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Abstract

We show that, up to topological conjugation, the equivalence class of a Morse-Smale
diffeomorphism without heteroclinic curves on a 3-manifold is completely defined by an
embedding of two-dimensional stable and unstable heteroclinic laminations to a charac-
teristic space.
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1 Introduction and formulation of the result

In 1937 A. Andronov and L. Pontryagin [2] introduced the notion of a rough system of differential
equation given in a bounded part of the plane, that is a system which preserves its qualitative
properties under parameters variation if the variation is small enough. They proved that the
flows generated by such systems are exactly the flows having the following properties:

1. the set of fixed points and periodic orbits is finite and all its elements are hyperbolic;

2. there are no separatrices going from one saddle to itself or to another one;

3. all ω- and α-limit sets are contained in the union of fixed points and periodic orbits (limit
cycles).

The above description characterizes the rough flows on the two-dimensional sphere also. After
A. Mayer [16] in 1939, a similar result holds true on the 2-torus for flows having a closed
section and no equilibrium states. A. Andronov and L. Pontryagin have shown also in [2] that
the set of the rough flows is dense in the space of C1-flows1. In 1962 M. Peixoto proved ([22],
[23]) that the properties 1-3 are necessary and sufficient for a flow on any orientable surface of
genus greater than zero to be structurally stable. He proved the density for these flows as well.
Direct generalization of the properties of rough flows on surfaces leads to the following class of
dynamical systems continuous or discrete, that is, flows or diffeomorphisms (cascades).

Definition 1.1 A smooth dynamical system given on an n-dimensional manifold (n ≥ 1) Mn

is called Morse-Smale if:

1. its non-wandering set consists of a finite number of fixed points and periodic orbits where
each of them is hyperbolic;

2. the stable and unstable manifolds W s
p , W u

q of any pair of non-wandering points p and q
intersect transversely.

Let M be a given closed 3-dimensional manifold and f : M → M be a Morse-Smale
diffeomorphism.

For q = 0, 1, 2, 3 denote by Ωq the set of all periodic points of f with q-dimensional unstable
manifold. Let Ωf be the union of all periodic points. Let us represent the dynamics of f in the
form “source-sink” in the following way. Set

Af = W u
Ω0∪Ω1

, Rf = W s
Ω2∪Ω3

, Vf = M r (Af ∪Rf ).

We recall that a compact set A ⊂ M is said to be an attractor of f if there is a compact
neighborhood N of the set A such that f(N) ⊂ int N and A =

⋂
n∈N

fn(N); and R ⊂M is said

to be a repeller of f if it is an attractor of f−1.

1This statement was not explicitly formulated in [2] and was mentioned for the first time in papers by E.
Leontovich [15] and M. Peixoto [21]. G. Baggis [3] in 1955 made explicit some details of the proofs which were
not completed in [2].
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By [11, Theorem 1.1] the set Af (resp. Rf ) is an attractor (resp. a repeller) of f whose
topological dimension is equal to 0 or 1. By [11, Theorem 1.2] the set Vf is a connected 3-

manifold and Vf = W s
Af∩Ωf

rAf = W u
Rf∩Ωf

rRf . Moreover, the quotient V̂f = Vf/f is a closed

connected 3-manifold and when V̂f is orientable, then it is either irreducible or diffeomorphic

to S2 × S1. The natural projection p
f

: Vf → V̂f is an infinite cyclic covering. Therefore, there

is a natural epimorphism from the the first homology group of V̂f to Z,

η
f

: H1(V̂f ;Z)→ Z,

defined as follows: if γ is a path in Vf joining x to fn(x), n ∈ Z, then η
f

maps the homology
class of the cycle p

f
◦ γ to n.

The intersection with Vf of the 2-dimensional stable manifolds of the saddle points of f
is an invariant 2-dimensional lamination Γsf , with finitely many leaves, and which is closed
in Vf . Each leaf of this lamination is obtained by removing from a stable manifold its set
of intersection points with the 1-dimensional unstable manifold; this intersection is at most
countable. As Γsf is invariant under f , it descends to the quotient in a compact 2-dimensional

lamination Γ̂sf on V̂f . Note that each 2-dimensional stable manifold is a plane on which f acts
as a contraction, so that the quotient by f of the punctured stable manifold is either a torus
or a Klein bottle. Thus the leaves of Γ̂sf are either tori or Klein bottles which are punctured
along at most countable set.

One defines in the same way the unstable lamination Γ̂uf as the quotient by f of the in-

tersection with Vf of the 2-dimensional unstable manifolds. The laminations Γ̂sf and Γ̂uf are
transverse.

Definition 1.2 The sets Γ̂sf and Γ̂uf are called the two-dimensional stable and unstable lami-
nations associated with the diffeomorphism f .

A precise definition of what a lamination is will be given in Definition 2.1.

Definition 1.3 The collection Sf = (V̂f , ηf , Γ̂
s
f , Γ̂

u
f ) is called the scheme of the diffeomorphism

f .

Definition 1.4 The schemes Sf and Sf ′ of two Morse-Smale diffeomorphisms f, f ′ : M →M

are said to be equivalent if there is a homeomorphism ϕ̂ : V̂f → V̂f ′ with following properties:
(1) η

f
= η

f ′
ϕ̂∗;

(2) ϕ̂(Γ̂sf ) = Γ̂sf ′ and ϕ̂(Γ̂uf ) = Γ̂uf ′, meaning that ϕ̂ maps leaf to leaf.

Using the above notion of a scheme in a series of papers by Ch. Bonatti, V. Grines, V.
Medvedev, E. Pecou, O. Pochinka [5], [7], [8], [9], the problem of classification up to topological
conjugacy of Morse-Smale diffeomorphisms on 3-manifolds has been solved in some particular
cases. Recall that two diffeomorphisms f and f ′ of M are said to be topologically conjugate if
there is a homeomorphism h : M →M which satisfies f ′h = hf .

In the present article, we give the topological classification of the Morse-Smale diffeomor-
phisms belonging to the subset G(M) of the Morse-Smale diffeomorphisms f : M →M which
have no heteroclinic curves (see Section 2). According to [6], when the ambient manifold is
orientable, then it is either sphere S3 or the connected sum of a finite number copies of S2×S1.
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Theorem 1 Two Morse-Smale diffeomorphisms in G(M) are topologically conjugate if and
only if their schemes are equivalent.

The structure of the paper is the following:

• In Section 2 we describe the dynamics of Morse-Smale diffeomorphisms and their space
of wandering orbits.

• In Section 3 we construct a compatible system of neighborhoods, which is a key point for
the construction of a conjugating homeomorphism.

• In Section 4 we construct a conjugating homeomorphism.

• Section 5 is an appendix of 3-dimensional topology. We prove there some topological
lemmas which are used in Section 4.

2 Dynamics of diffeomorphisms in the class G(M)

In this section we introduce some notions connected with Morse-Smale diffeomorphisms on
3-manifold M . More detailed information on Morse-Smale diffeomorphisms is contained in [13]
for example.

Let f : M →M be a Morse-Smale diffeomorphism. If x is a periodic point its Morse index
is the dimension of its unstable manifold W u

x ; the point x is called a saddle point when its two
invariant manifolds have positive dimension, that is, its Morse index is not extremal. A sink
point has Morse index 0 and a source point has Morse index 3. The following notions are key
concepts for describing how the stable manifolds of saddle points intersect the unstable ones.
If x, y are distinct saddle points of f and W u

x ∩W s
y 6= ∅, then:

- if dim W s
x < dim W s

y , any connected component of W u
x ∩W s

y is 1-dimensional and called
a heteroclinic curve (see figure 1);

- if dim W s
x = dim W s

y , the set W u
x ∩ W s

y is countable; each of its points is called a
heteroclinic point; the orbit of a heteroclinic point is called a heteroclinic orbit.

According to S. Smale [24], it is possible to define a partial order in the set of saddle points
of a given Morse-Smale diffeomorphism f as follows: for different periodic orbits p 6= q, one
sets p ≺ q if and only if W u

q ∩W s
p 6= ∅. Smale proved that this relation is a partial order. In

that case, it follows from [18, Lemma 1.5] that there is a sequence of different periodic orbits
p0, . . . , pn satisfying the following conditions: p0 = p, pn = q and pi ≺ pi+1. The sequence
p0, . . . , pn is said to be an n-chain connecting p to q. The length of the longest chain connecting
p to q is denoted by beh(q|p). If W u

q ∩W s
p = ∅, we pose beh(q|p) = 0. For a subset P of the

periodic orbits let us set beh(q|P ) = max
p∈P
{beh(q|p)}. The present paper is devoted to studying

Morse-Smale diffeomorphisms in dimension 3 which have no heteroclinic curves. We recall from
the introduction that this class of diffeomorphisms is denoted by G(M). Let f ∈ G(M). It
follows from [11] that if the set Ω2 is empty then Rf consists of a unique source. If Ω2 6= ∅,
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Figure 1: Heteroclinic curves

Figure 2: Heteroclinic points

denote by n the length of the longest chain connecting two points of Ω2. Divide the set Ω2

into f -invariant disjoint parts Σ0,Σ1, . . . ,Σn using the rule: beh(q|(Ω2 r q)) = 0 for each orbit
q ∈ Σ0 and beh(q|Σi) = 1 for each orbit q ∈ Σi+1, i ∈ {0, . . . , n − 1}. Since Ω1 for f is Ω2 for
f−1, then it is possible to divide the periodic orbits of the set Ω1 into parts in a similar way.
The absence of heteroclinic curves means that there are no chains connecting a saddle from Ω2

with a saddle from Ω1. Thus we explain all material for Ω2 and say that all is similar for Ω1.

Set W u
i := W u

Σi
, W s

i := W s
Σi

. Then, Rf :=
n⋃
i=0

cl(W s
i ), where cl(·) stands for the closure

of (·). We now specify what a lamination is and which sort of regularity it may have. There
are different possible notations. Here, we use the one which is given in [10, Definition 1.1.22].

Definition 2.1 Let X be a n-dimensional and Y ⊂ X be a closed subset. Let q be an integer
0 < q < n. A codimension-q lamination with support Y is a decomposition Y =

⋃
j∈J

Lj into

pairwise disjoint smooth (n−q)-dimensional connected manifolds Lj, which are called the leaves.
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The family L = {Lj, j ∈ J} is said to be a C1,0-lamination2 if for every point x ∈ Y the following
conditions hold:

(1) There are an open neighborhood Ux ⊂ X of x and a homeomorphism ψ : Ux → Rn such
that ψ maps every plaque, that is a connected component of Ux∩Lj, into a codimension-q
subspace {(x1, . . . , xn) ∈ Rn | xn−q+1 = cn−q+1, . . . , xn = cn}. If Y = X one says that L
is foliation.

(2) The tangent plane field TY :=
⋃
j∈J

TLj exists on Y and is continuous.

By definition, two points belong to the same leaf of a lamination if they are linked by a path
which is covered by finitely many plaques.

By abuse, a lamination and its support are generally denoted in the same way. We recall
the λ-Lemma in the strong form which is proved in [19, Remarks p. 85].

Lemma 2.2 (λ-lemma.) Let f : X → X be a diffeomorphism of an n-manifold, and let p
be a fixed point of f . Denote W u

p and W s
p be the unstable and stable manifold respectively; say

dim W u
p = m, 0 < m < n. Let Bs be a compact subset of W s

p (containing p or not) and let
F : Bs → C1(Dm, X) be a continuous family of embedded closed m-disks of class C1 transverse
to W s

p and meeting Bs; set F (x) := Du
x. Let Du ⊂ W u

p be a compact m-disk and let V ⊂ X
be a compact n-ball such that Du is a connected component of W u

p ∩ V . Then, when k goes to
+∞, the sequence fk(Du

x) ∩ V converges to Du in the C1 topology uniformly for x ∈ Bs.

Notice that it is important for applications that Bs may not contain the point p. Going
back to our setting, a first application of the λ-lemma is that we have W u

i ⊂ cl(W u
i+1) and the

closure of cl(W u
0 ) = W u

0 ∪Ω0. Moreover, cl(W u
n )∩(MrΩ0) is a C1,0-lamination of codimension

one. From this one derives that L̂uf is also a C1,0-lamination. Here is a typical example.
On Figure 3 there is a phase portrait of a diffeomorphism f ∈ G(M) whose non-wandering

set Ωf consists of fixed points: one sink ω, three saddle points Σ0 = σ0, Σ1 = σ1, Σ2 = σ2

with two-dimensional unstable manifolds and four sources α0, α1, α2, α3. We will illustrate all
further proofs with this diffeomorphism. For this case Vf := W s

ω r {ω}. As the restriction of

f to the basin W s
ω of ω is topologically conjugate to any homothety, V̂f is diffeomorphic to

S2× S1. As f |Wu
i

is topologically conjugate to a homothety then (W u
i rΣi)/f is diffeomorphic

to the 2-torus; but this torus does not embed to V̂f , except when i = 0. On Figure 4 there
is the lamination associated with the diffeomorphism f ∈ G(M) whose phase portrait is on
Figure 3. On the left, the lamination is embedded in S2 × S1 which is seeen as the double of
S2 × D1.

We are going to show that the topological classification of diffeomorphisms in the class
G(M) reduces to classifying some appropriate laminations Γ̂uf and Γ̂sf . The technical key to the
proof consists of constructing special foliations in some neighborhoods of the laminations.

2There are different possible notations. Here, we use the one which is given in [10, Definition 1.1.22].
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Figure 3: A phase portrait of a diffeomorphism from the class G(M).

3 Compatible foliations

Let f ∈ G(M). Recall that we divided the set Ω2 into the f -invariant parts Σ0, . . . ,Σn. Using
this partition, we explain how to construct compatible foliations (see Definition 3.3) around
W u

Ω2
∪ W s

Ω2
. Similarly, it is possible to construct compatible foliations around W s

Ω1
∪ W u

Ω1
.

In what follows, we give ourselves four models of concrete hyperbolic linear isomorphisms
Eκ,ν ∈ GL(R3), κ, ν ∈ {−,+} given by the following formula:

Eκ,ν(x1, x2, x3) = (κ2x1, 2x2, ν
x3

4
).

The origin O is the unique fixed point which is a saddle point with unstable manifold W u
O =

Ox1x2 and stable manifold W s
O = Ox3. If κ = + (resp. −), the orientation of the unstable

manifold is preserved (resp. reversed), and similarly for the orientation of the stable manifold
with respect to ν. We refer to each of them as the canonical diffeomorphism; it will be denoted
by E ignoring the sign. For p ∈ Ω2, let per(p) denote the period of f at p.

Definition 3.1 A neighborhood Np of a saddle point p ∈ Ω2 is called linearizable if there is a
homeomorphism µp : Np → N which conjugates the diffeomorphism fper(p)|Np to the canonical
diffeomorphism E|N .

According to the local topological classification of hyperbolic fixed point [19, Theorem 5.5],
every p ∈ Ω2 has a linearizable neighborhood Np. For t ∈ (0, 1), set N t := {(x1, x2, x3) ∈ R3 |
−t < (x2

1 + x2
2)x3 < t} and N := N 1. The set N t is invariant by the canonical diffeomorphism

E . By [24], W s
p and W u

p are smooth submanifolds of M . The boundary of N is the surface in
R3 defined by the equations (x2

1 + x2
2)x3 = ±1. The open manifold Np has a similar boundary
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Figure 4: A lamination associated with the diffeomorphism f ∈ G(M) whose phase portrait is
pictured in Figure 3.

in M denoted by ∂Np. This boundary is formed by points which are not in Np but are limit
points of arcs in Np ; it is distinct from its closure as a subset of M . Clearly, the linearizing
homeomorphism µp extends to ∂Np. For each i ∈ {0, . . . , n}, choose some p ∈ Σi and µp
conjugating fper(p) to E|N . Then, for k ∈ {1, . . . , per(p) − 1} define µfk(p) so that the next
formula holds for every x ∈ Nfk−1(p):

µfk(p)(f(x)) = µfk−1(p)(x).

We define a pair of transverse foliations (Fu,F s) in N in the following way:
– the leaves of Fu are the fibres in N of the projection (x1, x2, x3) 7→ x3;
– the leaves of F s are the fibres in N of the projection (x1, x2, x3) 7→ (x1, x2).

By construction, W u
O and W s

O are leaves of Fu and F s respectively. Let Ni denote the union⋃
p∈Σi

Np. This is an f -invariant neighborhood of Σi. Let µi : Ni → N be the map whose

restriction to Np is µp. Thus, taking the pullback of them by µi gives a pair of f -invariant
foliations (F u

i , F
s
i ) on Ni which are said to be linearizable. By construction, W u

i and W s
i are

made of leaves of F u
i and F s

i respectively. Sometimes we want to deform the linearizable
neighborhood Np by shrinking. Observe that the homotheties of ratio ρ ∈ (0, 1) act on N
preserving Fu and F s and map N to N ρ3 . By conjugation, similar contractions cρ are available
in Np for every p ∈ Ω2. The neighborhood cρ(Np) is said to be obtained from Np by shrinking.

Lemma 3.2 For every ρ ∈ (0, 1), the shrunk neighborhood cρ(Np) is linearizable. Generically,
the boundary of cρ(Np) does not contain any heteroclinic point.

Proof: For a given µp, we define µρp as follows: its domain is µ−1
p (N ρ3) and, on this domain,

it is defined by µρp = c−1
ρ ◦ µp. Its range is N . Since the heteroclinic points form a countable
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set, for almost every ρ ∈ (0, 1) the boundary of the domain of µρp avoids the heteroclinic points.
�

Observe that the canonical diffeomorphism and the contraction cρ keep both foliations
invariant. Recall the f -invariant partition Ω2 = Σ0 t Σ1 t . . . t Σn. Let us introduce the
following notations:

- for any t ∈ (0, 1), set N t
p := µ−1

p (N t) and N t
i :=

⋃
p∈Σi

N t
p ;

- for any point x ∈ Ni, denote F u
i,x (resp. F s

i,x) the leaf of the foliation F u
i (resp. F s

i ) passing
through x;

- for each point x ∈ Ni, set xui = W u
i ∩F s

i,x and xsi = W s
i ∩F u

i,x. Thus, we have x = (xui , x
s
i )

in the coordinates defined by µi.

We also introduce the radial functions rui , r
s
i : Ni → [0,+∞) defined by:

rui (x) = ‖µi(xui )‖2 and rsi (x) = |µi(xsi )|.

With this definition at hand, the neighborhood N t
i ot Σi is defined by the inequality

rui (x)rsi (x) < t .

Observe that the radial function rsi endows each stable separatrix of p ∈ Σp with a natural
order which will be used later in the proof of Theorem 1.

Definition 3.3 The linearizable neighborhoods N0, . . . , Nn are called compatible if, for any
0 ≤ i < j ≤ n and x ∈ Ni ∩Nj, the following holds:

F s
j,x ∩Ni ⊂ F s

i,x and F u
i,x ∩Nj ⊂ F u

j,x.

If linearizable neighborhoods are compatible, they remain so after some of them are shrunk.

Remark 3.4 The notion of compatible foliations is a modification of the admissible systems
of tubular families introduced by J. Palis and S. Smale in [18] and [20].

We introduce the following notation:

- For i ∈ {0, . . . , n}, set Ai := Af ∪
i⋃

j=0

W u
j ,

Vi := W s
Ai∩Ωf

r Ai, V̂i := Vi/f . Observe that f acts freely on Vi and denote the natural

projection by p
i

: Vi → V̂i.

- For j, k ∈ {0, . . . , n} and t ∈ (0, 1), set Ŵ s
j,k = pk(W

s
j ∩ Vk), Ŵ u

j,k = pk(W
u
j ∩ Vk),

N̂ t
j,k = pk(N

t
j ∩ Vk).

- Lu :=
n⋃
i=0

W u
i , Ls :=

n⋃
i=0

W s
i , Lui := Lu ∩ Vi , Lsi := Ls ∩ Vi , L̂ui := pi(L

u
i ), L̂

s
i := pi(L

s
i ).
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Theorem 2 For each diffeomorphism f ∈ G(M) there exist compatible linearizable neighbor-
hoods of all saddle points whose Morse index is 2.

Proof: The proof consists of three steps.
Step 1. Here, we prove the following claim.

Lemma 3.5 There exist f -invariant neighborhoods U s
0 , . . . , U

s
n of the sets Σ0, . . . ,Σn respec-

tively, equipped with two-dimensional f -invariant foliations F u
0 , . . . , F

u
n of class C1,0 such that

the following properties hold for each i ∈ {0, . . . , n}:

(i) the unstable manifolds W u
i are leaves of the foliation F u

i and each leaf of the foliation F u
i

is transverse to Lsi ;

(ii) for any 0 ≤ i < k ≤ n and x ∈ U s
i ∩ U s

k , we have the inclusion F u
k,x ∩ U s

i ⊂ F u
i,x.

Proof: Let us prove this by a decreasing induction on i from i = n to i = 0. For i = n, it
follows from the definition of Vn that (W s

n r Σn) ⊂ Vn. Since f acts freely and properly on
W s
n, the quotient Ŵ s

n,n is a smooth submanifold of V̂n; it consists of finitely many circles. The

lamination L̂sn accumulates on Ŵ s
n,n. Choose an open tubular neighborhood N̂ s

n of Ŵ s
n,n in V̂n;

denote its projection by πun : N̂ s
n → Ŵ s

n,n. Its fibers form a 2-disc foliation {dun,x | x ∈ Ŵ s
n,n}

transverse to Ŵ s
n,n. Since L̂sn is a C1,0-lamination containing Ŵ s

n,n, each plaque of Ŵ s
n,n is the

C1-limit of any sequence of plaques approaching it C0. Therefore, if the tube N̂ s
n is small

enough, its fibers are transverse to L̂sn.
Set U s

n := p−1
n (N̂ s

n) ∪W u
n . This is an open set of M which carries a foliation F u

n defined by
taking the preimage of the fibers of πun and by adding W u

n as extra leaves. This is the requested
foliation satisfying (i) and (ii) for i = n. Notice that the plaques of F u

n are smooth and by the
λ-lemma, for any compact disc B in W u

n there is ε > 0 such that every plaque of F u
n which is

ε-close to B in topology C0 is also ε-close to B in topology C1. Hence, F u
n is a C1,0-foliation.

For the induction, we assume the construction is done for every j > i and we have to
construct an f -invariant neighborhood U s

i of the saddle points in Σi carrying an f -invariant
foliation F u

i satisfying (i) and (ii). Moreover, by genericity the boundary ∂U s
j , j > i, is assumed

to avoid all heteroclinic points. For j > i, let Û s
j,i := pi(U

s
j ∩Vi) and F̂ u

j,i := p
i
(F u

j ∩Vi). For the

same reason as in the case i = n, the set Ŵ s
i,i is a smooth submanifold of V̂i consisting of circles.

Choose a tubular neighborhood N̂ s
i of Ŵ s

i,i with a projection πui : N̂ s
i → Ŵ s

i,i whose fibers are

2-discs. Similarly, (W u
i+1 \ Σi) ⊂ Vi and, hence, Ŵ u

i+1,i is a compact submanifold, consisting of

finitely many tori or Klein bottles. The set L̂ui is a compact lamination and its intersection with
Ŵ s
i,i consists of a countable set of points which are the projections of the heteroclinic points

belonging to the stable manifolds W s
i . Actually, there is a hierarchy in L̂ui ∩ Ŵ s

i,i which we are
going to describe in more details.

Set Hk := Ŵ u
i+k,i ∩ Ŵ s

i,i for k > 0. Since Ŵ u
i+1,i is compact, H1 is a finite set: H1 =

{h1
1, ..., h

1
t(1)}. We are given neighborhoods, called boxes, B1

` , ` = 1, ..., t(1), about these points,

namely, the connected components of Û s
i+1,i ∩ N̂ s

i . Due to the fact that ∂Û s
i+1,i contains no

heteroclinic point, ∂Û s
i+1,i ∩ Ŵ s

i,i is isolated from L̂ui . Therefore, if the tube N̂ s
i is small enough,
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L̂ui does not intersect ∂Û s
i+1,i ∩ N̂ s

i . Then, by shrinking U s
j , j > i + 1 (in the sense of Lemma

3.2) if necessary, we may guarantee that Û s
j,i ∩ N̂ s

i is disjoint from ∂Û s
i+1,i ∩ N̂ s

i .

Since Ŵ u
i+2,i accumulates on Ŵ u

i+1,i, there are only finitely many points of H2 outside of all

boxes B1
` , ` = 1, ..., t(1). Let H̄2 := {h2

1, ..., h
2
t(2)} be this finite set. The open set Û s

i+2,i is a

neighborhood of H̄2. The connected components of Û s
i+2,i ∩ N̂ s

i which contain points of H̄2 will

be the box B2
` for ` = 1, ..., t(2). We argue with B2

` with respect to L̂ui and the neighborhoods
Ûj,i, j > i+ 1, in a similar manner as we do with B1

` . And so on, until H̄n.
Due to the induction hypothesis, each above-mentioned box is foliated. Namely, B1

` is
foliated by F̂ u

i+1,i; the box B2
` is foliated by F̂ u

i+2,i, and so on. But the leaves are not contained

in fibres of N̂i; even more, not every leaf intersects Ŵ s
i,i. We have to correct this situation in

order to construct the foliation F u
i satisfying the requested conditions (i) and (ii). For every

j > i, the foliation F u
j may be extended to the boundary ∂U s

j and a bit beyond. Once this is

done, if N̂ s
i is enough shrunk, each leaf of F̂ u

i+k,i through x ∈ Bk
` intersects Ŵ s

i,i (it is understood
that the boxes are intersected with the shrunk tube without changing their names). Thus, we
have a projection along the leaves πk,` : Bk

` → Ŵ s
i,i; but, the image of πk,` is larger than Bk

` ∩Ŵ s
i,i.

Then, we choose a small enlargement B′k` of Bk
` such that B′k` r Bk

` is foliated by F̂ u
i+k,i and

avoids the lamination L̂ui . On B′k` r Bk
` we have two projections: one is π̂ui and the other one

is πk,`. We are going to interpolate between both using a partition of unity (we do it for Bk
`

but it is understood that it is done for all boxes). Let φ : N̂ s
i → [0, 1] be a smooth function

which equals 1 near Bk
` and whose support is contained in B′k` . Define a global C1 retraction

q̂ : N̂ s
i → Ŵ s

i,i by the formula

q̂(x) = (1− φ(x))π̂ui (x) + φ(x)(πk,`(x)).

Here, we use an affine manifold structure on each component of Ŵ s
i,i by identifying it with the

1-torus T := R/Z. So, any positively weighted barycentric combination makes sense for a pair
of points sufficiently close. When x ∈ Ŵ s

i,i, we have q̂(x) = x. Then, by shrinking the tube N̂ s
i

once more if necessary we make q̂ be a fibration whose fibres are transverse to the lamination
L̂si and we make each leaf of F̂ u

j,i, j > i, in every box B`
k be contained in a fibre of q. Henceforth,

taking the preimage of that tube (and its fibration) by pi and adding the unstable manifold
W u
i provide the requested U s

i and its foliation F u
i satisfying the required properties. Thus, the

induction is proved. �
We also have the following statement.

Lemma 3.6 There exist f -invariant neighborhoods Uu
0 , . . . , U

u
n of the sets Σ0, . . . ,Σn respec-

tively, equipped with one-dimensional f -invariant foliations F s
0 , . . . , F

s
n of class C1,0 such that

the following properties hold for each i ∈ {0, . . . , n}:
(iii) the stable manifold W s

i is a leaf of the foliation F s
i and each leaf of the foliation F s

i is
transverse to Lui ;

(iv) for any 0 ≤ j < i and x ∈ Uu
i ∩ Uu

j , we have the inclusion (F s
j,x ∩ Uu

i ) ⊂ F s
i,x.

Proof: The proof is done by an increasing induction from i = 0; it is skipped due to similarity
to the previous one. �
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Before entering Step 2, we recall the definition of fundamental domain for a free action.

Definition 3.7 Let g : X → X be a homeomorphism acting freely on X. A closed subset
D ⊂ X is said to be a fundamental domain for the action of g if the following properties hold:

1. D is the closure of its interior
◦
D;

2. gk(
◦
D) ∩D = ∅ for every integer k 6= 0;

3. X is the union ∪k∈Z gk(D).

Step 2. We prove the following statement for each i = 0, . . . , n.

Lemma 3.8 (v) There exists an f -invariant neighborhood Ñi of the set Σi contained in U s
i ∩Uu

i

and such that the restrictions of the foliations F u
i and F s

i to Ñi are transverse.

Proof: For this aim, let us choose a fundamental domain Ks
i of the restriction of f to

W s
i r Σi and take a tubular neighborhood N(Ks

i ) of Ks
i whose disc fibres are contained in

leaves of F u
i . By construction, F u

i is transverse to W s
i and, according to the Lemma 3.6, F s

i is a
C1,0-foliation. Therefore, if the tube N(Ks

i ) is small enough, F u
i is transverse to F s

i in N(Ks
i ).

Set
Ñi := W u

i

⋃
k∈Z

fk(N(Ks
i )) .

This is a neighborhood of Σi ; it satisfies condition (v) and the previous properties (i)–(iv) still
hold. A priori the boundary of Ñi is only piecewise smooth; but, by choosing N(Ks

i ) correctly
at its corners we may arrange that ∂Ñi be smooth. �

Step 3. For proving Theorem 2 it remains to show the existence of linearizable neigh-
borhoods Ni ⊂ Ñi, i = 0, . . . , n, for which the required foliations are the restriction to Ni

of the foliations F u
i and F s

i . For each orbit of f in Σi, choose one p. Let Ñp be a con-
nected component of Ñi containing p. There is a homeomorphism ϕup : W u

p → W u
O (resp.

ϕsp : W s
p → W s

O) conjugating the diffeomorphisms fper(p)|Wu
p

and E|Wu
O

(resp. fper(p)|W s
p

and

E|W s
O

). In addition, for any point z ∈ Ñp there is unique pair of points zs ∈ W s
p , zu ∈ W u

p

such that z = F s
i,zu ∩ F

u
i,zs . We define a topological embedding µ̃p : Ñp → R3 by the formula

µ̃p(z) = (x1, x2, x3) where (x1, x2) = ϕup(zu) and x3 = ϕsp(zs). Since the foliations F u
i and

F s
i are f -invariant, this definition makes µ̃p conjugate the restriction fper(p)|Ñp to Eper(p). For
k = 1, . . . , per(p) − 1, set Ñfk(p) := fk(Ñp) and define µ̃fk(p) so that the equivariance formula

holds: µ̃fk(p)(f
k(x)) = akµ̃p(x) for every x ∈ Ñp. Choose t0 ∈ (0, 1] such that N t0 ⊂ µ̃p(Ñp)

for every p ∈ Σi. Observe that E|N t0 is conjugate to E|N by the suitable homothety h. Set
Np = µ̃−1

p (N t0) and µp = hµ̃p : Np → N . Then, Np is the requested neighborhood with its
linearizing homeomorphism µp. This finishes the proof of Theorem 2. �

4 Proof of the classification theorem

Let us prove that the diffeomorphisms f and f ′ in G(M) are topologically conjugate if and
only if there is a homeomorphism ϕ̂ : V̂f → V̂f ′ such that
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(1) η
f

= η
f ′
ϕ̂∗;

(2) ϕ̂(Γ̂sf ) = Γ̂sf ′ and ϕ̂(Γ̂uf ) = Γ̂uf ′ .

4.1 Necessity

Let f : M →M and f ′ : M →M be two elements in G(M) which are topologically conjugated
by some homeomorphism h : M → M . Then h conjugates the invariant manifolds of periodic
points of f and f ′. More precisely, if p is a periodic point of f , then h(p) is a periodic point
of f ′ and h (W u(p)) = W u(h(p)), h (W s(p)) = W s(h(p)). In particular, h maps Vf to Vf ′ by
a homeomorphism noted ϕ. Moreover, if x is any points of Vf , for every n ∈ Z the following
holds:

ϕ(fn(x)) = f ′n(ϕ(x)).

This formula says exactly that ϕ is the lift of a map ϕ̂ : V̂f → V̂f ′ . By construction of ηf ,

the same formula says that ηf = ηf ′ ◦ ϕ̂∗, where ϕ̂∗ : H1(V̂f ;Z) → H1(V̂f ′ ;Z) denotes the map
induced in homology. By definition of the quotient topology, ϕ̂ is continuous. Since the same
holds for ϕ−1, one checks that ϕ̂ is a homeomorphism. As ϕ conjugates the laminations Γsf
(resp. Γuf ) to Γsf ′ (resp. Γuf ′), the same holds for ϕ̂ in the quotient spaces with respect the
projections of the laminations.

4.2 Sufficiency

For proving the sufficiency of the conditions in Theorem 1, let us consider a homeomorphism
ϕ̂ : V̂f → V̂f ′ such that:

(1) η
f

= η
f ′
ϕ̂∗;

(2) ϕ̂(Γ̂sf ) = Γ̂sf ′ and ϕ̂(Γ̂uf ) = Γ̂uf ′ .
From now on, the dynamical objects attached to f ′ will be denoted by L′u, L′s,Σ′i, . . . with
the same meaning as Lu, Ls,Σi, . . . have with respect to f . By (1), ϕ̂ lifts to an equivariant
homeomorphism ϕ : Vf → Vf ′ , that is: f ′|Vf ′ = ϕfϕ−1|Vf ′ (for brevity, equivariance stands for
(f, f ′)-equivariance). By (2), ϕ maps Γuf to Γuf ′ and Γsf to Γsf ′ . Thanks to Theorem 2 we may
use compatible linearizable neighborhoods of the saddle points of f (resp. f ′).

An idea of the proof is the following: we modify the homeomorphism ϕ in a neighborhood of
Γuf such that the final homeomorphism preserves the compatible foliations, then we do similar
modification near Γsf . So we get a homeomorphism h : M \ (Ω0 ∪ Ω3) → M \ (Ω′0 ∪ Ω′3)
conjugating f |M\(Ω0∪Ω3) with f ′|M\(Ω′0∪Ω′3). Notice that M \ (W s

Ω1
∪ W s

Ω2
∪ Ω3) = W s

Ω0
and

M \ (W s
Ω′1
∪W s

Ω′2
∪ Ω′3) = W s

Ω′0
. Since h(W s

Ω1
) = W s

Ω′1
and h(W s

Ω2
) = W s

Ω′2
then h(W s

Ω0
\ Ω0) =

W s
Ω′0
\ Ω′0. Thus for each connected component A of W s

Ω0
\ Ω0 there is a sink ω ∈ Ω0 such that

A = W s
ω \ ω. Similarly h(A) is a connected component of W s

Ω′0
\ Ω′0 such that h(A) = W s

ω′ \ ω′

for a sink ω′ ∈ Ω′0. Then we can continuously extend h to Ω0 assuming h(ω) = ω′ for every
ω ∈ Ω0. A similar extension of h to Ω3 finishes the proof. Thus below in a sequence of lemmas
we explain only how to modify the homeomorphism ϕ in a neighborhood of Γuf such that the
final homeomorphism preserves the compatible foliations.
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Recall the partition Σ0 t · · · tΣn associated with the Smale order on the periodic points of
index 2.

Lemma 4.1 For every i = 0, . . . , n the following equality holds ϕ(W u
i ∩ Vf ) = W ′u

i ∩ Vf ′ and
there is a unique continuous extension of ϕ|Wu

i ∩Vf to Σi which is equivariant and bijective from
Σi to Σ′i.

Proof: Let p ∈ Σ0. Denote its orbit by orbf (p). The punctured unstable manifold W u(p)r{p}
projects by pf to one compact leaf `(p). Both sides of the next equality are f -invariant and
project to the same leaf, thus:

p−1
f (`(p)) = W u(orb(p)) r {orb(p)}.

Then, the number of connected components of p−1
f (`(p)) is per(p), the period of p. The image

ϕ̂(`(p)) is a compact leaf of Γ̂uf ′ . By the previous argument, it is `′(p′) for some p′ ∈ Σ′0.

Since ϕ̂ lifts to ϕ, then ϕ
[
p−1
f (`(p))

]
= p−1

f ′ (`′(p′)) which implies the equality of the number
of connected components. Thus per(p) = per(p′). From this, we can deduce that, up to
replacing p′ with f ′k(p′) for some integer k, we have ϕ (W u(p) r {p}) = W u(p′) r {p′}. Using
the property p = lim

n→−∞
fn(x) for every x ∈ W u(p) and the similar property for p′ in addition to

the equivariance of ϕ, one extends continuously ϕ|Wu
p

by defining ϕ(p) = p′. Doing the same for
every orbit of Σ0, we get a continuous extension of ϕ|Wu

0
to Σ0 which is still equivariant. One

easily checks that this extension is continuous, unique, and hence equivariant. Then, arguing
similarly with ϕ̂−1, we derive that the extension of ϕ maps Σ0 bijectively onto Σ′0.

Denote `0 :=
⋃
p∈Σ0

`(p). We have ϕ̂(`0) = `′0. Let now p ∈ Σ1. The closure in V̂f of

`(p) := pf (W
u(p) r {p}) is contained in `(p) ∪ `0. We deduce that ϕ̂(`(p)) is a leaf of Γ̂uf ′ of

the form `′(p′) for some p′ ∈ Σ′1 and we can continue inductively. Thus, there is a continuous
extension of ϕ|Wu

i
to every Σi for i = 0, 1, . . . , n which is a bijection Σi → Σ′i. Arguing with

ϕ̂−1, we derive that n′ = n. �

Recall the radial functions rui , r
s
i : Ni → [0,+∞) which are introduced above Definition 3.3;

recall also the order which is defined by rsi on each stable separatrix γp of p ∈ Σi. Analogous
functions are associated with the dynamics of f ′.

Lemma 4.2 There is a unique continuous extension of ϕ|Γuf

ϕus : Γuf ∪ (Lu ∩ Ls) −→ Γuf ′ ∪ (L′u ∩ L′s)

such that the following holds:
(1) If x ∈ W u

j ∩W s
i , j > i, then ϕus(x) ∈ W ′u

j ∩W ′s
i .

(2) If x and y lie in γp ∩ Lu with rsp(x) < rsp(y), then ϕus(x) and ϕus(y) lie in γ′ϕ(p) ∩ L′u with

r′sϕ(p)(ϕ
us(x)) < r′sϕ(p)(ϕ

us(y)).
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Notice that ϕ|Γuf being equivariant, its continuous extension is also equivariant.

Proof: This statement is proved by induction on i. We recall that Vi r Lsi = Vf r cl(W u
i )

is a dense open set in Vf (and similarly with ′), and according to Lemma 4.1, ϕ maps Vi r Lsi
to V ′i r L′si homeomorphically and conjugates f to f ′. Thus, for every i = 0, . . . , n, we have
an equivariant homeomorphism ϕi : Vi r Lsi → V ′i r L′si which maps W u

j r Lsi to W ′u
j r L′si for

every j > i, again as a consequence of Lemma 4.1.
First, take i = 0. The manifold V̂0 is closed and three-dimensional. We have L̂s0 = Ŵ s

0,0 ,
which consists of finite number disjoint smooth circles, and similarly with ′.

Figure 5: Case i = 0 in proof of Lemma 4.2 for the diffeomorphism from Figure 3.

We look for an extension ϕ̂us0 of ϕ̂0|L̂u0 to L̂s0 ∩ L̂u0 . If N0 is the neighborhood of Σ0 extracted

from a compatible system given by Theorem 2 and if N̂0,0 denotes the corresponding tubular

neighborhood of L̂s0 in V̂0, the trace of L̂u0 in that tube is a lamination by disks:

L̂u0 ∩ N̂0,0 = {d̂x | x ∈ L̂u0 ∩ L̂s0},

where d̂x denotes the fiber of the tube over x ∈ L̂s0 (see figure 5).
The complement in V̂ ′0 of the interior of N̂ ′0,0 is a compact set contained in V̂ ′0 r L̂′s0 . Then its

preimage K by the homeomorphism ϕ̂0 is a compact set contained in V̂0 r L̂s0. When t = 0, we
have N̂ t

0,0 = L̂s0 and hence disjoint from K. Then, if t is small enough, ϕ̂0(N̂ t
0,0rL̂s0) ⊂ N̂ ′0,0rL̂′s0 .

Finally, the map ϕ̂0 (which is not defined on L̂s0) possesses the two following properties:

1. If N0 is shrunk enough, we have (ϕ̂0(N̂0,0) ∩ L̂u0) ⊂ (N̂ ′0,0 ∩ L̂′u0 ) , where N̂ ′0,0 denotes the
tube associated with the chosen linearizable neighborhood N ′0 of Σ′0.
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2. If d̂x is a plaque of L̂u0 ∩ N̂0,0 , the image ϕ̂0(d̂xr {x}) is contained in some fiber d̂x′ , with

x′ ∈ L̂′u0 ∩ L′s0 .

As a consequence, the requested extension may be defined by ϕ̂us0 (x) = x′. As the considered
plaques are arcwise connected, the construction lifts to the cover and yields a continuous map
ϕus0 : Γuf ∪ (Ls0 ∩ Lu0)→ Γuf ′ ∪ (L′s0 ∩ L′u0 ) which is a continuous equivariant extension of ϕ|Γuf .

It remains to prove that ϕus0 is increasing on its domain in each separatrix of Σ0. For
this aim, consider a point p ∈ Σ0, one of its separatrices γp and a connected component
Nγp of Np r W u

p containing γp. Take an infinite proper arc C in Nγp r W s
p which crosses

transversely each leaf of the foliation F u
0 and which has one end in p. We orient C so that its

projection onto γp is positive. Its image through ϕ0 is a proper arc C ′ contained in N ′ϕ(p)rW ′u
ϕ(p).

Moreover, ϕ(p) is one end of C ′. For x, y ∈ γp ∩ Lu, the inequality rsp(x) < rsp(y) implies
r′sϕ(p)(ϕ

us
0 (x)) < r′sϕ(p)(ϕ

us
0 (y)) if we are sure that C ′ intersects each leaf of L′u0 ∩N ′ϕ(p) at most in

one point. That is true since ϕ0 is a homeomorphism on its image from N0 rW s
0 to N ′0 rW ′s

0

mapping Lu0 into L′u0 .

Figure 6: Illustration of induction in Lemma 4.2 for the diffeomorphism from Figure 3.

For the induction, let i ∈ {1, . . . , n} and let us assume that there is a continuous extension

ϕusi−1 : Γuf ∪
i−1⋃
j=0

(Lsj ∩ Luj )→ Γuf ′ ∪
i−1⋃
j=0

(L′sj ∩ L′uj ),

which is monotone on each separatrix of Σj, j < i. The image Ŵ s
i,i of W s

i by the projection pi :

Vi → V̂i is made of finitely many disjoint circles which are the images of the stable separatrices
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of Σi. About Ŵ s
i,i , there is a tube N̂i,i which is the projection by pi of a neighborhood Ni of

Σi extracted from a compatible system given by Theorem 2 (see Figure 6). The trace of L̂ui in
that tube is a lamination by disks:

L̂ui ∩ N̂i,i = {d̂x | x ∈ L̂ui ∩ Ŵ s
i,i},

where d̂x denotes the fiber of the tube over x ∈ Ŵ s
i,i.

In Vi, there are two laminations Lui and Lsi (and the corresponding objects with ′). The map
ϕi, not defined on Lsi , sends Lui rLsi homeomorphically onto L′ui rL′si . By the induction hypoth-
esis, the restriction ϕi|(Lui rLsi ) extends continuously to Lui rW s

i ; this extension, automatically
equivariant, is denoted by ψi. This induces on the quotient space V̂i a homeomorphism

ψ̂i : L̂ui r Ŵ s
i,i → L̂′ui r Ŵ ′s

i,i .

In order to extend ψ̂i to L̂ui ∩ L̂si , we use the fact that L̂ui is compact for arguing as in the
case i = 0. Consider the tube N̂ t

i,i depending on t ∈ (0, 1) and look at its compact lamination

by disks L̂ui ∩ N̂ t
i,i. After removing Ŵ s

i,i which marks one puncture on each leaf, it is leaf-wise

mapped by ψ̂i into V̂ ′i r Ŵ ′s
i,i. As in case i = 0, the above-mentioned compactness allows us to

conclude that there exists some t ∈ (0, 1) such that L̂ui ∩ (N̂ t
i,ir Ŵ s

i,i) is mapped into N̂ ′i,i where

N̂ ′i,i denotes the tube associated with the chosen linearizable neighborhood N ′i of Σ′i. Finally,

the map ψ̂i possesses the two following properties:

1. If Ni is shrunk enough, we have (ψ̂i(N̂i,i) ∩ L̂ui ) ⊂ (N̂ ′i,i ∩ L̂′ui ) .

2. If d̂x is a plaque of L̂ui ∩ N̂i,i , the image ψ̂i(d̂x r {x}) is contained in some fiber d̂x′ , with

x′ ∈ L̂′ui ∩W ′s
i .

Now, the extension ϕ̂usi of ψ̂i is defined by x 7→ x′. One checks it is a continuous extension.
The requested ϕusi is the lift of ϕ̂usi to Vi. It has the required properties allowing us to finish
the induction. �

Remark 4.3 Due to Lemma 3.2 we may assume that in all lemmas below the chosen values
t = βi, ai, ... are such that the boundary of the linearizable neighborhood N t

i does not contain
any heteroclinic point.

Lemma 4.4 There are numbers β0, . . . , βn ∈ (0, 1) such that, for every i ∈ {0, . . . , n}, for
every point p ∈ Σi and x ∈ Nβi

p ∩ Lu, the following inequality holds:

r′ui (ϕus(xui ))r
′s
i (ϕus(xsi )) <

1

2
.

Proof: As Nn ∩ Lu = W u
n and ϕus(W u

n ) = W ′u
n , it is possible to chose any βn ∈ (0, 1).
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Indeed, for p ∈ Σn and x ∈ W u
p , we have r′sϕ(p)(ϕ

us(xsi )) = 0. For i ∈ {0, . . . , n − 1} and
p ∈ Σi, choose some heteroclinic point y ∈ W s

p ∩ Lu arbitrarily. Set:

λ′up (t) = sup
x
{r′uϕ(p)(ϕ

us(xui )) | x ∈ N t
p ∩ F u

i,y} and λ′sp = r′sp (ϕus(y)) .

When t goes to 0, the arc N t
p ∩ F u

i,y shrinks to the point y. Then, according to Lemma 4.2,
λ′up (t) also goes to 0. Therefore, there exists some βp ∈ (0, 1) such that λ′up (βp)λ

′s
p <

1
8
. Denote

by Qp the compact subset of M bounded by ∂N
βp
p , F u

i,y and fper(p)(F u
i,y). Notice that Qp is a

fundamental domain for the restriction of fper(p) to the connected component of N
βp
p r W u

p

containing y. For every x ∈ Qp, we have r′uϕ(p)(ϕ
us(xui )) ≤ 4λ′up (βp) and r′sϕ(p)(ϕ

us(xsi )) ≤ λ′sp .
Then, for every x ∈ Qp ∩ Lu we have:

r′up (ϕus(xui )) r
′s
p (ϕus(xsi )) ≤ 4λ′up (βp)λ

′s
p <

1

2
.

Set βi = min
p∈Σi
{βp}. Hence, βi is the required number. �

Lemma 4.5 When n > 0, there exist real numbers aj ∈ (0, βj] fulfilling the following property:

for every j = 1, . . . , n and every integer i < j, each connected component of Ŵ s
i,i ∩ N̂

aj
j,i is an

open interval which is either disjoint from Aij :=
j−1⋃
k=i+1

N̂ak
k,i or included in Aij. Moreover, only

finitely many of these intervals are not covered by Aij.

Proof: The proof is done by induction on j from 1 to n. For j = 1, one is allowed to
take a1 = β1. Indeed, Ŵ s

0,0 is a smooth curve and Ŵ u
1,0 is a smooth closed surface which is

transverse to Ŵ s
0,0. Therefore, there are finitely many intersection points. By the choice of β1,

the projection in V̂0 of Na1
1 is a tubular neighborhood of Ŵ u

1,0. Moreover, each component of

Ŵ s
0,0 ∩ N̂

a1
1,0 is a fiber of this tube.

For the induction, assume the numbers a1, . . . , aj−1 are given with the required properties
and let us find aj. In particular, the subset Aij is assumed to be defined. According to Remark
4.3, the boundary of Aij contains no heteroclinic point.

First, fix i < j. Consider the projection Ŵ u
j,i of W u

j in V̂i. This is a union of leaves in the

lamination L̂ui . The following is a well-known fact (see, for example, Statement 1.1 in [12]): if
x is a point from L̂ui which is accumulated by a sequence of plaques from Ŵ u

j,i, then x does not

lie in Ŵ u
j,i but belongs to some Ŵ u

k,i with k < j. Then the part of Ŵ u
j,i which is covered by Aij

contains every intersection points Ŵ s
i,i∩ Ŵ u

j,i except finitely many of them. From this finiteness

and the fact that Aij ∩ Ŵ s
i,i ∩ Ŵ u

j,i is actually contained in Aij, an easy compactness argument
allows us to find a positive number aij such that the collection of disjoint intervals made by

Ŵ s
i,i ∩ N̂

aij
j fulfills the requested property with respect to the considered i. Indeed, let B(t) be

the closure of ∂Aij ∩ Ŵ s
i,i ∩ N̂ t

j . The intersection
⋂
k∈N

B( 1
k
) is empty. Then B(t) is empty when

t is small enough.
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By defining aj := inf{a0
j , . . . , a

j−1
j }, we are sure that N̂

aj
j satisfies all the requested proper-

ties. �

The corollary below follows from Lemma 4.5 immediately.

Corollary 4.6 For each i ∈ {0, . . . , n−1} the intersection Ŵ s
i,i∩(

n⋃
j=i+1

N̂
aj
j,i ) consists of finitely

many open arcs Î i1, . . . , Î
i
ri

such that, for each l = 1, . . . , ri, the arc Î il is a connected component

of Ŵ s
i,i ∩ N̂

aj
j,i for some j > i.

For brevity, for i = 0, . . . , n, we denote by ϕui the restriction ϕus|Wu
i

in the rest of the proof of
Theorem 1. Let ψsi : W s

i → W ′s
i be any equivariant homeomorphism which extends ϕus|W s

i ∩Lu

and let ti ∈ (0, 1) be a small enough number so that, for every x ∈ N ti
i , the next inequality

holds:
(∗)i r′s(ϕui (x

u
i )) r

′u(ψsi (x
s
i )) < 1.

In this setting, one derives an equivariant embedding φϕui ,ψsi : N ti
i → N ′i which is defined by

sending x ∈ N ti
i to (ϕui (x

u
i ), ψ

s
i (x

s
i )).

Lemma 4.7 There is an equivariant homeomorphism ψs : Ls → L′s consisting of conjugating
homeomorphisms ψs0 : W s

0 → W ′s
0 , . . . , ψ

s
n : W s

n → W ′s
n such that for each i ∈ {0, . . . , n}:

(1) ψsi |W s
i ∩Lu = ϕui |W s

i ∩Lu;

(2) the topological embedding φϕui ,ψsi is well-defined on Nai
i ;

(3) if x ∈ (W s
i ∩N

aj
j ), j > i, then ψsi (x) = φϕuj ,ψsj (x).

Proof: We are going to construct ψsi by a decreasing induction on i from i = n to i = 0. The
stable manifolds of the saddles in Σn have no heteroclinic points. Therefore, the only constraints
on ψsn imposed by the first item is its value on Σn. In particular, we are allowed to change ψsn
to f ′k ◦ ψsn if k is admissible in the sense that k is a multiple of all periods per(p), p ∈ Σn.

This remark is used in the following way. One starts with any equivariant homeomorphism
ψsn such that for any p ∈ Σn the stable manifold W s

p is mapped to the stable manifold of ϕun(p);
hence, item 1 is fulfilled. Choose a fundamental domain I of f |W s

nrΣn . Consider the fundamental
domain of f |Nan

n rWu
n

defined by NI := {x ∈ Nan
n | xsn ∈ I}; set λ′un := sup{r′u(ϕun(xun) | x ∈ NI}

and λ′sn := sup{r′s(ψsn(xsn) | x ∈ NI}. If the product λ′un λ
′s
n is less than 1, the inequality (∗)n is

fulfilled by the pair (ϕun, ψ
s
n) and hence, the embedding φϕunψsn is well-defined on Nan

n .
If not, we replace ψsn with f ′k ◦ ψsn with k admissible and large enough. Indeed, the effect

of this change is to multiply λ′sn by some positive factor bounded by (1
4
)k while λ′un is kept fixed

and hence, (∗)n becomes fulfilled when k is large enough. Since the third item is empty for
i = n, we have built some ψsn as desired.

For the induction, let us build ψsi , i < n, with the required properties assuming that the
homeomorphisms ψsn, . . . , ψ

s
i+1 have already been built. The stable manifolds of saddles in Σi

have heteroclinic intersections with unstable manifolds of saddles in Σj with j > i only. The
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image Ŵ s
i,i of W s

i under pi : Vi → V̂i is a closed smooth 1-dimensional submanifold. According

to Corollary 4.6, the intersection Ŵ s
i,i∩ (

n⋃
j=i+1

N̂
aj
j ) consists of finitely many open arcs Î i1, . . . , Î

i
ri

such that Î il for each l = 1, . . . , ri is a connected component of Ŵ s
i,i ∩ N̂

aj
j,i for some j > i.

In order to satisfy the third item of the statement, ψsi is defined on p−1
i (Î il ) in an equivariant

way. Denote by ψsi,l this partial definition of ψsi ; its image is contained in W ′s
i,i.

More precisely, if I il,α is a connected component of p−1
i (Î il ) it is a proper arc in some N

aj
i

and it intersects W u
j in a unique point xil,α. Set x′il,α = ϕus(xil,α) and denote I ′il,α the connected

component of W ′s
i ∩N ′j passing through the point x′il,α. Then, the restriction of ψsi,l to the arc

I il,α reads:

ψsi,l,α = φϕuj ,ψsj |Iil,α : I il,α → I ′il,α .

By Lemma 4.2, the map ϕus sends W s
i ∩ Lu to W ′s

i ∩ L′
u preserving the order on each

separatrix of W s
i r Σi and W ′s

i r Σ′i. On the other hand, ψsi,l,α is also order preserving. Both
together imply that ψsi,l is order preserving since we know that it is an injective map. Moreover,
the union of all ψsi,l – which makes sense as their respective domains are mutually disjoint – is
order preserving. Therefore, there is an equivariant homeomorphism ψsi : W s

i r Σi → W s
i r Σi

which extends all ψsi,l.
Since ϕus is continuous, the above homeomorphism extends continuously to ψsi : W s

i → W s
i .

At this point of the construction items 1 and 3 of the statement are satisfied. The condition of
item 2 follows from Lemma 4.4 for stable separatrices that contain heteroclinic points. If some
stable separatrix has no heteroclinic points, one changes ψsi to f ′k ◦ψsi on the separatrix where
k is a large common multiple of the period of the separatrix, like to the construction made in
the case i = n. �

Proof of Theorem 1 continued. Let us recall that we denoted by E : R3 → R3 the
canonical linear diffeomorphism with the unique fixed point O = (0, 0, 0) which is a saddle point
whose unstable manifold is the plane Ox1x2 and stable manifold is the axis Ox3; for simplicity,
we assume that E has a sign ν = + (see the beginning of Section 3). Let

N = {(x1, x2, x3) ∈ R3 : 0 ≤ (x2
1 + x2

2)x3 ≤ 1}.

Let ρ > 0, δ ∈ (0, ρ
4
) and

d = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 ≤ ρ2, x3 = 0},

U = {(x1, x2, x3) ∈ R3 : (ρ− δ)2 ≤ x2
1 + x2

2 ≤ ρ2, x3 = 0},
c = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = ρ2, x3 = 0},

c0 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 = (ρ− δ

2
)2, x3 = 0},

c1 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 = (ρ− δ)2, x3 = 0}.
Let K = d\ int E−1(d), V = (K∪E(K))∩{(x1, x2, x3) ∈ R3 : x1 ≥ 0, x3 = 0} and β = U ∩Ox+

1 ,
where Ox+

1 = {(x1, x2, x3) ∈ R3 : x2
3 + x2

2 = 0, x1 > 0}.
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Choose a point Z0 = (0, 0, z0) ∈ Ox+
3 such that ρ2z0 < 1

4
(see Figure 7). Then, choose a point

Z1 = (0, 0, z1) in Ox+
3 so that z0 > z1 > z0

4
. Let Π(z) = {(x1, x2, x3) ∈ R3 : x3 = z}. In what

follows, for every subset A ⊂ Ox1x2, we denote by Ã will denote the cylinder Ã = A× [0, z0].
Denote by W the 3-ball bounded by the annulus c̃ and the two planes Π(z0) and Π( z

0

4
). Let ∆

be a closed 3-ball bounded by the surface c̃1 and the two planes Ox1x2 and Π(z1). Let

T =
⋃
k∈Z

Ek(d̃) and H =
⋃
k∈Z

Ek(∆).

Notice that the construction yields H ⊂ int T and makes W a fundamental domain for the
action of E on T .

Figure 7: A linear model

Now, we come back to f and construct some neighborhoods Hγ ⊂ Tγ around each separatrix
γ which contains heteroclinic points. Therefore, we consider only the case n ≥ 1 and separatrices
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of the saddle points from Σi for i ∈ {0, . . . , n − 1}, but not those from Σn since their one-
dimensional separatrices do not contain heteroclinic points. Let Gi be the union of all stable
separatrices of saddle points in Σi that contain heteroclinic points. Let Ǧi ⊂ Gi be the union of
separatrices in Gi such that Gi =

⋃
γ∈Ǧi

orb(γ) and, for every pair (γ1, γ2) of distinct separatrices

in Ǧi and every k ∈ Z, one has γ2 6= fk(γ1). For γ ∈ Gi with the end point p ∈ Σi and a point
q ∈ Σj, j > i, let us consider a sequence of different periodic orbits p = p0 ≺ p1 ≺ . . . ≺ pk = q
such that γ ∩W u

p1
6= ∅, the length of the longest such chain is denoted by beh(q|γ).

Let γ ∈ Ǧi be a separatrix of p ∈ Σi and let N t
γ be the connected component of N t

p rW u
p

which contains γ. We endow with the index γ (resp. p) the preimages in M (through the
linearizing map µp) of all objects from the linear model N associated with the separatrix γ
(resp. p); for being precise we decide that µp(γ) = Ox+

3 . For a separatrix γ in Ǧi, let us fix
a saddle point qγ such that beh(qγ|γ) = 1. Notice that the intersection γ ∩W u

qγ consists of a
finite number of heteroclinic orbits.

Lemma 4.8 Let n ≥ 1, i ∈ {0, . . . , n − 1}. For every γ ∈ Ǧi there are positive numbers ρ, δ
and ε (depending on γ) such that for every heteroclinic point Z0

γ ∈ (γ ∩W u
qγ ) with z0 < ε the

following properties hold:
(1) Up avoids all heteroclinic points;
(2) ϕ(d̃p) ⊂ φϕui ,ψsi (N

ai
i );

(3) ϕ(c̃p) ∩ φϕui ,ψsi (c̃
0
p) = ∅, ϕ(c̃1

p) ∩ φϕui ,ψsi (c̃
0
p) = ∅ and ϕ(β̃γ) ⊂ φϕui ,ψsi (Ṽγ).

Proof: Let γ ∈ Ǧi, i ∈ {0, . . . , n − 1}. Due to Lemma 3.2, there is a generic ρ > 0 such
that the curve cγ avoids all heteroclinic points. Since W s

l accumulates on W s
k for every l < k,

then Kp ∩W s
i−1 is made of a finite number of heteroclinic points y1, . . . , yr which we can cover

by closed 2-discs b1, . . . , br ⊂ intKp. In Kp r int(b1 ∪ . . . ∪ br) there is a finite number of
heteroclinic points from W s

i−2 which we cover by the union of a finite number of closed 2-discs,
and so on. Thus we get that all heteroclinic points in Kp belong to the union of finitely many
closed 2-discs avoiding ∂Kp. Therefore, there is δ ∈ (0, ρ

4
) such that Up avoids heteroclinic

points. This proves item (1).
By assumption of Theorem 1, ϕ is defined on the complement of the stable manifolds and,

by definition, φϕui ,ψsi coincides with ϕ on W u
i r Ls, and hence on Up. As ϕ and φϕui ,ψsi are

continuous, we can choose ε > 0 sufficiently small so that, if Z0
γ is any heteroclinic point in the

intersection γ ∩W u
qγ with z0 < ε, the requirements of (2) and (3) are fulfilled. �

Let us fix Up satisfying item (1) of Lemma 4.8 and define

Ui =
⋃
p∈Σi

per(p)−1⋃
k=0

fk(Up)

 , Ki =
⋃
p∈Σi

per(p)−1⋃
k=0

fk(Kp)

 .

Until the end of Section 4, we assume that for every γ ∈ Ǧn−1 the neighborhoods Tγ and Hγ

have the parameters ρ, δ, ε, z0 as in Lemmas 4.8 and z1 is chosen such that the arc (z0
γ, z

1
γ) ⊂ γ

does not contain heteroclinic points. But, when γ ∈ Ǧi, i ∈ {0, . . . , n − 2}, the parameter ε
will be still more specified in Lemma 4.9 below.
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Lemma 4.9 Let n ≥ 2. For every i ∈ {0, . . . , n− 2} and γ ∈ Ǧi, there is a heteroclinic point
Z0
γ ∈ γ satisfying the conditions of Lemma 4.8 and in addition:

Tγ ∩ Ũj = ∅ for j ∈ {i+ 1, . . . , n− 1}.

In this statement, it is meant that Ũn−1 is associated with the points Z0
γ′ , γ

′ ∈ Ǧn−1 given

by Lemma 4.8 and Ũj is associated with the points Z0
γ′′ , γ

′′ ∈ Ǧj given by Lemma 4.9 for
every j > i. Therefore, it makes sense to prove Lemma 4.9 by decreasing induction on i from
i = n− 2 to 0. This is what is done below.

Proof: Let us first prove the lemma for i = n− 2. Let γ ∈ Ǧn−2 and let p be the saddle end
point of γ. Notice that the intersection γ ∩Kn−1 consists of a finite number points a1, . . . , al
avoiding Un−1. Let d1, . . . , dl ⊂ Kn−1 be compact discs with centres a1, . . . , al and radius r∗ (in
linear coordinates of Np) avoiding Un−1. Let us choose a number n∗ ∈ N such that ρ

2n∗
< r∗. Let

Z∗γ ⊂ γ be a point such that the segment [p, Z∗γ ] of γ avoids K̃n−1 and µp(Z
∗
γ) = Z∗ = (0, 0, z∗)

where z∗ < ε. Then every heteroclinic point z0
γ so that z0 < z∗

2n∗
possesses the property:

Tγ ∩ K̃n−1 avoids Ũn−1.
For the induction, let us assume now that the construction of the desired heteroclinic points

is done for i + 1, i + 2, . . . , n − 2. Let us do it for i. Let γ ∈ Ǧi. By assumption of the

induction (
j−1⋃
k=i+1

Tk) ∩ Ũj = ∅ for j ∈ {i + 2, . . . , n − 1}. Since W s
k−1 accumulates on W s

k

for every k ∈ {0, . . . , n}, then (
j−1⋃
k=i+1

Tk) ∩ Kj is a compact subset of Kj and the intersection

(γ \(
j−1⋃
k=i+1

Tk))∩Kj consists of a finite number points a1, . . . , al avoiding Uj. Let d1, . . . , dl ⊂ Kj

be compact discs with centres a1, . . . , al and radius r∗ (in linear coordinates of Np) avoiding Uj

and such that r∗ is less than the distance between ∂(Kj \ Uj) and (
j−1⋃
k=i+1

Tk) ∩Kj. Similar to

the case i = n− 2 it is possible to choose a heteroclinic point Z0
γ sufficiently close to the saddle

p where γ ends such that the set (Tγ \ (
j−1⋃
k=i+1

Tk)) ∩ K̃j avoids Ũj. �

In what follows, we assume that, for every γ ⊂ Ǧi, i ∈ {0, . . . , n − 2}, the neighborhoods
Tγ and Hγ have parameters ρ, δ, ε, z0 as in Lemma 4.8 and moreove ε satisfies to Lemma 4.9.
For i ∈ {0, . . . , n− 1}, we set

Ti =
⋃
γ⊂Ǧi

per(γ)−1⋃
k=0

fk(Tγ)

 .

For γ ⊂ Ǧi, j > i, let us denote by Jγ,j the union of all connected components of W u
j ∩ Tγ
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which do not lie in int Tk with i < k < j. Let Jγ =
n⋃

j=i+1

Jγ,j and

Ji =
⋃
γ⊂Ǧi

per(γ)−1⋃
k=0

fk(Jγ)

 .

Let Wγ be the fundamental domain of fper(γ)|Tγ\Wu
p

limited by the plaques of the two

heteroclinic points Z0
γ and fper(γ)Z0

γ . Notice that γ ∩Wγ is a fundamental domain of fper(γ)|γ.
Since W u

k accumulates on W u
l only when l < k, then the set Jγ,j ∩ Wγ consists of a finite

number of closed 2-discs. Hence, the set Jγ ∩ γ ∩Wγ consists of a finite number of heteroclinic
points; denote them Z2

γ , . . . , Z
m
γ (m depends on γ). Finally, choose an arbitrary point Z1

γ ∈ γ
so that the arc (z0

γ, z
1
γ) ⊂ γ does not contain heteroclinic points from Jγ. Let us construct Hγ

using the point Z1 = µp(Z
1
γ) and the parameter δ from Lemma 4.8. Without loss of generality

we will assume that µp(Z
i
γ) = Zi = (0, 0, zi) for z0 > z1 > . . . > zm > z0

4
. For i = 0, . . . , n− 1

let

Hi =
⋃
γ⊂Ǧi

per(γ)−1⋃
k=0

fk(Hγ)

 and Mi = Vf ∪
i⋃

k=0

(Gk ∪ Σk).

Lemma 4.10 There is an equivariant topological embedding ϕ0 : M0 → M ′ with following
properties:

(1) ϕ0 coincides with ϕ out of T0;
(2) ϕ0|H0 = φψu0 ,ψs0 |H0, where ψu0 = ϕ|Wu

0
;

(3) ϕ0(W u
1 ) = W ′u

1 and ϕ0(W u
k \

k−1⋃
j=1

int Tj) ⊂ W ′u
k for every k ∈ {2, . . . , n}.

Proof: The desired ϕ0 should be an interpolation between ϕ : Vf r T0 → M ′ and φϕu0 ,ψs0 |H0 .
Due to Lemma 4.8 (2) and the equivariance of the considered maps, the embedding

ξ0 = φ−1
ψu0 ,ψ

s
0
ϕ : T0 \W s

0 →M

is well-defined. Let γ ⊂ Ǧ0 be a separatrix ending at p ∈ Σ0 and ξγ = ξ0|Tγ . By construction,
the topological embedding ξ = µpξγµ

−1
p : T → N has the following properties:

(i) ξE = Eξ (as Eµp = µpf
per(γ) and ξγf

per(γ) = fper(γ)ξγ);
(ii) ξ is the identity on Ox1x2 (as φψu0 ,ψs0 |Wu

0
= ϕ|Wu

0
);

(iii) ξ(Π(z0)∩T ) ⊂ Π(z0) and ξ(Π(zi)∩∂T ) ⊂ Π(zi), i ∈ {2, . . . ,m} (as ξγ(L
u∩Tγ\γ) ⊂ Lu);

(iv) ξ(c̃) ∩ c̃0 = ∅, ξ(c̃1) ∩ c̃0 = ∅ and ξ(β̃) ⊂ Ṽ (due to Lemma 4.8 (3)).
Thus, ξ satisfies all conditions of Proposition 5.1 and, hence, there is an embedding ζ : T → N
such that:

(I) ζa = aζ;
(II) ζ is the identity on H;
(III) ζ(Π(zi) ∩ T ) ⊂ Π(zi), i ∈ {0, 2, . . . ,m}
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(IV) ζ is ξ on ∂T .
Then the embedding ζγ = µ−1

p ζµp : Tγ → Nγ satisfies the properties:

(I’) ζγf
per(γ) = fper(γ)ζγ;

(II’) ζγ is the identity on Hγ;
(III’) ζ(Jγ) ⊂ Lu

(IV’) ζγ is ξγ on ∂Tγ.
Independently, one does the same for every separatrix γ ⊂ Ǧ0 . Then, it is extend to all
separatrices in G0 by equivariance. As a result, we get a homeomorphism ζ0 of T0 onto ξ0(T0)
which coincides with ξ0 on ∂T0. Now, define the embedding ϕ0 : M0 → M ′ to be equal to
φψu0 ,ψs0ζ0 on T0 and to ϕ on M0 \ T0. One checks the next properties:

(1)ϕ0 coincides with ϕ out of T0;
(2)ϕ0|H0 = φψu0 ,ψs0 |H0 ;
(3′)ϕ0(J0) ⊂ Lu.
The last property and the definition of the set Jγ imply that ϕ0(W u

1 ) = W ′u
1 and ϕ0(W u

k \
k−1⋃
j=1

int Tj) ⊂ W ′u
k for every k ∈ {2, . . . , n}. Thus ϕ0 satisfies all required conditions of the

lemma. �

Lemma 4.11 Assume n ≥ 2, i ∈ {0, . . . , n−2}, and assume there is an equivariant topological
embedding ϕi :Mi →M ′ with following properties:

(1) ϕi coincides with ϕi−1 out of Ti;
(2) ϕi|Hi = φψui ,ψsi , where ψui = ϕi−1|Wu

i
and ϕ−1 = ϕ;

(3) there is an f -invariant union of tubes Bi ⊂ (Ti∩
i−1⋃
j=0

Hj) containing (Ti∩ (
i−1⋃
j=0

W s
j )) where

ϕi coincides with ϕi−1 (we assume B0 = ∅);

(4) ϕi(W
u
i+1) = W ′u

i+1 and ϕi(W
u
k \

k−1⋃
j=i+1

int Tj) ⊂ W ′u
k for every k ∈ {i+ 2, . . . , n}.

Then there is a homeomorphism ϕi+1 with the same properties (1)-(4)

Proof: The desired ϕi+1 should be an interpolation between ϕi : Mi+1 r Ti+1 → M ′ and
φψui+1,ψ

s
i+1
|Hi+1

where ψui+1 = ϕi|Wu
i+1

. Let γ ⊂ Ǧi+1 be a separatrix ending at p ∈ Σi+1. It follows
from the definition of the set Ji and the choice of the point qγ that (W u

qγ ∩Ti) ⊂ Ji. Then, due
to condition (4) for ϕi we have ϕi(W

u
qγ ∩Ti) ⊂ W u

q′ . By the property (1) of the homeomorphism
ϕi and the properties of Ti+1 from Lemmas 4.8 (1) and 4.9, we get that ϕi|Ũp = ϕ|Ũp . Then
φϕui+1,ψ

s
i+1
|Ũp = φψui+1,ψ

s
i+1
|Ũp . Thus it follows from the property (2) in Lemma 4.8 that the

following embedding is well-defined: ξγ = φ−1
ψui+1,ψ

s
i+1
ϕi : Tγ \ (γ ∪ p)→M ′.

By construction, the topological embedding ξ = µpξγµ
−1
p satisfies to all conditions of Propo-

sition 5.1. Let ζ be the embedding which is yielded by that proposition. Define ζγ = µ−1
p ζµp.

Notice that by the property (3) of the homeomorphism ψs in Lemma 4.7 and by the proper-

ties ψui+1 = ϕi|Wu
i

, we have that ζγ is the identity on a neighborhood B̃γ ⊂ (Tγ ∩
i⋃

j=0

Hj) of
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Tγ ∩ (
i⋃

j=0

W s
j ). Independently, one does the same for every separatrix γ ⊂ Ǧi+1. Assuming that

ζf(γ) = f ′ζγf
−1 and B̃i+1 =

⋃
γ⊂Ǧi+1

(
per(γ)−1⋃
k=0

fk(B̃γ)

)
we get a homeomorphism ζi+1 on Ti+1.

Thus the required homeomorphism coincides with φψui+1,ψ
s
i+1

on Hi+1 and with ϕi out of Ti+1.
�

Let G be the union of all stable one-dimensional separatrices which do not contain hetero-
clinic points, N t

G =
⋃
γ⊂G

N t
γ and

M =Mn−1 ∪G.

Lemma 4.12 There are numbers 0 < τ1 < τ2 < 1 and an equivariant embedding hM : M →
M ′ with the following properties:

(1) hM coincides with ϕn−1 out of N τ2
G ;

(2) hM coincides with φϕn−1,ψs on |N τ1G , where ψs : Ls → L′s is yielded by Lemma 4.7;

(3) there is an f -invariant neighborhood of the set NG∩(G0∪. . .∪Gn−1) where hM coincides
with ϕn−1.

Proof: Let Ǧ ⊂ G be a union of separatrices from G such that γ2 6= fk(γ1) for every
γ1, γ2 ⊂ Ǧ, k ∈ Z \ {0} and G =

⋃
γ∈Ǧ

orb(γ). Let i ∈ {0, . . . , n}, p ∈ Σi and γ ⊂ G.

Notice that (Nγ \ (γ ∪ p)) /fper(γ) is homeomorphic to X× [0, 1] where X is 2-torus and the
natural projection πγ : Nγ\(γ∪p)→ X×[0, 1] sends ∂N t

γ to X×{t} for each t ∈ (0, 1) and sends

W u
p \ p to X × {0}. Let ξγ = φ−1

ϕn−1|Wu
i
,ψsi
ϕn−1|Nai

γ \(γ∪p) and ξ̂γ = πγξγπ
−1
γ |X×[0,ai]. Due to item

(3) of Lemma 4.11, the homeomorphism ξ̂γ coincides with the identity in some neighborhood
of πγ(N

ai
γ ∩ (G0 ∪ . . .∪Gn−1)). Let us choose this neighborhood of the form Bγ × [0, ai]. Let us

choose numbers 0 < τ1,γ < τ2,γ < ai such that ξ̂γ(X × [0, τ2,γ]) ⊂ X × [0, τ1,γ). By construction,

ξ̂γ : X × [0, τ2,γ]→ X × [0, 1] is a topological embedding which is the identity on X × {0} and

ξ̂γ|Bγ×[0,τ2,γ ] = id|Bγ×[0,τ2,γ ]. Then, by Proposition 5.2,

1. there is a homeomorphism ζ̂γ : X × [0, τ2,γ]→ ξ̂(X × [0, τ2,γ]) such that ζ̂γ is identity on

X × [0, τ1,γ] and is ξ̂γ on X × {τ2,γ}.
2. ζ̂γ|Bγ×[0,τ2,γ ] = id|Bγ×[0,τ2,γ ].

Let ζγ be a lift of ζ̂γ on N
τ2,γ
γ which ξγ on ∂N

τ2,γ
γ . Thus ϕγ = φϕn−1|Wu

i
,ψsi
ζγ is the desired

extension of ϕn−1 to Nγ. Doing the same for every separatrix γ ⊂ Ǧ and extending it to
the other separatrices from G by equivariance, we get the required homeomorphism hM for
τ1 = min

γ⊂Ǧ
{τ1,γ} and τ2 = min

γ⊂Ǧ
{τ2,γ}. �

So far in this section, we have modified the homeomorphism ϕ in a union of suitable lin-
earizable neighborhoods of Ω2 (with their 1-dimensional separatrices removed) so that the
modified homeomorphism extends equivariantly to W s(Ω2). At the same time, we can perform
a similar modification about Ω1 since the involved linearizable neighborhoods of Ω2 and Ω1 are
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mutually disjoint. Thus, we get a homeomorphism h : M \ (Ω0 ∪ Ω3) → M \ (Ω′0 ∪ Ω′3)
conjugating f |M\(Ω0∪Ω3) with f ′|M\(Ω′0∪Ω′3). Notice that M \ (W s

Ω1
∪ W s

Ω2
∪ Ω3) = W s

Ω0

and M \ (W s
Ω′1
∪ W s

Ω′2
∪ Ω′3) = W s

Ω′0
. Since h(W s

Ω1
) = W s

Ω′1
and h(W s

Ω2
) = W s

Ω′2
, then

h(W s
Ω0
\ Ω0) = W s

Ω′0
\ Ω′0. Thus for each connected component A of W s

Ω0
\ Ω0, there is a

sink ω ∈ Ω0 such that A = W s
ω \ω. Similarly, h(A) is a connected component of W s

Ω′0
\Ω′0 such

that h(A) = W s
ω′ \ ω′ for a sink ω′ ∈ Ω′0. Then we can continuously extend h to Ω0 by defining

h(ω) = ω′ for every ω ∈ Ω0. A similar extension of h to Ω3 finishes the proof of Theorem 1.

5 Topological background

We use below the notations which have been introduced before Lemma 4.8.

Proposition 5.1 Let z0 > z1 > . . . > zm > z0

4
> 0 and ξ : T \ Ox3 → N be a topological

embedding with the following properties:
(i) ξE = Eξ;
(ii) ξ is the identity on Ox1x2;
(iii) ξ(Π(z0 ∩ T )) = Π(z0) and ξ(Π(zi) ∩ ∂T ) ⊂ Π(zi), i ∈ {2, . . . ,m};
(iv) ξ(c̃) ∩ c̃0 = ∅, ξ(c̃1) ∩ c̃0 = ∅ and ξ(β̃) ⊂ Ṽ .

Then there is a homeomorphism ζ : T → N such that
(I) ζE = Eζ;
(II) ζ is the identity on H – and consequentively on Ox1x2;
(III) ζ(Π(zi) ∩ T ) ⊂ Π(zi), i ∈ {0, 2, . . . ,m}
(IV) ζ is ξ on ∂T .

Moreover, if ξ is identity on B̃ for a set B ⊂ (K \ U) then ζ is also identity on B̃.

Proof: For j = 0, ...,m, we denote by Ej the domain of R3 located between the horizontal
planes Π(zj) and Π(zj+1), with zm+1 = z0

4
. Since the requested ζ has to be equivariant with

respect to E , it is useful to describe a fundamental domain V for the action of E on the closure
of T \ H; the natural one is

V = cl(T \ H) ∩ (
m⋃
j=0

Ej),

where cl(−) stands for closure of (−). The domain V is sliced by the horizontal planes Π(zj), j =
2, . . . ,m, and the vertical cylinders E−1(c̃) and c̃1, yielding the decomposition V = R0 ∪ R1 ∪
Q0 ∪Q2 ∪ . . . ∪Qm into solid tori whose interiors are mutually disjoint. Notice that the plane
Π(z1) is not used in this decomposition.

More precisely, R0 ⊂ E0 is limited by the cylinders E−1(c̃1) and E−1(c̃); then, R1 ⊂ E0 is
limited by the cylinders E−1(c̃) and c̃1. The others of the list are obtained from Ũ by slicing V
with horizontal planes. The first of the latter, namely Q0, is special as it is bounded by Π(z0)
and Π(z2); then, Qj is bounded by Π(zj) and Π(zj+1) for j = 2, ...,m. The vertical parts in the
boundaries of the above-mentioned solid tori are provided by the vertical slices or the vertical
parts of ∂T ∪ ∂H.
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For j = 0, 2, . . . ,m, let U(zj) := Ũ ∩ Π(zj). By construction, the top face of R0 is
U ′(z0) := E−1 (U(zm+1)) = Π(z0) ∩ E−1(Ũ); its bottom is U ′(z1) := Π(z1) ∩ E−1(Ũ). Simi-
larly, the top of R1 is U ′′(z0) := Π(z0) ∩ K̃ and its bottom is U ′′(z1) := Π(z1) ∩ K̃.

It is important that each horizontal or vertical annulus Ann from the previous list is marked
with a special arc noted β(Ann) linking the two boundary components of Ann and defined as
follows:

β(Ann) = Ann ∩ {x1 > 0, x2 = 0}.

According to assumption (iv), all these arcs (except when Ann = U ′′(z0) or U ′′(z1)) fulfill the
next condition, referred to as the β-condition, namely: they are mapped by ξ into {x1 > 0}.

First of all, we define ζ|R1 by rescaling ζ|K̃ in the next way. There is a homeomorphism
κ : K̃ → R1 of the form: (x1, x2, x3) 7→ (x1, x2, ρ(x3)) where ρ : [0, z0]→ [z1, z0] is any increasing
continuous function. Then, we define ζ|R1 = κ ξ|K̃ κ−1. Observe that ζ equals ξ on U ′′(z0) and
coincide with the identity on U ′′(z1). As a consequence, the complement part of the statement
follows directly. Indeed, if B lies in K and ξ|B̃ = Id then its conjugate by κ is the identity on
B̃ ∩R1.

We continue by defining ζ on the other horizontal annuli from the previous list. As required,
ζ is the identity when this annulus lies in H. For the others, that is, U ′(z0) and U(zj), j =
0, 2, ...,m, Lemma 5.4 is applicable as it is explained right below.

Each of these annuli is bounded by two curves; one of the two lies in the frontier of T on
which ζ has to coincide with ξ and is mapped in the respective plane Π(zj) – according to (iii);
and the other lies in H where ζ has to coincide with Id|H. In order to satisfy the equivariance
property 3), we choose

(∗) ζ|U(zm+1) = E ζ|U ′(z0) E−1.

Moreover, due to the β-condition, Lemma 5.4 holds and yields ζ on each of the listed horizontal
annuli.

We continue by defining ζ on the vertical annuli in the above splitting of V . When such an
annulus lies in ∂H (resp. ∂T ), we must take ζ = Id (resp. ζ = ξ) over there. The last two
annuli are R0 ∩R1 and R1 ∩Q0 on which ζ is already defined by conjugating by κ. Notice that
the β-condition holds for these two annuli because conjugating by κ preserves the β-condition.

Let us look more precisely to ∂Q0. It is made of the following: two horizontal annuli U(z0)
and U(z2), and three vertical ones R1 ∩ Q0, c̃1 ∩ E1 (lying in H) and c̃ ∩ (E0 ∪ E1). The
β-condition holds for each of these latter annuli.

For finishing the proof, it remains to extend the ζ which we have defined right above on
the tori ∂R0, ∂Q0 and ∂Qj, j = 2, ...,m to embeddings of the solid tori R0, Q0, Q2, ..., Qm with
values in E0, E0 ∪ E1, E2, ..., Em respectively. The boundary data consists of annuli where ζ
fulfills the β-condition. Therefore, the assumptions of Proposition 5.5 are fulfilled; then the
conclusion holds true and yields the desired extention of ζ to the listed solid tori.

According to (∗), we can extend the ζ which is built above on a fundamental domain to
T \ H equivariantly. Since this extension coincides with the identity on H, it extends by
Id|Ox1x2 . This is a continuous extension because any point of the plane Ox1x2 adheres only to
H \Ox1x2 when considering the closure of T \Ox1x2.
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�

Proposition 5.2 Let X be a compact topological space, 0 < τ1 < τ2 < 1 and ξ̂ : X × [0, τ2]→
X×[0, 1] be a topological embedding which is the identity on X×{0}, X×[0, τ1] ⊂ ξ̂(X×[0, τ2]).
Then

1. there is a homeomorphism ζ̂ : X × [0, τ2] → ξ(X × [0, τ2]) such that ζ̂ is identity on
X × [0, τ1] and is ξ̂ on X × {τ2}.

2. if for a set B ⊂ X the equality ξ̂|B×[0,τ2] = id|B×[0,τ2] is true then ζ̂|B×[0,τ2] = id|B×[0,τ2].

Proof: Let us choose l ∈ (τ1, τ2) such that X×[0, l] ⊂ ξ̂(X×[0, τ2]). Define a homeomorphism
κ : [τ1, 1]→ [0, 1] by the formula

κ(t) =

{
(x, l(t−τ1)

l−τ1 ), t ∈ [τ1, l];
(x, t), t ∈ [l, 1].

Let K(x, t) = (x, κ(t)) on X× [τ1, 1]. Then the required homeomorphism can be defined by the
formula

ζ̂(x, t) =

{
(x, t), t ∈ [0, τ1];
K−1ξ(K((x, s)))), s ∈ [τ1, τ2].

Property 2 automatically follows from this formula. �

We now collect some facts of geometric topology in dimension 2 and 3 on which the proof
of Proposition 5.1 is based. We begin with the Schönflies Theorem (see Theorem 10.4 in [17]).

Proposition 5.3 Every topological embedding of S1 into R2 is the restriction of a global home-
omorphism of R2 which is the identity map outside some compact set of the plane.

One can derive the Annulus Theorem in dimension 2; we state and prove it in the only
case which we use. The coordinates of R2 are (x1, x2). The unit closed disc in R2 is denoted
by D2; its boundary is S1. The annulus 2D2 r int(D2) is denoted by A. Let I denote the arc
{1 ≤ x1 ≤ 2, x2 = 0}.

Lemma 5.4 Let g : 2S1 ∪ I → R2 r (0, 0) be a topological embedding which surrounds the
origin in the direct sense and has the next properties: g(I) ⊂ {x1 > 0}, the image g(2S1)
avoids the circle C of radius 3

2
and g(1, 0) lies inside 3

2
D2. Then g|2D2 extends to an embedding

G : A→ R2 r int(D2) which coincides with the identity on S1 and maps I into {x1 > 0}.

Proof: Let p be the last point on g(I) starting from g(1, 0) which belongs to C. Let q be its
inverse image in I. Define G on the segment [(1, 0), q] as the affine map whose image is [(1, 0), p]
and take G coinciding with g on [q, (2, 0)]. The image G(I) is a simple arc in {x1 > 0}. Because,
any simple arc is tame in the plane, this definition of G on I and the values which are imposed
on the two circles S and 2S1 extends to a neighborhood N of S1 ∪ I∪ 2S1 in R2. By taking one
boundary component of N one derives a parametrized simple curve C ′ in R2 r D2 which does
not surround the origin. Therefore, by the Schönflies Theorem, C ′ bounds a disc D in R2 rD2
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and the parametrization of C ′ extends to a parametrization of D. This yields the complete
definition of G. �

We are now going to apply famous theorems of geometric topology in dimension 3 to a
concrete situation emanating from the problem we are facing in Proposition 5.1. The setting
is the following. We look at the 3-space

Y = A× [0, 1] = {(x1, x2, x3) ∈ R3 | 1 ≤ x2
1 + x2

2 ≤ 4, 0 ≤ x3 ≤ 1}.

Denote Q0 the solid torus in Y limited by the next two annuli:
– the vertical annulus Av := {x2

1 + x2
2 = 1, 0 ≤ x3 ≤ 1};

– the standard curved annulus A0 := {x2
1 + x2

2 + (x3 − 1
2
)2 = 5

4
} ∩ Y .

Observe that A0 is contained in Y and contains the two horizontal circles forming ∂Av.

Proposition 5.5 Let g : A0 → Y a bi-collared (meaning that g extends to an embedding
A0 × (−ε,+ε) for some ε > 0) topological embedding. It is assumed that g coincides with the
identity on ∂A0 and maps the arc Γ0 := A0 ∩ {x1 > 0, x2 = 0} to an arc Γ in Y ∩ {x1 > 0}.
Then, g extends to an embedding G : Q0 → Y which coincides with the identity on Av.

Proof: The image A := g(A0) separates Y in two components X and X∗. Since A is bi-
collared, these two domains of Y are topological 3-manifolds. Therefore, we are allowed to
apply E. Moise’s Theorem (See [17, Chap.23 & Theorem 35.3] for existence and [17, 36.2] for
uniqueness), including the Hauptvermutung in dimension 3:

Every 3-manifold has a unique PL-structure, up to an arbitrarily small topological
isotopy. Moreover, its topological boundary is a PL-submanifold.

As a consequence, X and X∗ have PL-structures which agree on their intersection A. By
uniqueness applied for X ∪X∗, the PL-structure on the union is the standard one after some
C0-small ambient isotopy. Denote by P the planar surface {x2 = 0, x1 > 0} ∩ Y . After a new
C0-small ambient isotopy in Y , we may assume that A and P are in general position. In what
follows, we borrow the idea of proof from [14, Theorem 3.1]3.

Since P intersects each connected component of ∂A in one point only, we are sure that in
general position P ∩ A is made of finitely many simple closed curves c1, . . . , ck in intA and
one arc γ which links the two components of ∂A. One of the above curves is innermost in P ,
meaning that it bounds a disc in P whose interior avoids A; let say that c1 is so. More precisely,
c1 bounds a disc d in P and a disc δ in A. By innermost position, d ∪ δ is an embedded PL
2-sphere σ. As Y lies in R3, this sphere bounds a 3-ball ∆ ⊂ Y . We are going to use these
data in two ways.

First, we use δ for finding an isotopy ht of A in itself from Id|A to h1 : A → A such that
h1(Γ)∩ δ = ∅. This is easily done as Γ∩ δ avoids one point zδ in δ: one pushes Γ∩ δ along the
rays of δ issued zδ. Notice that h1(Γ) still lies in {x1 > 0}, but this could be no longer true for
ht(Γ), t 6= 0, 1, when δ is not contained in {x1 > 0}.

3In this article which we referred to, it should be meant that the PL-category (or smooth category) is used.
Indeed, there is no general position statement in topological geometry without more specific assumption.

30



Once, this is done, the ball ∆ is used for finding an ambient isotopy of Y which is supported
in a neighborhood of B, small enough so that h1(Γ) is kept fixed, and which moves A∩∆ to the
complement of P . Hence, this isotopy cancels c1 from A ∩ P ; all intersection curves contained
in int δ are cancelled at the same time. By repeating isotopies similar to the two previous ones,
as many times as necessary, we get an embedding g′ : A0 → Y which coincides with the identity
on ∂A0, still maps Γ0 into {x1 > 0} and fulfills the following property: A′ := g′(A0) ∩ P is
made of one arc γ′ only which links the two components of g′(∂A0). The annulus A′ divides Y
into two (closed) domains X ′ and X ′∗ which come from the splitting X ∪A X∗ by an ambient
isotopy fixing {x3 = 0, 1} pointwise.

As γ′ is the only intersection component of P ∩A′, one knows that γ′ divides P into a disc
µ′ ⊂ X ′ (meaning a meridian disc in a solid torus) and its complement in P . Removing from
X ′ a regular neighborhood of µ′ yields a PL embedded 2-sphere S. According to the Alexander
theorem [1], this sphere bounds a ball BX′ in R3, as Y ⊂ R3. It is not possible that BX′ contains
µ′ in its interior; in the contrary, BX′ would get out of X ′∗ and have a non-bounded interior.
As a consequence, X ′ is a solid torus since it is made of a ball and a 1-handle attached. The
same holds for X as it is ambient isotopic to X ′ in Y .

This is not sufficient for concluding. It would be necessary to prove the same for the curve
g′(Γ0), after making it a closed curve by adding the vertical arc γ∗0 ⊂ Av which links the two
points of g′(Γ0)∩Av = Γ0 ∩Av = g(Γ0)∩Av = Γ0 ∩Av = γ′ ∩Av. That is the place where the
assumption about g(Γ0) is used.

Claim. There exists an ambient isotopy from Id|Y to k1 which is stationary on the vertical
annulus Av, which maps A′ into itself and moves g′(Γ0) to γ′.

Proof of the claim. Assume first that the arcs g′(Γ0) and γ′ meet in their end points only.
Consider the closed curve α which is made of γ ∪ g′(Γ0); it is contained in {x1 > 0} ∩ A′.
By construction, the homological intersection of α with γ′ is zero. Therefore, α bounds a disc
δ′ ⊂ A′. Notice that it could be not contained in {x1 > 0}. The disc δ′ allows one to move
g′(Γ0) to γ′ by an isotopy of A′ into itself with the required properties.

In case where g′(Γ0) ∩ intγ′ is non-empty, in general position this intersection is made of
finitely many points. Among them, choose the point x which is the closest to γ′ ∩ {x3 = 1}
when traversing γ′ starting from bottom. Denote by x0 the point γ′ ∩ {x3 = 1}. One forms a
closed curve τ ⊂ A′ made of two arcs in A′, from x to x0 respectively in γ′ and g′(Γ0). For the
same reason as for α above, the curve τ bounds a disc in A′ which allows one to cancel x from
g′(Γ0) ∩ γ′ by an isotopy of A′ into itself with the required properties. Iterating this process
reduces us to the first case. The claim is proved. �

Let g′′ := k1g
′ : A0 → A′. As a consequence of the claim, the closed curve g′′(Γ0) ∪ γ∗0 is

the boundary of the meridian disc µ′. We are going to show that g′′ extends to an embedding
G′′ : Q0 → X ′ which coincides with the identity on Av. In this aim, we denote by µ0 the meridian
of Q0 defined by µ0 = Q0∩P . For beginning with, we consider regular neighborhoods N(µ0) and
N(µ′) of both meridians and we extend g′′|N(µ0)∩A0 to a homeomorphism G′′0 : N(µ0)→ N(µ′)
which is the identity on N(µ0) ∩ Av.
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Let BQ0 be the ball in Q0 which is the closure of Q0 \N(µ0). The restricted map G′′0|∂BQ0

glued with the restriction of g′′ to the closure of A0 \N(µ0) yields a homeomorphism

G′′1 : ∂BQ0 → ∂BX′ .

The desired G′′ is obtained by extending G′′1 to BQ0 by the cone construction (seeing a ball as
the cone on its boundary). Since g and g′′ are related one to the other by an ambient isotopy
fixing Av pointwise, an extension of g follows from an extension of g′′. �
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