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ABSTRACT: The influence of different stratosphere parameters on the degradation of a multilayer film was investigated. The selected multi-

layer was a three polymeric layers film, a polyamide 6 film inserted between two poly(ethylene terephthalate) (PET) films. Samples were

exposed for several ageing under ultraviolet radiations (filtered at 270 nm), varying the atmosphere at 55 mbar pressure (atm,

atm1 ozone, N2, and T5255 8C or123 8C). Evolution of it mechanical properties defined by uniaxial tractions, thermo-optical proper-

ties defined by spectrophotometry UV–vis-NIR, chemical properties defined by FTIR-ATR, and thermal and dielectric properties defined,

respectively, by differential scanning calorimetry (DSC) and dynamical dielectric spectroscopy (DDS), were investigated. Our results

showed that UV irradiation causes multilayer films degradations, that is, principally decrease of UV transmittance and stress and strain at

break (250%). An increase of the ageing temperature causes an acceleration of these degradations. Degradations principally occur on the

PET side of the multilayer exposed to UV radiation. Moreover, the DDS analysis shows a plasticization effect of the primary mode in the

polyamide 6 due to photo-oxidation. Oxygen diffusion is the principal element for this plasticization, indeed it not occurs in a nonoxida-

tive environment (nitrogen), or at low ageing temperature (255 8C).VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44075.
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INTRODUCTION

Commercial applications of polymer films continuously increase.

Among many polymer films available for numerous applications,

poly(ethylene terephthalate) (PET) is one of the main polymers

used. In some case, PET properties, like mechanical strength and

durability, are not sufficient for application requirements. This is

particularly necessary when drastic specifications are required or

when materials are used in extreme conditions. In these cases,

utilization of multilayer films is one of the solutions to meet the

prospected properties.1

For numerous applications, like packing or food containers, poly-

mer films are widely used today for outdoor applications. Expo-

sure of polymers to outdoors conditions causes many irreversible

changes. It produces unwanted effects like yellowing, evolution of

gas permeability and decrease in mechanical properties. These

changes severely impair the integrity of the polymer film, and

their useful lifetimes will tend to decrease under exposure to

sunlight.2–8 To understand the different phenomena, photo-

degradation of PET has been widely investigated, under ultraviolet

(UV) irradiation in standard atmosphere, to reproduce daily utili-

zation.9–15 Radiations of low wavelength, the most energetic, are

responsible for larger changes observed during exposure to the

sun.16 The impact of the presence of oxidative elements during

the photodegradation was also studied by Day and Wiles, who

highlighted the importance of oxidizing elements during ageing.

Oxidative environment limits crosslinking by reacting with radi-

cals created during the photoscission.16,17

The development and the utilization of multilayer films lead to

the qualification necessity of these new materials. In a previous

work, an investigation had been done on signals identification

of the different films constituting the multilayer films studied

and on its properties evolution during a one week ageing in an

1 atm pressure atmosphere.18 Photodegradation of the first layer

PET was observed. This degradation induces the decrease of

mechanical properties at break and decrease in UV transmission

for low wavelengths. With the dynamical dielectric spectroscopy

(DDS), the inner layer was also studied. Plasticizing effect was

detected, as a consequence of photodegradation phenomenon

occurring into the amorphous phase.



This kind of multilayer films may also be used in specific envi-

ronment like the stratosphere (altitude ranging between 12 and

45 km). To investigate this multilayer performance upon a

stratospheric exposure, a harsh environment has been selected.

UV light selected was composed by UV with shorter wavelength

presents at these altitudes, more energetic. Furthermore, ageing

atmosphere was modified, with ozone gas addition and a tem-

perature variation.

The aim of this study is identification and characterization of phe-

nomena suffered by the multilayer film during its ageing into this

simulated stratospheric environment. The influence of each

parameters of ageing is studied to uncorrelate their impacts on the

multilayer properties and on its different components.

EXPERIMENTAL

Materials

Multi-layers films used during this study are composed of PET-

layers on theirs external sides, and PA 6 in its middle. A bicompo-

nent thermosetting poly(urethane) (PU) adhesive fixed the differ-

ent layers to each other. PET films were biaxially oriented films,

produced in a two-step-stretching process: the first, in the travel

direction, and the second, in the transverse direction. There had a

nominal thickness of 15 lm. The PA-6 used was a biaxially orient-

ed film produced by double bubble extrusion technology. It had

thickness of 20 lm. The multilayer face exposed to the UV source

is called (a) and the unexposed face is called (b) (Figure 1).

Ageing Conditions

Films were placed in a hermetic chamber, which reproduced

stratospheric environment. Ageing parameters were a 20 km

height conditions in temperate areas. All experiments were real-

ized during 14 days. UV irradiation was achieved by a short arc

Xenon lamp with filter. This system (lamp1 filters) produces

UV light with a cut-off at 270 nm. The UV radiations intensity

(wavelength: 270 to 400 nm) reaching the sample surface is 56

W m22. The environment’s temperature and pressure were fixed

during the experiments. Irradiations were performed in air

atmosphere, with a pressure fixed at 55 hPa. Air atmosphere

was obtained pumping the ambient air to 55 hPa. Ozone gas (5

ppm, ozone concentration at 20 km) could be added in air

using an additional monochromatic UV lamp (254 nm). Experi-

ments are realized at a temperature of 255 8C (20 km height

temperature) or 123 8C, during 14 days. An additional atmo-

sphere condition was selected (at 123 8C) to investigate the

oxygen presence impact on the multilayer evolution: nitrogen

atmosphere. For the nitrogen atmosphere, after having pumped

the atmosphere down to 1021 mbar, the hermetic chamber was

filled with nitrogen gas. This operation was reproduced three

times. Finally, the atmosphere was pumped down to 55 hPa.

After irradiation, samples were analyzed under air conditions.

Methods (Evaluation of Degradation)

Mechanical Properties Measurements. The mechanical proper-

ties were tested in a Instron 5569 machine operating with a 1 kN

lead cell and a crosshead speed of 100 mm/min at room tempera-

ture. The sizes of the test specimen were 20 mm wide and 200 mm

long with a 100 mm clamp separation. Tensile measurements were

performed in traverse direction. The values of tensile strength and

maximum elongation reported in this study correspond to aver-

ages calculated with the results obtained with at least five samples.

UV–Visible-Near Infrared Spectroscopy. UV–visible-near infra-

red spectra were recorded with a Perkin Elmer Lambda 900

UV–vis-NIR spectrometer associated with a 150 mm diameter

integrating sphere in air. The transmission measurements were

performed for each sample. The calibration curve was done

with a diffuser Spectralon SRS-99-010 standard.

Fourier Transformed Infra-Red Analysis (FTIR) with an ATR

Accessory. Films were analyzed by FTIR spectroscopy using a

Equinox_55 Bruker spectrometer in the 400–4000 cm21 range,

with a resolution of 4 cm21. An attenuated total reflectance (ATR)

accessory was used to quantify the surface layers degradation. The

FTIR-ATR technique allowed investigating the first micrometer of

the multilayer surfaces. The carboxyl end-groups index was used

to characterize the degree of degradation of the PET layers. It has

been defined as the ration of the AOH vibration of the carboxylic

acid endgroup absorption (peak at 3290 cm21) and the CAH

absorption (peak at 2970 cm21).19

Differential Scanning Calorimetry (DSC). DSC measurements

were carried out with a TA instrument (2920 CE). Films were ana-

lyzed in nonhermetically sealed aluminum pans. The sample

weight was ranging from 5 to 10 mg. Thermograms were recorded

at a heating rate of 10 8C/min in temperature range from 250 to

1300 8C, under a dry helium gas purge at a flow rate of 110

mL min21. High purity indium and mercury were used for tem-

perature and enthalpy calibration.

The melting temperature was taken at the maximum of the

endothermic peak and the enthalpy variation calculated from

the peak area. Normally, we evaluated the degree of crystallinity

of PET and PA6 films, using eq. (1):

Xc5DHf ;net=DHo (1)

where DHo is the heat of fusion of an ideal 100% crystalline,

DHf,net5DHf – DHc is the net heat of fusion with DHf being

the heat of fusion, and DHc is the heat of crystallization. Due to

the presence of an endothermic peak caused by water desorp-

tion, cold crystallization regions are masked. Because of this,

the PET and PA-6 degree of crystallinity cannot be calculated.

In this work, we focused on the heat of fusion.

Dynamic Dielectric Spectroscopy. To determine the molecular

mobility, measurements of the complex dielectric permittivity

E
� Fð Þ5E

0 Fð Þ2iE
00

Fð Þ (2)

were carried out with a Novocontrol Broadband Dielectric Spec-

trometer (BDS4000), in the frequency range of 1022
2106 Hz.

Figure 1. Multilayer film PET/PA6/PET exposed under UV radiations.



Experiments were performed isothermally from2150 to1150 8C by

steps of 5 8C. The temperature in the cryostat was controlled with a

stability of60.5 8C by a cold nitrogen gas stream, heated by a Quatro

temperature controller. The samples were placed between gold-

plated stainless steel electrodes (Ø5 20 mm).

The experimental limit for the loss factor E00 was about 1024.

The real E0 and imaginary E
00 parts of the relative complex per-

mittivity E* were measured as a function of frequency F at a

given temperature T. From each isothermal plot, the relaxation

modes were described by the double-stretched Havriliak–Neg-

ami (HN) function

E � xð Þ5E11
Es2E1

11 ixsHNð ÞaHN½ �
bHN

(3)

where x is the angular frequency (x5 2pF), Es and E1 are the

relaxed (x5 0) and unrelaxed (x51) dielectric constants,

sHN is the relaxation time of HN model. The exponents aHN

and bHN characterize the width and the asymmetry of the

relaxation time distribution, respectively. At each temperature, a

value of sHN was found for the modes present in the frequency

window. The relaxation diagrams were plotted representing the

variations of log sHN 1=Tð Þ, which are expected to be linear in

the case of Arrhenius dependences for the relaxation time [eq.

(4)] and curved for Vogel-Tammann-Fulcher ones [eq. (5)],

according to the following expressions:

sHN Tð Þ5s0 exp
Ea

RT

� �

(4)

sHN Tð Þ5s0vexp
1

af T2T1ð Þ

� �

(5)

where s0 and s0v are the pre-exponential factors, Ea the activa-

tion energy, and R the ideal gas constant, af the thermal expan-

sion coefficient of the free volume, and T1 is the critical

temperature at which any mobility is frozen. We must take the

fitting procedure into account because of the presence of very

often incomplete peaks despite the extension of frequency win-

dow of more than 8 decades. As the temperature increases, the

relaxation peaks shift to higher frequencies and sweep the

frequency window with different speeds, characteristic of the

relaxation energy of each mode.

The fittings were performed with the nonlinear last-squares

standard procedure Winfit from Novocontrol, starting from dif-

ferent initial parameters.

RESULTS AND DISCUSSION

Mechanical Properties

The mechanical properties evolutions with the ageing condi-

tions have been investigated. The stress and the strain at break,

reported Figures 2 and 3, are compared with the pristine one.

The Young’s modulus, not affected, is not reported. It value is

39706 30 MPa for an unexposed multilayer.

Stress and strain at break present a significant decrease after UV

irradiation for all atmosphere conditions. This decrease is usually

observed after UV exposition of different polymers.3,19,20 In the

case of PET films, this decrease is linked with a molecular mass

reduction, consequence of chain scission reactions during age-

ing.21 Moreover, an increase of the ageing temperature leads to a

decrease of stress and strain at break. This confirms the tempera-

ture as an accelerator character during photo-degradation. Con-

versely, the ozone gas addition in the chamber’s atmosphere

causes weak modifications of the mechanical properties within

the measurement uncertainty, whatever the ageing temperature.

The limited quantity of ozone (5 ppm) does not lead to significant

modifications.

Values obtained after the ageing in nitrogen atmosphere at 23 8C

show a slight additional diminution of this both properties.

UV–Visible Spectroscopy

The thermo-optical properties of pristine and UV irradiated mul-

tilayers were measured by UV–vis-NIR spectroscopy. The UV–vis

curves obtained in transmission are presented Figure 4(a). To

facilitate the observation of evolutions, we have reported on Fig-

ure 4(b) the T-Ti spectrum, calculated by subtracting the unaged

multilayer film UV transmission spectra to the multilayer films

aged ones.

A shift of the UV cut-off through the higher wavelengths and a

transmittance decrease at low wavelengths are observed. Above

the limit indicated by a dotted line at 360 nm in the Figure 4(b),

the transmittance decrease is more important after the N2 atmo-

sphere ageing than after the oxidative ageing. Under 360 nm, the

Figure 2. Evolution of the strain at break function of ageing parameters.

Figure 3. Evolution of the stress at break function of ageing parameters.



transmittance decrease is more important for ageing in oxidative

atmosphere, particularly after the 23 8C ageing.

Day and Wiles16 had observed the technical properties evolution

after UV radiations of PET films. They proposed reaction mech-

anisms of the photochemical degradation of PET with or with-

out oxidative atmosphere.16,17

UV exposition causes scissions that creates radical. A nonoxida-

tive ageing environment causes recombinations of radicals that

leads to the creation of conjugate entities, like vinyl species,

within the polymer.16,22 These entities absorb wavelengths in

the visible near UV region of the spectrum, responsible of the

film yellowing.12 On the contrary, an oxidative environment

during irradiation leads to radical oxidations, which reduce

recombinations. Therefore, creation of conjugated entities is

lesser in oxidative environnement than in nonoxidative one.

These mechanisms explain the higher absorption in the 350–

450 nm region for the N2 ageing spectrum.

Moreover, in presence of oxidative gas, photolysis leads to the

creation of monohydroxy species which absorb UV around

340 nm.17 This monohydroxy species creation can explain the

additional decrease from 320 and 380 nm observed on the spec-

tra of ageing in an oxidizing atmosphere. This reaction is more

important in 23 8C than in low temperature.

FTIR Analysis

To investigate more precisely the possible impact of photodegra-

dation on PET surface layers, FTIR-ATR studies have been per-

formed. Only results of irradiated face (PET-a) are presented,

no change has been observed on the rear surface. Photodegrada-

tion occurs mainly on the layer face exposed to UV irradiation,

due to the slight UV penetration.23

Typical spectra of unexposed and exposed multilayers are repre-

sented Figure 5, focused in the modified carboxyl end-groups

zone (2400–4000 cm21).

An optical density increase in the characteristic area is observed

after the UV irradiation. The carboxyl end-groups index (Figure

6) shows an increase of carboxyl creation after UV irradiation,

reflecting the PET-a degradation.

This carboxyl end-groups index increase is typical of the PET pho-

to-degradation.16,24 Day and Wiles have shown that the carboxyl

end-groups are formed mainly via a Norrish type II photo rear-

rangement reaction. This reaction occurs independently of the

ageing atmosphere. Additional formation is possible in oxidative

atmosphere, via a Norrish type I cleavage reaction.17 During this

study, an increase of the ageing temperature causes a carboxyl

end-groups index increase. The ageing atmosphere variation does

not cause significant modification. The relative pressure, and thus

Figure 4. (a) UV–vis spectra of unexposed and different aged multilayer films (b) T-Ti spectra representation.

Figure 5. FTIR-ATR spectra of unexposed and different aged multilayer films. Figure 6. Evolution of carboxyl index function of ageing parameters.



low numbers of oxygen molecules, does not cause sufficiently

modifications via Norrish I reactions to be detected.

Several studies on PET films showed a weak increase of the car-

boxyl end-group index on the rear surface.16,24 For ours multi-

layer films, the PET-a rear surface cannot be analyzed. The rear

surface of the multilayers, corresponding to the rear surface of

the PET-b film, is not modified during those ageing. In fact, the

PET-b layer is protected from the photo-degradation by the two

films, PET-a and PA-6, situated in front of him.

Thermal Analysis

Figure 7 presents the DSC thermograms obtained during the

first heating run with a pristine multilayer and an irradiated

one (ageing conditions: 123 8C, atm [55 mbar]1O3 [5 ppm]).

Thermograms obtained after different ageing conditions are

similar, only one is shown.

A broad endothermic peak is observed around 80 8C, and at

higher temperature, two endothermic peaks (220 and 255 8C).

The identification of these events and their attribution to the

different layers constituting the multilayer have been realized in

a previous work.18 Because of the presence of water desorption

that masks the glass transition and the cold crystallization

regions, only the crystalline melting zones have been investigat-

ed. Table I assesses the PET and PA-6 melting properties for

unexposed and aged films.

Exposures of 14 days do not change significantly the heat of

fusion and the melting temperature of PET and PA-6 films con-

stituting the multilayer. It indicates that the crystalline phases of

the various elements constituting the multilayer film are few or

not affected by these ageing.

Fechine et al.,25 studying PET films degradation, showed a little

change (23 8C) in melting temperature during a 43 days UVexpo-

sure, and no modification of crystallinity. Because the duration of

our tests is short (14 days), modifications due to UV irradiation

are not significant enough to induce modifications observable in

DSC. Moreover, the observed PET signal is an average of the irra-

diated PET and the unirradiated PET film (PET-a and PET-b).

According to the FTIR-ATR analysis, PET-b seems to be not modi-

fied during these ageing. This average diminishes the possible

signal evolution caused by modifications.

The PA6 film, inside the multilayer, is protected by the PET

films. It causes no sufficient modifications of its crystalline

structure to be observed with DSC analysis.

Dynamical Dielectric Spectroscopy

The dielectric loss surface of an ageing multilayer film is shown in

Figure 8 (ageing conditions:123 8C, N2 [55 mbar]). This 3D repre-

sentation, characteristic of our multilayer films, reveals at low tem-

perature two secondary relaxation modes g and b, then at higher

temperature two primary relaxation modes aL and au. The identifi-

cation of the different multilayer modes and their attribution to its

different components has been discussed in a previous publica-

tion18: the dielectric relaxation modes of the multilayer correspond

to the ones of the PA-6 internal layer. In fact, PA-6 dielectric spec-

trum has higher intensity than PET and adhesive ones in this tem-

perature and frequency range, therefore masks the others signals.

As observed in this previous work, aL is the only dielectric mode

affected by UV exposition. The aL mode is attributed to the PA-6

mobile amorphous phase (MAP) responsible for the glass transition

observed by DSC measurements. Dielectric relation times sHN,

extracted during the analysis of aL relaxation mode using the HN

function, have been reported in the Arrhenius diagrams (Figure 9).

For a same temperature analysis, aL relaxation times are lower

after UV irradiation. This shift is mainly pronounced with the

123 8C ageing in oxidative atmosphere (atm and atm1 ozone).

After the 255 8C ageing in oxidative atmosphere and the

123 8C ageing in nitrogen atmosphere, these evolutions are sim-

ilar and low.

Figure 7. Typical DSC thermograms of unexposed and irradiated multilayers.

Table I. Melting Zone Parameters for the Unexposed and UV Exposed Multilayer Films

PA-6 PET

Ageing parameters TPA6
f

(8C) DHPA6
f

(J g21) TPET
f

(8C) DHPET
f

(J g21)

Initial state 220.6 53.4 254.2 43.4

255 8C Air (55 mbar) 220.5 48.1 255.0 41.7

Air (55 mbar)1O3 (5 ppm) 220.1 51.6 254.0 42.7

123 8C AAir (55 mbar) 220.2 53.9 253.6 44.7

Air (55 mbar)1O3 (5 ppm) 219.8 53.4 253.5 47.2

N2 (55 mbar) 220.0 51.3 253.4 44.5



In our previous work, two assumptions have been made to

explain the plasticizing effect observed on the aL after UV irra-

diation: photolysis into the MAP create radicals, that are oxi-

dized by oxidative gas, or water molecules combine with this

radicals.18 The irradiated multilayer in a non-oxidative environ-

ment (nitrogen) presents relaxation times close to the initial

state, contrary to ageing in oxidative environment. These results

are consistent with the first hypothesis: once the chain scissions

are performed by photolysis into the MAP, in oxidative environ-

ment, radical oxidation occurs. This photo-oxidation causes a

greater mobility of the macromolecules, resulting in this shift

towards lower temperatures. Conversely, the lack of oxidative

gas leads the radicals, created during the photolysis, to recom-

bine each other or create conjugated entities. The molecular

mobility is then low or no affected, as shown in Figure 9.

The oxidative gases responsible for this oxidation have to diffuse

through the PET film to the PA-6 inner film. This diffusion is

promoted by the temperature elevation.26,27 During the 255 8C

ageing, this gas diffusion is very low and the photo-oxidation is

thus limited, resulting in a molecular mobility weakly affected,

like in nitrogen environment.

CONCLUSIONS

A diminution of multilayer’s mechanical properties at break and

thermo-optical properties are observed when exposed to a

stratospheric environment. These diminutions are the result of

chain scissions resulting from photodegradation occurring dur-

ing UV irradiation. The small addition of ozone (5 ppm), oxida-

tive gas, does not cause additional evolution. A temperature

elevation exacerbates the properties diminutions. UV irradiation

of multilayer PET/PA-6/PET films makes similar evolution of

technological properties to a single PET film. However, mechani-

cal properties decreases are lower for the multilayer than those

observed during the photodegradation of single PET film, due to

the heterogeneous degradation of the different films constituting

the multilayer.

Degradation is mainly located on the side of the multilayer

exposed to UV radiation. However, the dynamic dielectric spec-

troscopy allowed studying the PA-6 layer, situated between two

PET films. A plasticization of aL during ageing is observed.

Despite the protection of PET layers, degradation seems to occur

in the PA-6 layer. This plasticization is due to the photo-

oxidation of the PA-6, causing main chains scission, which

causes a greater mobility of the macromolecules, resulting in this

plasticization observed. This phenomenon is particularly

observed after the ambient temperature ageing because of higher

oxygen diffusion through PET films due to a higher thermal

motion.
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