Learning-Based Performance Specialization of Configurable Systems

Abstract : A large scale configurable system typically offers thousands of options or parameters to let the engineers customize it for specific needs. Among the resulting many billions possible configurations, relating option and parameter values to desired performance is then a daunting task relying on a deep know how of the internals of the configurable system. In this paper, we propose a staged configuration process to narrow the space of possible configurations to a good approximation of those satisfying the wanted high level customer requirements. Based on an oracle (e.g. a runtime test) that tells us whether a given configuration meets the requirements (e.g. speed or memory footprint), we leverage machine learning to retrofit the acquired knowledge into a variability model of the system that can be used to automatically specialize the configurable system. We validate our approach on a set of well-known configurable software systems. Our results show that, for many different kinds of objectives and performance qualities, the approach has interesting accuracy, precision and recall after a learning stage based on a relative small number of random samples.
Type de document :
[Research Report] IRISA, Inria Rennes; University of Rennes 1. 2017
Liste complète des métadonnées

Littérature citée [70 références]  Voir  Masquer  Télécharger

Contributeur : Mathieu Acher <>
Soumis le : mardi 14 février 2017 - 12:08:10
Dernière modification le : jeudi 15 novembre 2018 - 11:58:57
Document(s) archivé(s) le : lundi 15 mai 2017 - 14:00:15


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01467299, version 1


Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, Léo Noel-Baron, José Galindo. Learning-Based Performance Specialization of Configurable Systems. [Research Report] IRISA, Inria Rennes; University of Rennes 1. 2017. 〈hal-01467299〉



Consultations de la notice


Téléchargements de fichiers