritten
J AEfo}l (vy)-Vw, = f Vvr-A-Vw, — J (vr — v ) A Vw.nor  Yw, € Vf;l (23)
T T oT

Integrating by parts the left-hand side of (22) and exploiting the definition (15) of the
space Vf}“ ! one can see that, for any Vp € Q?,

G (pf4 (vp)) = 5 H(ve) = ve, Ty (050 (vp)) = Wor(viry) = vy (24)

Owing to (15) and (22), we infer that, for all ve HY(T),

J AV (v—ptt! (Iv)) Vw. =0 Vuw. € VA (25)
T

12



so that p’“rl o Ik HYT) — Vekjf is the A.-weighted elliptic projection. As a consequence,
we have, for all v e H(T),

HA;/QV (U - p];jl_} (Il%v)) HLQ(T)d = H‘}—fl‘ﬂ-l HA/ZV U - w€ HLQ( )d

(26)

Since the operator 10’“rl e Ik preserves the mean value, its restriction to Vskjf is the identity
operator.

Remark 5.1 (Comparison with the mono-scale HHO method). In the mono-scale HHO
method, the reconstruction operator is simpler to construct since it maps onto PZ“(T)
(which is a strict subspace of Vf}“l whenever A, is a constant matriz on T ), whereas in

the multi-scale context, we explore the whole space Vf; Y to build the reconstruction. One
advantage of doing this is that we no longer need to consider stabilization in the present
case. Another advantage is that we recover the characterization of p”“r1 o I% as the A.-

weighted elliptic projector onto V;’fjfl, that is lost in the mono-scale case as soon as A; is
not a constant matrix on T'.

The local bilinear form a. r : Ql} X Ql} — R is defined as
aer(Ug, Vp) = J A VpkH(UT)'fo}l(KT)-

We introduce the following semi-norm on Uk.:

2

bpl = IV velays + | Hor*r =), (27)
Lemma 5.2 (Local stability). The following holds:
acr (v, ve) = calvyly vy € Uf, (28)

with constant ¢ independent of €, Hr, o and 3.

Proof. Let vy € Uk, To derive an estimate on | Vv (7ya: We define v, € Vf}r ! such that

{ —div(A.Vv.) = —Avyp e PEHT) in T, (20)

A.NVv.nyr = Vvrnsr € P’j_l(}}) on 0T,

and satisfying, e.g., ST ve = 0 (the way the constant is fixed is unimportant here). Note
that data in (29) are compatible. Then, the following holds:

J A V.- Vz = f Vvy-Vz Vze HY(T).
T T

13



Using this last relation where we take z = pf}l (vr), and using (23) where we take w. =

e VX[ defined in (29), we infer that

—J v Avy + J Vr, Vv ner = — f vy div(A: Vo) + f V. A Vo nar
T or T orT

_ J AV Tvr - f (ve — v, A Vo mar
T

oT

J A.Vu,- Vp'ngl (vy) J Vvr- VPkH( 7)-

After an integration by parts, this yields

IV gy = f Vb () Vvr + j (Vi — Vpp) Vvpmar.

oT

By the Cauchy-Schwarz inequality and the discrete trace inequality (7), we then obtain

. 30
L2(6T)) (30)

To bound the second term in the right-hand side, we use (24) to infer that

[ve = vrler = (07" (5 (vr)) Jlor — Mor (P27 (1))
= 115, (H? ' (plg?l(VT)) sz:rrl (VT>)
Using the L2-stability of 1%, the continuous trace inequality (8), the local Poincaré in-

equality (9) (since pg}l (vp) — 5 (plg}l (vy)) has zero mean-value on T), and the H'-
stability of [T, we infer that

—4/2 2 —1
1950 e < (@ P IRETHEE ) sy + [ 57 =)

< ca ALV (vy)| (31)

”H{?T v — V]-—T) L2(oT) L2(T)d"
This concludes the proof. O

We define the skeleton 07y of the mesh Ty as 0Ty = UFE;H F. We introduce the
broken polynomial spaces

PE " (Ty) == {ve L*(Q) | vy e P HT) VT € Tu}, (32)
Py \(Fu) = {ve L*(0Tu) | vr € Ps_(F) VF € Fy}. (33)

The global set of discrete unknowns is defined to be
Ufy = Py (Tar) x Py (Fa), (34)

so that any vy € U¥ can be decomposed as vy := (v, Vs, ). For any given vy € UY,, we
denote v, 1= (vy,vr,) € U its restriction to the mesh cell T € T. Note that unknowns
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attached to mesh interfaces are single-valued, in the sense that, for any F € Fi; such that
F = (?TlmaTng for Tl,TQ € TH, VEp = VFy|F € Pg_l(F> is such that VF = V]'—Tl‘F = V]:T2|F.
To take into account homogeneous Dirichlet boundary conditions, we further introduce
the subspace Ql;{,o = {yH eUY |vp=0VFe f}}}. We define the global bilinear form
Qe p Q];{ X Qlfq — R such that

aa,H(EHaYH) = Z aa,T(uTavT - J A Vpk+l uT)'VpI;}l(YT)'
TeTy TeTy

Then, the discrete problem reads: Find u, ; € o U}y such that

et (e iy ¥ 11) = f for Vg e U, (35)
Q

Setting [vy[? = 2TeTy HVTHT on U, with ||, introduced in (27), we define a norm on
Q’}_LO since elements in Q}LO are such that vy = 0 for all F' e F5.

Lemma 5.3 (Well-posedness). The following holds:

2 2 2
aert(Vi,vi) = ) [APVOER () [y = vnlin = calvull Vg e Uy, (36)
TeTy

with constant ¢ independent of e, H, o and B. As a consequence, the discrete problem (35)
15 well-posed.

Proof. This is a direct consequence of Lemma 5.2. O]

Remark 5.4 (Non-conforming Finite Element (NcFE) formulation). Consider the discrete
space

vs’j;,}o = {v-g € L*(Q) | vomr € Vs’f;l VT e Ty and Iy ([von],) =0V EF € Fy},

where [-]» denotes the jump operator for all interfaces F € Fy; (the sign is irrelevant) and
the actual trace for all boundary faces F € F¥. Consider the following NcFE method: Find
e, € VL such that

aeH(usH7U5H J fHk ! UsH) vve,H € ‘/gk[—;lou (37)
TeTH

where Qe g (Ue fr, Ve ) 1= ZTGT STA Vue g-Vu. g. Then, using that the restriction of %
to V’erl s an isomorphism from V’€+1 to UL and that the restriction ofkarl oIk to Vf}“l 5

the Zdentzty operator, it can be shown that u, g solves (35) if and only if u_, = l?(u&[ﬂ;p)
for all T € Ty where u. g solves (37). This proves that (35) is indeed a high-order (and
polytopal) extension of the method in [33], up to a slightly different treatment of the right-
hand side (115 (v, ;) instead of v. ).
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Let u. be the oscillatory solution to (1) and let u_ z be the discrete MsHHO solution
0 (35). Let us define the discrete error such that

Cem € Q]Ic{,m Cer = Lu. — u.p V1€ Tn. (38)
Note that e, ; is well-defined as a member of Q’}io since the oscillatory solution u. is in
H} () and functions in H} () are single-valued at interfaces and vanish at the boundary.

Lemma 5.5 (Discrete energy-error estimate). Let the discrete errore_ g be defined by (38).
Assume that ug € H*2(Q). Then, the following holds:

1/2
HeEHHgH Cp < Z H A+ |u0|Hk+2(T) + Z HAI/QV( k+1(u0))Hiz(T)d> 9 (39)

TeTy TeTy
with constant ¢ independent of €, H, ug, a and [3.

Proof. Lemma 5.3 implies that

ac,r (€ > V)

sup (40)

Jec.u
Ce e, H VHEQI;I,O HYH”&,H

Let vy € Q’}_LO. Performing an integration by parts, and using the facts that the flux
A¢Vugnp is continuous accross any interface F' € F}; since ug € H*(Q2), and that v, €
Q’}JO, we infer that

aeH sH?VH f fVTH Z f A()VUO VVT - Z f Vr — Vr, AOVUQ Nor. (41)

TeTy TeTy

Using (23), we then infer that

ae(e. g, Vy) = Z J (A Vp’“rl(lk ) — A Vug) -Vvrp

TeTy T

-, f (AVPEE (Lhus) — AgVug) nor(vr — viry).
TeTy or

Adding/subtracting IT5! (ug) in the right-hand side yields a. g(e. ;,vy) = T1 + Tp with

T = ) J AoV (I (ug) — ug) Vv
TeTy
- Z J V (54 (ug) — uo) nor (v — vr,),
TeTy
Ty = ), J (AVPEE (L) — AgVITF (ug)) - Vvr
TeTy

- f (AVpEE (Thue) — AgVITE (ug)) mor (vr — vry).
TeTy
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The term T, is estimated using Cauchy—Schwarz inequality and the approximation prop-
erties (10) of the projector II%™ for m = 1 and s = k + 2, yielding

1/2
k
%] < Cﬁ( Z H;' +1)|U0|§1k+2(:r)> Vi -

TeTy

Considering now ¥, we use the definition (18) of 7rk+1(u0) and the relation (19) to infer
that

J AV (P (Thue) — whi (uo)) -Vvr
TeTy
-2 J AV (pE (Tpue) — 7l (uo)) mor(ve — vi,).
TeTy or

The first term in the right-hand side can be bounded using the Cauchy—Schwarz inequality,

whereas the second term is estimated by means of the inverse inequality from Lemma 4.4

since (p’;}l(lé,ug) - Wf}l(uo)) € Veki,f !, This yields

1/2
%] < cﬁl/z( DAY (P (T — 7Tk+1(u0))Hi2(T)d> ¥ g1l g
TeTy

1/
< 051/2( 2 HA;/2V ( — Wf;l(uo)) HQLQ(T)O,> 5 g s

TeTy

where the last bound follows from (26) since 7rk+1(u0) € Vak;fl Since ||VHH5H > calvyl?
owing to Lemma 5.3, we obtain the expected bound. [

Theorem 5.6 (Energy-error estimate). Assume that there is k > 0 so that A € C%*(R%; R9*%)
and that ug € H*2(Q) (recall that k = 1). Then, the following holds:

1/2
(Z |AZ (e = P23 (. ﬂ)!izmd) <051/2p< > Hy P luoffpueary

TeTy TeTy

1/2

+ 5|5Q||U0|3v17w(9) + Z [(52 +eHr) ‘UJO’}QLI?(T) + 52H%|U0|12q3(:r) + 5H51|U0|§{1(T)} ) ;
TeTy

(42)

with ¢ independent of €, H, ug, o and 3. In particular, if the mesh Ty is quasi-uniform, and
tracking for simplicity only the dependency on € and H with ¢ < H < lg (lq denotes the
diameter of 1), we obtain an energy-error upper bound of the form (72 + H* ' 42 H='?),
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Proof. Using the shorthand notation e 7 := uc|r — pf4! (u, 1) for all T € Ty, the triangle

inequality implies that

1/2 1/2
( Z HA;/QVGE,THiQ(T)d> < ( Z HA;/2V (us —Pf}l(llfrua)) Eﬂ(T)d) + HQ&HHg,H’

TeTy TeTy

and owing to (26), we infer that

1/2 1/2
(2 yA;/mes,TH;(T)d) < (Z NG (us_wfgl(uo))u;(ﬂd) +Jlec . e

TeTy TeT

Lemma 5.5 then implies that

1/
( 5 )A;/zws,TH;W) <

TeTy

TeTy TeTy

1/2
cp (ﬁ S sy + 3 [ALV (us—ﬂf}l(“o))”i%nd) -

To conclude, we add/subtract £!(up) in the last term in the right-hand side, and invoke
the triangle inequality together with Lemma A.4 to bound (u. — L (ug)) globally on © and
Lemma 4.5 to bound (L (ug) — 75 (ug)) locally on all T € Ty;. O

=

Remark 5.7 (Dependency on p). The estimate (42) has a linear dependency with respect
to the (global) heterogeneity/anisotropy ratio p (a close inspection of the proof shows that
the term 51/2|§Q\1/2|UO|W1,00(Q) only scales with p*?). This linear scaling is also obtained with

the mono-scale HHO method when the diffusivity is non-constant in each mesh cell; cf. [18,
Theorem 3.1].

Remark 5.8 (Alternative estimate). It is possible to derive a different energy-error esti-
mate under the slightly weaker reqularity assumption that, for any 1 <1 < d, the corrector
w is in WL(RY).  The assumption uy € H**2(Q) remains unchanged. As in [37], we
then employ Lemma A.2 (with D = T') instead of Lemma A.3 in the proof of Lemma 4.5
yielding
A9 (£2(u0) — 75 o)) g0 <
C/Bl/Zpl/Q (H§+1|UO|H;Q+2(T) + 81/2‘6T|1/2IUO’W1’°C(T) + €‘UO‘H2(T)> .

The rest of the analysis is led as above, leading to the following energy-error estimate in
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liew of (42):

1o
o T R (O e

TeTy TeTy

1/2
+ €|5Q\|u0|124/1m(9) +52|u0|12q2(9)> ;

which essentially leads to a behavior of the form (e"? + H**Y) for e < H < {q. This upper
bound s less sharp than that derived in Theorem 5.6 in the sense that it does not capture
the resonance phenomenon observed numerically when the meshsize is not too large with
respect to €.

5.2 The equal-order case

Let £ > 0. For all T' € Ty, we consider now the following local set of discrete unknowns:

Upp == Pa(T) x Pi_y(Fr). (43)

Any element v, € Uk is again decomposed as vy := (vy,Vz,), and for any F € Fr, we
denote v := vz, p € PE_ (F). We redefine the local reduction operator I} : HY(T) — U},
so that, for any v e H'(T), Liw := (T4 (v), 5 (v)). Reasonmg as in |13, Section 2.4, it
can be proved that, for all T' € Ty, the restrlctlon of I to Vf}r ' is an isomorphism from

Vf}r ! to Uk, where
f/e'j;l = {v. € H'(T) | div(A.Vv.) € P5(T), A.-Vv.nsr € P (Fr)}. (44)

Thus, the triple (7T f/f; I I%) defines a finite element in the sense of Ciarlet.

The local multi-scale reconstruction operator pk“ kaf — V’“Jrl is still defined as

n (22), so that the key relations (25) and (26) still hold. In partlcular p’“H olt: HY(T) —
Vé_kjf 1'is the A.-weighted elliptic projection. However, the restriction of p’;le o lf} to the
larger space VE’“:,JC is not the identity operator since karl maps onto the smaller space Vf}’ L
Concerning (24), we still have I15, (pt%' (vy)) = vz, but now I (pE! (vy)) = 57! (vr)
is in general different from vp. This leads us to introduce the symmetric, positive semi-
definite stabilization

Jer(up, vp) ==« LT Ha_T1 (uT - Hk (pl;i}l (UT))) (VT - Hk (plg?l(VT))) (45)

The local bilinear form a. r : Q? X Q? — R is then defined as

ae,r(Up, Vp) 1= J A VpkH(UT)'Vp?Tl(VT) + Jer(Ug, Vo).
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Remark 5.9 (Variant). Alternatively, one can discard the stabilization at the prize of com-
puting additional oscillatory cell-based basis functions, using the basis functions <q)§’z)1<z<N§
instead of (CI);_M)KK
(up to a slightly different treatment of the right-hand side) for k = 0 where one oscillatory
cell-based basis function is added (in the slightly different context of perforated domains).

The analysis for polynomial degrees k = 1 is similar to the one presented in Section 5.1
and is omitted for brevity.

Nkt @S proposed in Section 4.1.1. This is the approach pursued in [34]

Recall the local stability semi-norm ||| defined by (27).

Lemma 5.10 (Local stability and approximation). The following holds:
a7 (v, vr) = calvply vy € Up. (46)
Moreover, for all ve HY(T),
Jer (130, 50) ™ < ¢ |[ALV (v = pEg (130)) | Loy (47)
with (distinct) constants ¢ independent of €, Hr, « and 3.

Proof. 'To prove stability, we adapt the proof of Lemma 5.2. Let v, € Q?. The bound (30)

on |V 2 still holds, so that we only need to bound HHG_;/Q(VT —Vz.) . Since

L2(0T)
1%, (pfi}l (vy)) = vz, we infer that (vp — vg,) = 115, (vp — pf}l (vy)), so that invoking
the L%-stability of [1%, and the triangle inequality while adding/subtracting IT% (pf}l (VT))
we obtain

< |Hor" (vr = TG (25 (o)),

| H (5 ) = T (o ()

_1
HHﬁT (vr = vz) L2(3T) H

L2(T)
The first term in the right-hand side is bounded by a~"2j. 7(vy, vy) 72, and the second one

has been bounded (with the use of TI%! instead of I1%) in the proof of Lemma 5.2 (see (31))

by ca™"? A/2Vpk+1 VT)H _— To prove (47), we start from
L2(T

Jrar Wi, Bio) = o[ T (0 — i o)) |

L2@T)

The result then follows from the application of the discrete trace inequality (7), of the
L?-stability property of IT%, and of the local Poincaré¢ inequality (9) (since {, pf}l (Ihv) =

). O

We define the broken polynomial space
Ph(Tu) :={ve L*(Q) | vr e Py(T) VT € T},
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and the global set of discrete unknowns is defined to be
Ul = Pa(Tu) x Po_y (Fa), (48)

where P%_| (Fpg) is still defined by (33). To take into account homogeneous Dirichlet bound-
ary conditions, we consider again the subspace Q];I,O = {y geUr |vp=0VFe f}j{}. We
define the global bilinear form a. g : Q’;{ X Q’;{ — R such that

Qe (Up, V) 1= Z aer(Up, vy) = Z (J Aszf}l(HT)'Vp’;}l@T) +js,T(L1T7KT)) :
TeTy TeTy T

Then, the discrete problem reads: Find u, y € Q’fi’o such that

ealv) = | fom Yge Ul (49
Q
Recalling the norm |v[? := 2Ty || on Ul 0, we readily infer from Lemma 5.10 the
following well-posedness result.
Lemma 5.11 (Well-posedness). The following holds:

2 .
et (Vi Yp) = Y. <HA;/2VPI<:}1(KT)HLQ(T)d+]6,T(KT72T))
TeTy

= HXHHgH = CO‘HKHHir Vvy € Hl}{a (50)

with constant c independent of e, H, a and B. As a consequence, the discrete problem (49)
15 well-posed.

Remark 5.12 (NcFE interpretation). As in Remark 5.4, it is possible to give a NcFE
interpretation of the scheme (49). Let

VEL = {UE,H € L*(Q) | ver € VI VT € Ty and I([ven] ) =0V F e ]—"H} :

and consider the following NcF'E method: Find u. p € ‘781“;}10 such that

da,H(uE,Hava,H) = Z f fH’;“(Ua,H) VUE,H € ‘75’?]——;,107 (51>
TeTy T
where Ge pg(Ue i, Ve pr) 1= ZTETH Qe (ll}(ug’H‘T),ﬂ}(vsyH|T)). Then, it can be shown that

u, g solves (49) if and only if u.r = U (uemyr) for all T € Ty where u. g solves (51).
The main difference with respect to the mized-order case is that it is no longer possible to
simplify the expression of the bilinear form a. y since the restriction of pf}l oIk to ‘N/f;fl
1s not the identity operator. As in the mono-scale HHO method, the operator pf}l, which
maps onto the smaller space Valfjfl, allows one to restrict the number of computed basis
functions while maintaining optimal (and here also e-robust) approzimation properties.
The basis functions (from the discrete space f/f} 1) that are eliminated (not computed) are
handled by the stabilization term.
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Lemma 5.13 (Discrete energy-error estimate). Let the discrete error ey be defined
by (38). Assume that ug € H**2(Q). Then, the following holds:

1/2

H@a,HHE,H < C,Ol/2 <6 Z H72“(k+1)|u0|§{k+2(T) + Z HA;/QV (UE - ﬂ-f,—;l (UO)) ‘iQ(T)d> ; (52>
TeTy TeTy

with constant ¢ independent of €, H, ug, o and [3.

Proof. The only difference with the proof of Lemma 5.5 is that we now have a. r(e. y,vy) =
T1 + %y + T3, where T, %, are defined and bounded in that proof and where

T?) = Z ja,T(lljg“umYT)-
TeTy

Since j. p is symmetric, positive semi-definite, we infer that

12 1/2
|‘I3| < ( Z je,T (lg%ig%)) < Z je,T(YT;KT))

TeTy TeTy

|5,H7

1/
< c( Z |ALY (u. — pEH (L)) }izmd> v 57

TeTy
where we have used (47). We can now conclude as before. O]

Theorem 5.14 (Energy-error estimate). Assume that there is k > 0 so that A € C%F(R%; R4*9)
and that ug € H™>*+23)(Q)). Then, the following holds:

1/2
( Z HA;/QV (ue _pf,J%l(He,T))Eg(T)d) < 051/2/)( Z HIQ“(kJrl)’UO’iIkH(T)

TeTy TeTy

1/2
+ €|59HU0|‘24/1700(Q) + Z [(€2 +eHr) ‘UOﬁI?(T) + 52H%\U0‘i13(:r) + 5H51|U0|12L11(T)} > ;
TeTy

(53)

with ¢ independent of €, H, ug, o and B. In particular, if the mesh Ty is quasi-uniform,
and tracking for simplicity only the dependency on € and H with ¢ < H < g, we obtain
an energy-error upper bound of the form (€72 + HF*' 4 2 H=Y?),

Proof. Identical to that of Theorem 5.6. ]

Remark 5.15 (Dependency on p). As in the mized-order case (cf. Remark 5.7), the es-
timate (53) has a linear dependency with respect to the (global) heterogeneity/anisotropy
ratio p.

Remark 5.16 (Alternative estimate). An alternative estimate to (53) can be derived in
the spirit of Remark 5.8.
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5.3 Offline/online solution strategy

Let us consider the equal-order version (k > 0) of the MsHHO method introduced in
Section 5.2. Similar considerations carry over to the mixed-order case (k > 1) of Section 5.1.
To solve (49), we adopt an offline/online strategy.

e In the offline step, all the computations are local, and independent of the right-hand
side f. We first compute the cell-based and face-based basis functions, i.e., for all
T € Tu, we compute the N5~! functions gof}l’l solution to (12) (cf. Remark 4.1),

and the card(Fr) x N functions gpf;}lﬁ solution to (14). This first substep is
fully parallelizable. In a second time, we compute the multi-scale reconstruction
operators pf}l, by solving (22) for all T' € T. Each computation requires to invert a
symmetric positive-definite matrix of size (N5~' + card(Fr) x N*_,), which can be
performed effectively via Cholesky factorization. This second substep is as well fully
parallelizable. Finally, we perform static condensation locally in each cell of Ty, to
eliminate the cell unknowns. Details can be found in [18, Section 3.3.1|. Basically,
in each cell, this substep consists in inverting a symmetric positive-definite matrix of
size Nk (N*=! when solving (35)). This last substep is also fully parallelizable.

e In the online step, we compute the L2-orthogonal projection of the right-hand side f
onto P%(Tx) (P51 (Tx) when solving (35)), and we then solve a symmetric positive-
definite global problem, posed in terms of the face unknowns only. The size of this
problem is card(F};) x N& . If one wants to compute an approximation of the
solution to (1) for another f (or for other boundary conditions), only the online step
must be rerun.

For the implementation of the mono-scale HHO method, we refer to [11].

A Estimates on the first-order two-scale expansion

In this appendix, we derive various useful estimates on the first-order two-scale expansion
Ll(ug) defined by (6). Except for Lemma A.3, these estimates are classical; we provide
(short) proofs since we additionally track the dependency of the constants on the param-
eters o and (8 characterizing the spectrum of A and on the various length scales present in
the problem.

A.1 Dual-norm estimates

Let D be an open, connected, polytopal subset of €2; in this work, we will need the cases
where D = Q or where D = T € Ty. Let ¢p be a length scale associated with D, e.g., its
diameter. Our goal is to bound the dual norm of the linear map such that

w — F.(w) = fD (A-V L (uo) — AgVug) -V, (54)

23



for all w € Hy(D) (Dirichlet case), or for all w € H(D) := {w € HY(D) | §,w = 0}
(Neumann case); note that F.(w) does not change if the values of w are shifted by a
constant.

Lemma A.1 (Dual norm, Dirichlet case). Assume that the homogenized solution uy belongs
to H*(D) and that, for any 1 <1 < d, the corrector y; belongs to W*(R?). Then,

| F=(w)]
sup 222N gl (55)
weHE(D) HVUJHB(D)d H*(D)
with ¢ independent of £, D, ug, a and 3, and possibly depending on d and maxi<;<q H/ublel,oc(Rd)-

Proof. For any integer 1 < ¢ < d, we have

[AEV'C; (“O)L = Z [A€]z‘jaj£3: (o)

d d
1
= Z [Ag]ij (&juo + 62 <g7€8(8j,ul)&lu0 + Rg(ul)ﬁj?’luo))

=1

d d
= [AVug], + Y Re(0)oruo + & Y. [Ac;Re ()03 uo, (56)

=1 Lj=1
with 6! := Ay + Z?=1 Ai;0jpu — [Ao);, satisfying the following properties:
e 0! e LY, (Q) by assumption on A and on the correctors 1y;

. SQ 0! = 0 as a consequence of (3);

. ijl @-6’5 = 0 in R? as a consequence of (4).

Adapting [31, Equation (1.11)] (see also |27, Sections 1.3.1 and 1.3.3]), we infer that, for
any integer 1 < [ < d, there exists a skew-symmetric matrix T' € Wgéio(Q)dXd, satisfying
SQ T! = 0 and such that, for any integer 1 < i < d,

d

0= 0,T.,. (57)

q=1

Plugging (57) into (56), we infer that, for any integer 1 < i < d,

d d
[A5V£;(u0)]i — [A)Vug, = ¢ (Z GQ(RE(Tfﬂ-))aluo + Z [Ag]ing(ul)(??’lu(]) )
l,g=1 l,j=1
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Since 0y(R-(Th;)) 0o = O(Re(Th;)Orug) — R(T,;)02 ug, and recalling the definition (54) of
F., this yields

d d
Fo(w) - 5< 3 f (A Re(u) 20 G0 — f Re(T)2 o az-w>
ilj=17D ilg=1YD
d
+e Z f 0q (Re(Ths)Orug) dw. (58)
i,l,qg=1 D
Since T,; = —T., for any integers 1 < i,q < d, we infer by integration by parts of the last
term that
d d
Fo(w) - 5( 3 f (A Re(u) 20 G0 — f Ra(TL)22 g az-w)
il j=17D ilg=1YD
d
+c Z f 8q (Ra(Tfﬂ)aon) Nep; W, (59)
ilg=1v9D

where n,p is the unit outward normal to D. Since w € H{ (D), we obtain

d
Fo(w) :g( 3 f (A Re ()0 0 — Y f Re(T4)0% o (%w).
ilj=1YD ilg=1YD

Using the Cauchy—Schwarz inequality, we finally deduce that

| Fe(w)| ( 1|
sup —————— < ¢ e max o0 (R 5 T, X)u :
weH(}IzD) Vw2 pya p 1<i<d il ey 8 H HL (R)dxd [uolp2(p)
We conclude by observing that HTlHLw(Rd)dxd <c HalHLOC(Rd)d < cp. ]

Lemma A.2 (Dual norm, Neumann case (i)). Assume that the homogenized solution uy
belongs to WH*(D) n H?(D) and that, for any 1 < 1 < d, the corrector py belongs to
WL*(RY). Then,

I Felw)

(o) | VW] r2(pya <cp <5|U0|H2<D) + |aD|1/251/2|uO|WL°o(D)) ’ (60)
WEL

with ¢ independent of €, D, ug, a and 3, and possibly depending on d and maxi<;<q HmHWmc(Rd).

Proof. Our starting point is (58). The first two terms in the right-hand side are re-
sponsible for a contribution of order [e|ug| w2(py> and it only remains to bound the last
term. Following the ideas of [31, p. 29|, we define, for n > 0, the domain D, :=
{x € D | dist(x,0D) < n}. If n is above a critical value (which scales as (p), D, = D,
otherwise D, & D. We introduce the cut-off function ¢, € C°(D) such that ¢, = 0 on
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&D defined by (,(x) = dist(x,0D)/n if ¢ € D,, and (,(x) = 1 if x € D\D,. We have
< ¢, < 1 and maxi<4<q [0, CnHLoo D) < n~'. We first infer that

£ Z J R(T,;) o) Ow = € Z f Re(T) o) dw

il,q=1 il,q=1

since (1 — ¢,) vanishes identically on D\D, and since Z?J 150 0q (GR(TL)dyuo) diw = 0
as can be seen by integration by parts, using the fact that Tfn- = —Téq for any integers
1 <i,q < d, and the fact that ¢, vanishes identically on dD. Then, accounting for the fact
that

g 6q ((1 — CH)RE(Téz)é’luo) = —¢ 8(1{,7 Rg(Tfﬂ)ﬁluo
+ (1= G)Re (04Th,) Qo + (1 — ¢ Re(Th,) 32 o,

we infer that

Z f T.)ouo) Ow

il,qg=1

£
<1 (£ 1) (10 1T e ) by

+e€ (max HTl|LOC(Rd)dxd) ’U0’H2(D)] va||L2(D)d

1<i<d

Using the estimate |D,| < n|dD|, the fact that max;<<q HT le o (Riyaxd S ¢ 3, and since

)
the function 7 — \/—77 + /1 is minimal for n = ¢, we finally infer the bound (60). O

Lemma A.3 (Dual norm, Neumann case (ii)). Assume that D = T € Ty where Ty is
a member of an admissible mesh sequence in the sense of Definition 5.1; set {p = Hrp.
Assume that the homogenized solution ug belongs to H*(D) and that there is k > 0 so that
Ae C%(R%R™). Then,

| Fe(w)] < 1 1o )—1f2
A A < 05)"? 14 /2€ )
vty Tl = P& ) ol + ebpltolg +< 0ol o
(61)

with ¢ independent of £, D, ug, a and 3, and possibly depending on d, v and HAHCOv"‘(Rd~RdXd)‘

Proof. We proceed as in the proof of Lemma A.1. Concerning the regularity of 6!, we now
have 6! € C%(R?) for some ¢ > 0 as the Hélder continuity of A on R? implies the Holder
continuity of y; and Vy; on R for any 1 < [ < d; cf., e.g., [26, Theorem 8.22 and Corollary
8.36]. Following [31, p. 6-7] and [33, p. 131-132], we infer that the skew-symmetric matrix
T! is such that T € C1(RY)%*4. Our starting point is (59). The first two terms in the
right-hand side are responsible for a contribution of order Be|ug| 2 (py> and it only remains
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to bound the last term. We have

d d

€ Z J Oy (Rg(Téi)é‘luo) Nop,;iW = € Z f Ra(Tfli)ﬁiluOnaD,iw
ilg=10D il,g=17oD
+ Z J 6lu0napzw— T+ %y,
i,l,qg=1

Using the Cauchy—Schwarz inequality and the trace inequality (8), the first term in the
right-hand side can be estimated as

11| < 8265 (Juol ey + Colol sy ) (10l 2y + 0l Va0l )

since maxj<j<d HTIHC()(Rd)dxd < c¢f. Observing that SDw = 0, we can use the Poincaré

inequality (9) to infer that

%11 < 86 (Juol a(o) + Coltol ) ) V0] 2y

To estimate the second term in the right-hand side, we adapt the ideas from [33, Lemma
4.6]. Considering the matching simplicial sub-mesh of D, let us collect in the set §p all
the sub-faces composing the boundary of D. Then, we can write

L-Y I Y fn (VTL) 7y,

oegp l=1q=1 gq<i<d

where the vectors 7 are such that |77 <1 and 7%-nsp|, = 0. Then, using a straight-
forward adaptation of the result in 33, Lemma 4.6], and since maxj<j<q HT Hcl Rdyaxd < cp,
we infer that

JR (VT.) Tiiﬁzuow‘ 0551/2H_3/2<|“0|H1 + Hsluolses )

(Il 2qs) + Hl Va0

where S'is the simplicial sub-cell of D having o as face. Collecting the contributions of all
the sub-faces o € §p and using the mesh regularity assumptions on D, we infer that

-3
%ol < ¢ B0, ([l (o) + Eoltol o ) (10l p2(y + ol Tl papye)
Finally, invoking the Poincaré inequality (9) since w has zero mean-value in D yields
—1
%] < e Bl <|U0|H1(D) + €D|U0|H2(D)) [Vl 2pya

Collecting the above bounds on ¥, and ¥, concludes the proof. O

27



A.2 Global energy-norm estimate

Lemma A.4 (Energy-norm estimate). Assume that the homogenized solution ugy belongs
to Whe(Q) n H*(Q), and that, for any 1 <1 < d, the corrector y; belongs to WH*(R%).
Then,

|AYV (ue — L (u0))] @ S <cp” (\59,1/2 P ol 1,00y + 9 €‘UO‘H2(Q)> (62)
with ¢ independent of €, Q, ug, o and 3, and possibly depending on d and max;<;<g H,ulel,oo(Rd).

Proof. The regularity assumptions on ug and the correctors imply (u. — L (ug)) € H'(Q);
however, we do not have (u. — Ll(ug)) € H}(2). Following the ideas in [31, p. 28|, we
define, for n > 0, the domain Q, := {x e Q| dist(x, Q) <n}. If n is above a critical
value, 0, = Q, otherwise Q, & Q. We introduce the cut-off function ¢, € C°(Q2) such that
G, = 0 on 09, defined by ¢,(x) = dist(x, Q) /n if x € Q,, and (,(x) = 1 if x € Q\Q,,.
We have 0 < ¢, < 1 and max ||&Z-§nHLOO(Q) < n'. The function ¢, allows us to define

a corrected first-order two-scale expansion £1°(ug) 1= ug + €¢, Zle Re(p)0ug such that
(ue — L)) € HY(Q). We start with the triangle inequality:

HA;/QV(UE *Cl UO HLz Q)d ”A;/QV(UE £10 UO HLz Q)4
+ ALV (LL(uo) — L1 (uo) HL2 @ (63)

Let us focus on the first term in the right-hand side of (63). We have
[AY2% (e = L1(u0)) 20 f AV (ue — L1 (u0)) -V (ue — £(ug))
Q
+ f AV (L) (o) — L)) -V (e — L)) -
Q

Since (u. — L1(ug)) € Hi(2), we infer that

12 10( —1 o AV (ue — E;(UU)) V|
|ALW (ue — L2%(0)) | oo < @ wes%[zm Vil

+ ALV (Ll (uo) — L2 (64)

(uo) HLZ(Q

Since §o A-Vu.-Vw = [ A Vuy-Vw for any w € Hj(Q) in view of (1) and (5), the
estimates (63) and (64) lead to

) - Fe(w)]
A2V (u El < /2 |—
+ 251/2“V E; U ) Llo UO HLQ (LA (65)
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recalling that F.(w) = {, (A:-VLL(ug) — AgVug) -Vw. Since we can bound the first term
in the right- hand 31de of (65) using Lemma A.1 (with D = Q), it remains to estimate the
second term. Owing to the definition of (,, we infer that

d
( L= G) D Repu am)
=1

|V (L (o) — L2 (66)

(o) HL2 Qe —

L2 ()

For any integer 1 < i < d, we have

d d d
< ZRE H 3zuo> = _aiCnZRs(ﬂl)aluo + ZRE i) O
=1 =1

=1
d
1 - gn Z Ra lu07
=1

and using the properties of the cut-off function ¢, we infer that

d
( ]_ *Cﬁ ZRa Hi OlU()> <|Q ‘1/2 (77 + 1) |UO|W100 )+5|U0|H2 ) .
=1

LQ(Qn)d
Since [€,| < |[09Q|n, and choosing n = ¢ to minimize the function n — \/%7 + /1, We can
conclude the proof (note that p > 1 by definition). O

Remark A.5 (Weaker regularity assumption). Without the regularity assumption ug €
Wh*(Q), one can still invoke a Sobolev embedding since ug € H*(Y). The first term between
the parentheses in the right-hand side of (62) becomes C(Q,p)|(9§2|1/2_1/”&?1/2_1/”(€§1|uo|H1(Q) +
|u0|H2(Q)) where p = 6 for d = 3 and p can be taken as large as wanted for d = 2 (note

that ¢(€2, p) — +0 when p — +0 in that case). We refer, e.q., to [37] for the derivation
of estimates in this setting.

References

[1] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden. The Heterogeneous Multiscale Method. Acta
Numerica, 21:1-87, 2012.

[2] J. Aghili, D. A. Di Pietro, and B. Ruffini. A hp-Hybrid High-Order method for variable diffusion on
general meshes. Submitted, 2016. Available at hal-01290251.

[3] G. Allaire. Shape Optimization by the Homogenization Method, volume 146 of Applied Mathematical
Sciences. Springer, New York, 2002.

[4] R. Araya, C. Harder, D. Paredes, and F. Valentin. Multiscale Hybrid-Mixed method. SIAM J. Numer.
Anal., 51(6):3505-3531, 2013.

[5] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749-1779, 2002.

29


https://hal.archives-ouvertes.fr/hal-01290251

[6]
7]
18]
19]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]
[20]

21]

[22]

B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element method. ESAIM:
Math. Model Numer. Anal. (M2AN), 50(3):879-904, 2016.

M. Bebendorf. A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen,
22(4):751-756, 2003.

L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles
of virtual element methods. Math. Models Methods Appl. Sci. (M3AS), 23:199-214, 2013.

A. Cangiani, E. H. Georgoulis, and P. Houston. hp-version discontinuous Galerkin methods on polyg-
onal and polyhedral meshes. Math. Models Methods Appl. Sci. (M3AS), 24(10):2009-2041, 2014.

E. T. Chung, S. Fu, and Y. Yang. An enriched multiscale mortar space for high contrast flow problems.
Submitted, 2016. Available at arXiv:1609.02610.

M. Cicuttin, D. A. Di Pietro, and A. Ern. Implementation of Discontinuous Skeletal methods on
arbitrary-dimensional, polytopal meshes using generic programming. Submitted, 2017. Available
at hal-01429292.

B. Cockburn. Static condensation, hybridization, and the devising of the HDG methods. In G. R.
Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential Equations, number 114 in
Lecture Notes in Computational Science and Engineering, pages 129-177. Springer, 2016.

B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the Hybrid High-Order and Hybridizable
Discontinuous Galerkin methods. ESAIM: Math. Model Numer. Anal. (M2AN), 50(3):635-650, 2016.

B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous Galerkin,
mixed, and continuous Galerkin methods for second-order elliptic problems. SIAM J. Numer. Anal.,
47(2):1319-1365, 2009.

D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69 of
Mathématiques € Applications. Springer-Verlag, Berlin, 2012.

D. A. Di Pietro and A. Ern. Hybrid High-Order methods for variable-diffusion problems on general
meshes. C. R. Acad. Sci. Paris, Ser. I, 353:31-34, 2015.

D. A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-stencil discretization of
diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math.,
14(4):461-472, 2014.

D. A. Di Pietro, A. Ern, and S. Lemaire. A review of Hybrid High-Order methods: formulations,
computational aspects, comparison with other methods. In G. R. Barrenechea, F. Brezzi, A. Cangiani,
and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches
to Numerical Partial Differential Equations, volume 114 of Lecture Notes in Computational Science
and Engineering, pages 205-236. Springer, 2016.

W. E and B. Engquist. The Heterogeneous Multiscale Methods. Comm. Math. Sci., 1:87-132, 2003.

Y. Efendiev and T. Y. Hou. Multiscale Finite Element Methods - Theory and Applications, volume 4
of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York, 2009.

Y. Efendiev, T. Y. Hou, and X.-H. Wu. Convergence of a nonconforming multiscale finite element
method. SIAM J. Numer. Anal., 37(3):888-910, 2000.

Y. Efendiev, R. Lazarov, M. Moon, and K. Shi. A spectral multiscale hybridizable discontinuous
Galerkin method for second order elliptic problems. Comput. Methods Appl. Mech. Engrg., 292:243—
256, 2015.

30


https://arxiv.org/abs/1609.02610
http://hal.archives-ouvertes.fr/hal-01429292

23]

[24]

[25]

[26]
[27]
28]
[29]
[30]
[31]
32]
[33]
[34]
[35]
[36]
37]
[38]
[39]
[40]

[41]

Y. Efendiev, R. Lazarov, and K. Shi. A multiscale HDG method for second order elliptic equations.
Part I. Polynomial and homogenization-based multiscale spaces. STAM J. Numer. Anal., 53(1):342—
369, 2015.

A. Ern and J.-L. Guermond. Finite element quasi-interpolation and best approximation. ESAIM:
Math. Model Numer. Anal. (M2AN), 2017. DOI: 10.1051/m2an,/2016066.

A. Ern and M. Vohralik. Stable broken H' and H(div) polynomial extensions for polynomial-degree-
robust potential and flux reconstruction in three space dimensions. Submitted, 2016. Available at hal-
01422204.

D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in
Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, volume 5 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.

T. Y. Hou and X.-H. Wu. A multiscale finite element method for elliptic problems in composite
materials and porous media. J. Comp. Physics, 134:169-189, 1997.

T. Y. Hou, X.-H. Wu, and Z. Cai. Convergence of a multiscale finite element method for elliptic
problems with rapidly oscillating coefficients. Math. Comp., 68(227):913-943, 1999.

T. Y. Hou, X.-H. Wu, and Y. Zhang. Removing the cell resonance error in the multiscale finite
element method via a Petrov-Galerkin formulation. Commun. Math. Sci., 2(2):185-205, 2004.

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of differential operators and integral
functionals. Springer-Verlag, Berlin Heidelberg, 1994.

R. Kornhuber and H. Yserentant. Numerical homogenization of elliptic multiscale problems by sub-
space decomposition. Multiscale Model. Simul., 14(3):1017-1036, 2016.

C. Le Bris, F. Legoll, and A. Lozinski. MSFEM a la Crouzeix—Raviart for highly oscillatory elliptic
problems. Chinese Annals of Mathematics, Series B, 34(1):113-138, 2013.

C. Le Bris, F. Legoll, and A. Lozinski. An MsFEM-type approach for perforated domains. SIAM
Multiscale Modeling and Simulation, 12(3):1046-1077, 2014.

A. Malgvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83:2583—
2603, 2014.

L. Mu, J. Wang, and X. Ye. A Weak Galerkin generalized multiscale finite element method. J. Comp.
Appl. Math., 305:68-81, 2016.

D. Paredes, F. Valentin, and H. M. Versieux. On the robustness of Multiscale Hybrid-Mixed methods.
Math. Comp., 86:525-548, 2017.

N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. Int. J. Numer. Methods Engrg.,
61(12):2045-2066, 2004.

A. Veeser and R. Verfiirth. Poincaré constants for finite element stars. IMA J. Numer. Anal.,
32(1):30-47, 2012.

E. L. Wachspress. A Rational Finite Element Basis, volume 114 of Mathematics in Science and
Engineering. Academic Press, 1975.

J. Wang and X. Ye. A weak Galerkin finite element method for second-order elliptic problems. J.
Comput. Appl. Math., 241:103-115, 2013.

31


http://dx.doi.org/10.1051/m2an/2016066
https://hal.inria.fr/hal-01422204
https://hal.inria.fr/hal-01422204

	Introduction
	Continuous setting
	Discrete setting
	Fine-scale approximation space
	Oscillatory basis functions
	Cell-based basis functions
	Face-based basis functions

	Discrete space
	Approximation properties

	The MsHHO method
	The mixed-order case
	The equal-order case
	Offline/online solution strategy

	Estimates on the first-order two-scale expansion
	Dual-norm estimates
	Global energy-norm estimate


