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Homography Based Egomotion Estimation
with a Common Direction

Olivier Saurer, Pascal Vasseur, Rémi Boutteau, Cédric Demonceaux, Marc Pollefeys
and Friedrich Fraundorfer

Abstract—In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography
knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used
by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form
solution or a Grébner basis based solution can be derived according to this plane. Many experimental results on synthetic and real
sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard

methods.

Index Terms—Computer vision, egomotion estimation, homography estimation, structure-from-motion.

1 INTRODUCTION

OWADAYS, point-based methods to estimate the

motion of a camera are well known. If the camera is
uncalibrated, eight or seven points are needed to estimate
the fundamental matrix between two consecutive views [1].
When the intrinsic parameters of the camera are known,
five points are then enough to estimate the essential matrix
[2]. To decrease the sensitivity of these methods, a robust
framework such as Random Sample Consensus (RANSAC)
is necessary. Thus, reducing the number of needed matched
points between views is important in terms of computation
efficiency and of robustness improvement. For example, as
shown in Figure 1, for a probability of success of 0.99 and a
rate of outliers equal to 0.5, the number of RANSAC trials
is divided by eight, if five points are used instead of eight.
In the case of a robust estimation based on eight points,
1177 trials are necessary whereas 145 are sufficient if only
five points are required. Thus, finding a minimal solution
for egomotion estimation is important for robust real time
applications.

However, reducing the number of necessary points
is only possible if some hypotheses or supplementary
data are available. For example, if we know a common
direction between the two views, three points can then
be used to estimate the full essential matrix [3]. Extreme
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situations appear when a planar non-holonomic motion is
supposed [4] or when the metric velocity of a single camera
can be estimated knowing its attitude and its acceleration
[5]. In these cases, only one point allows to estimate the
motion. These initial hypotheses or additional knowledges
can then deal with the pose of the camera or with the 3D
structure of the scene. For example, if the 3D points belong
to a single plane, the egomotion estimation is reduced to
a homography computation between two views, that can
be calculated using only four points [1]. In many scenes
and many applications, the scene plane hypothesis seems
suitable. Indeed, in many scenarios such as indoor or street
corridors and more generally in man made environments,
this assumption holds.

Thus, in this paper we investigate the cases where
at least one plane is present in the scene and where
we have some partial knowledge about the pose of the
camera. We suppose that we are able to extract a common
direction between consecutive views and we can have some
information about the normal of the considered plane.
Obtaining a common direction can be easily performed
thanks to an IMU (Inertial Measurement Unit) associated
with the camera, which is often the case in mobile devices
or UAV (Unmanned Aerial Vehicle). The coupling with a
camera is then very easy and can then be used for different
computer vision tasks [6], [7], [8], [9], [10]. Without any
external sensor, this common direction can also be directly
extracted from the images thanks to vanishing points [11]
or horizon detection [12].

In this work, assuming the roll and pitch angles of the
camera as known, we propose to find a minimal closed-
form solution for homography estimation in man made
environments. We will derive different solutions depending
on the prior knowledge about the 3D scene :

o If the extracted points lie on the ground plane, we
will see that only two points are required to estimate
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Fig. 1. Comparison of the RANSAC iteration number for 99% of success
probability

the camera egomotion. In this case, the solution is
unique and contrary to the other algorithms for es-
sential matrix estimation, there is no supplementary
verification for finding the good solutions among the
different possibilities.

o If the considered points are on a vertical plane, we
propose an efficient 2.5pt formulation in order to
retrieve the motion of the camera and the normal of
the plane related to the pose of the camera. This so-
lution allows for an early reject of a pose hypothesis
by including a consistency check on the three point
correspondences.

o If the plane orientation is completely unknown, we
develop a minimal solution using only three points
instead of four points needed in the classical homog-
raphy estimation.

All these methods will be evaluated on synthetic and real

data and compared with different methods proposed in the
literature.
The rest of the paper is organized as follows. In the second
part, we describe the different existing methods in the
literature which deal with minimal solution for egomotion
estimation. In the next section, we explain how to reduce the
number of points for estimating the homography between
two views and derive the proposed solutions according
to the prior knowledge. In the fourth section, we show
the behaviour of our solutions on synthetic and real data
and compare with other classical methods in a quantitative
evaluation. Finally, we will conclude by providing some
extents to this work.

2 RELATED WORKS

When the camera is not calibrated, at least 8 or 7 points
are needed to recover the motion between views [1]. It's
well known, that if the camera is calibrated, only 5 feature
point correspondences are sufficient to estimate the relative
camera pose. Reducing this number of points can be very
interesting in order to reduce the computation time and to
increase the robustness when using a robust estimator such
as RANSAC. The reduction of the degree of freedom (DoF)
number and consequently the number of matched points
between images can be achieved by introducing some
constraints on the camera motion (planar for example) or
the feature points (on the same plane) or by using some
additional information provided by other sensors such as

IMU for instance.

For example, if all the 3D points lie on a plane, a
minimum of 4 points is required to estimate the motion of
the camera between two-views [1]. On the other hand, if
the camera is embedded on a mobile robot which moves
on a planar surface, only 2 points are required to recover
the motion [13] and if in addition the mobile robot has
non-holonomic constraints only one point is necessary [4].
Similarly, if the camera moves in a plane perpendicular to
the gravity, 1 point correspondence is sufficient to recover
the motion as shown by Troiani et al. [14].

The number of points needed to estimate the egomotion
can be also reduced if some information about the relative
rotation between two poses are available. This information
can be given by vanishing points extraction in the images
[15] or by taking into account extra information given by
an additional sensor. Thus, Li et al. [16] show that in the
case of an IMU associated to the camera, only 4 points are
sufficient to estimate the relative motion even if the extrinsic
calibration between the IMU and the camera is not known.

Similarly, some different algorithms have been recently
proposed in order to estimate the relative pose between
two cameras by knowing a common direction. It has been
demonstrated that knowing roll and pitch angles of the
camera at each frame, only three points are needed to
recover the yaw angle and the translation of the camera
motion up to scale [3], [17], [18]. In these approaches, only
the formulation of the problem is different and consequently
the way to solve it. All these works start with a simplified
essential matrix in order to derive a polynomial equation
system. For example, in [17], their parametrization leads
to 12 solutions by using the Macaulay matrix method. The
correct solution has then to be found among a set of possible
solutions. The approach presented in [3] permits to obtain
a 4'"-order polynomial equation and consequently leads
to a more efficient solution. In [18], the authors propose a
closed-form solution to this 4"-order polynomial equation
that allows a faster computation.

For a further reduction of necessary feature points,
stronger hypotheses have to be added. If the complete
rotation between the two views are known, only 2 degrees
of freedom corresponding to the translation up-to-scale has
to be estimated and consequently 2 points are sufficient
to solve the problem [19], [20]. In this case, the authors
compute the translation vector using the epipolar geometry
given the rotation. Thus, these approaches allow to reduce
the number of points but also imply the knowledge of
the complete rotation between two views making the pose
estimation very sensitive to IMU inaccuracy. More recently,
Martinelli [21] proposes a closed-form solution for structure
from motion knowing the gravity axis of the camera in a
multiple view scheme. He shows that at least three feature
points lying on a same plane and three consecutive views
are required to estimate the motion. In the same way, the
plane constraint has been used for reducing the complexity
of the bundle adjustment (BA) in a visual simultaneous
localization and mapping (SLAM) embedded on a micro-
aerial vehicle (MAV) [22].

Most closely related papers to our approach are the
works of [3], [18] in which they simplify the essential matrix
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knowing the vertical of the cameras. In this work, to reduce
the number of points, rather than deriving the epipolar
constraint to compute the essential matrix, we propose to
use the homography constraint between two views. Thus,
we suppose that a significant plane exists in the scene
and that the gravity direction is known. Let us note that
recently, in [23] Troiani et al. have also proposed a method
using 2 points on the ground plane with the knowledge of
the vertical of the camera. However, they do not use the
homography formalism and their method requires to know
the distance between the two 3D points. In our method,
this hypothesis is not necessary and we only assume that
the points lie on a same plane. The Manhattan world
assumption [24] has also recently successfully been used
for multi-view stereo [25], the reconstruction of building
interiors [26] and also for scene reconstruction from a single
image only [27]. Our contribution differs from them, as we
combine gravity measurements with the weak Manhattan
world assumption. This paper is an extension of [28], [29]
where we studied camera pose estimation based on homo-
graphies with a common vertical direction and a known or
at least partially known plane normal. In [28] we proposed
a homography based pose estimation algorithm that does
not require any knowledge on the plane normal. In fact
the algorithm provides the plane normal in addition to the
camera pose.

3 MOTION ESTIMATION

Knowing the vertical direction in images will simplify the
estimation of camera pose and camera motion, which are
fundamental methods in 3D computer vision. It is then
possible to align every camera coordinate system with the
measured vertical direction such that the z-axis of the cam-
era is parallel to the vertical direction and the z-y-plane of
the camera is orthogonal to the vertical direction (illustrated
in Fig. 2). In addition, this would mean that the z-y-plane of
the camera is now parallel to the world’s ground plane and
the z-axis is parallel to vertical walls.

General case

gravity

Fig. 2. Alignment of the camera with the gravity direction.

This alignment can just be done as a coordinate trans-
form for motion estimation algorithms, but also be im-
plemented as image warping such that feature extraction
methods benefit from it. Relative motion between two such
aligned cameras reduces to a 3-DOF motion, which consists
of 1 remaining rotation and a 2-DOF translation vector (i.e.,
a 3D translation vector up to scale).

The algorithms for estimating the relative pose are de-
rived from a homography formulation, where a plane is ob-
served in two images. The homography is then decomposed
into a relative rotation and translation between the two
images. By incorporating the known vertical direction, the

3

parametrization of the pose estimation problem is greatly
reduced from 5-DOF to 3-DOF. This simplification leads to
a closed-form 2pt and a 2.5pt algorithm to compute the
homography. By relaxing the assumption of strictly vertical
or horizontal structures and making use of the known
gravity direction, the homography formulation results in a
closed form solution requiring 3-points only.

In the following subsections we derive the 2pt algorithm
for the known plane normal cases (ground and vertical
plane), then we provide a derivation of the 2.5pt and 3pt
algorithm for a known gravity direction with an unknown
plane orientation.

3.1 2pt Relative Pose for Points on the Ground Plane

The general homographic relation for points belonging to a
3D plane and projected in two different views is defined as
follows :

q; = Hq,, 1)

with q; = [2;,y;, w;]" and q; = [z;,y;,w;] T the projective
coordinates of the points between the views i and j. H is
given by:

1
H=R- gtnT, ()

where R and t are respectively the rotation and the trans-
lation between views ¢ and j and where d is the distance
between the camera ¢ and the 3D plane described by the
normal n.

In our case, we assume that the camera intrinsic parameters
are known and that the points q; and q; are normalized.
We also consider that the attitude of the cameras for the
both views are known and that these attitude measurements
have been used to align the camera coordinate system with
the ground plane. In this way, only the yaw angle 6 between
the two views remains unknown. Therefore equation 2 can
be expressed as:

tn, 3)

where R, denotes the unknown rotation around the yaw
angle (z-axis). Similarly, since we consider that the ground
plane constitutes the visible 3D plane during the movement
of the camera, we can note that n = [0,0,1] .
Consequently, equation 3 can be written as:

cos(f) —sin(d) 0 ¢l 0 ’
H=| sin(d) cos(d) 0 |—-—=1]0 , 4)
0 o 1] 1|1

d being unknown, the translation can be known only up to
scale. Consequently, the camera-plane distance d is set to 1
and absorbed by t. We then obtain:

cos(f) —sin(d) 0 ty 01"
H = sin(d) cos(d) 0 | — | t 0 ,(5)
0 0 1 t. 1
cos(d) —sin(0) —t,
= sin(f)  cos(6) —t, |. (6)
0 0 1-t¢,
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In a general manner,
parametrized as

this homography can be

hi —ho bhs
H=| ha M hy | . (7)
0 0 bhs

The problem consists of solving for the five entries of the
homography H. We consider the following relation:

q; x Hq; =0, 8)

where X denotes the cross product. By rewriting the equa-
tion, we obtain:

T, hi  —hs hs T
yi | x| ha hi hy yi | =0. )
wy 0 0 h5 w;

This gives us three equations, where two of them are
linearly independent. We expand the above equation and
consider only the first two linearly independent equations,
which results in:

_wjyl-hl — wj;vihg — wiwjh4 + wiyjh5 —0 (10)
wjxihl — ’Ujjyihg + wiw]'hg — wixjh5 ’
The equation system can be re-written into:
hy
ha
|: —w;Y; —W;T; 0 —W; Wy w;Y; :| h3 -0
W;T; —W;Y;  W;Wy 0 —Wi;Ty h4 ’
hs
(11)

The above equation represents a system of equations of
the form Ah = 0. It is important to note that A has rank
4. Since each point correspondence gives rise to two inde-
pendent equations, we require two point correspondences
to solve for h up to one unknown scale factor. The singular
vector of A, which has the smallest singular value spans
a one dimensional (up to scale) solution space. We chose
the solution h such that ||h|| = 1. Then, to obtain valid
rotation parameters we enforce the trigonometric constraint
h? + h3 = 1 on h, by dividing the solution vector by
++/h? + h3. The camera motion parameters, can directly be
derived from the homography:

t = [ —hs, —hs, 1—hs ], (12)
hi —hy O

R = | hy hi O (13)
0 0 1

Due to the sign ambiguity in ++/h% + h3 we obtain two
possible solutions for R and t. An alternative solution is
proposed in Appendix A which uses an inhomogeneous
system of equations to solve for the unknown camera pose.

4

3.2 2pt Relative Pose for a Known Vertical Plane Nor-
mal

The following algorithm is able to compute the relative
pose given 2 point correspondences and the normal of the
plane on which the points reside. The derivation will be
carried out for a vertical plane but works similar for planes
parametrized around other axis.

The homography for a vertical plane can be written as:

H = R, [ty ty,t.]" [n4,ny,0], (14)

where R, denotes the rotation matrix around the z-axis.
Expanding the expression in (14) we obtain:

[cos(0) — ngt, —sin(f) —nyt, 0
H = |[sin(f) —ngt, cos(0) —nyt, 0|, (15
| Nt —nyt, 1
(h1  he O
= |hs hs O (16)
| 5 Z—Zh5 1

This leaves 5 entries in H to be estimated. Each point
correspondence gives 2 inhomogeneous linearly indepen-
dent equations of the form Ah = b. Using equation 8 we
obtain:

|:7d — hza — hyb + h5l‘iyj + h5yic - 0 (17)
—€+h1a+h2b—h5l‘i$j —h5.Z‘jC_ ’
hi]
0 0 —a —-b =zy;+yc iz d
[a b 0 0 —3;»:;»—925»0} h - {e} » (18)
iy J hy
hs |
with:
Ty
a=w;z;, b=w;y;, c= Vi d = —w;y;, e = w;x;.

xT

Using 2 point correspondences, this gives 4 equations
which is a deficient-rank system. The solution is h =
Vy + Av (see [1]) where svd(A) = UDV' and v is the
last column vector of V. The vector y is computed by
yi = b';/d; where d; is the i'" diagonal entry of D and
b’ =U'b.

This leaves the unknown scalar A which can be
computed from the additional trigonometric constraint
(cos?(0) + sin® §) — 1 = 0).

The trigonometric constraint can be fully expressed in
terms of the variables h1, ho, h3, hy.

cos(f)? +sin()? -1 = 0, (19)

(hy 4+ nute)? + (=he —nyt)> =1 = 0,  (20)
with:

tz = nr(h4 — hl) — ny(hg + hg) (21)

Substituting symbolically the entries of h = Vy 4 Av
into Eq. 20 results in a quadratic equation in the remaining
unknown A (the expanded equation is not shown due to
its excessive length). Solving for the variable X\ gives two
solutions for the parameters hi, ho, hs, ha, hs.
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Once the homography H is estimated it can be decom-
posed into relative rotation and relative translation param-
eters. We back-substitute the entries of H from (16), that is
hi, ha, h3, hy and hs into (15). Knowing n, and n,, the
translation parameters can directly be computed using the
following relations:

_h5

te = ——; (22)
tac = Tlx(h4 — hl) — ny(h2 + hg), (23)
ty = le(hl — h4) — n@(hg + h3) (24)

And the rotation parameter is then obtained through:

cos(f) = hy+ngt,. (25)
3.3 2.5pt Relative Pose with Unknown Vertical Plane
Normal

The 2.5pt algorithm is an extension of the 2pt algorithm
described in section 3.2. The homography is parametrized
as in (14). However, when the plane normal n is not known
it is not possible to make use of the same linear constraint,
thus all the 6 parameters of H have to be estimated. To
do so, one more equation is required which can be taken
from a third point. Thus the constraint equations of 2 points
and 1 of the equations from a third point are stacked into
an equation system of the form Ah = b. For one point
correspondence two equations can be derived as follows.
First the homography is defined as:

cos(f) —nyty, —sin(d) —nyt, 0

H = |[sin(f) —ngt, cos(@) —nyt, 0], (26)
—ngt, —nyt, 1
hy hy O
= |hs hg O 27)
hs hg 1
Computing q; x Hq; leads to:
—C — h3a — h4b + h5$1‘yj + hGyiyj -0 (28)
—d+h1a+h2b— h5l’i$j — hﬁl'jyi ’
hy
ha
0 0 —a —b =y YilYj hs| e
|:a b 0 0 —LiTy;  —T5Y; h4 B d ’(29)
hs
he
with:
a=w;z;, b=w;y;, c =—wy;, d=w;x;.

As in section 3.2 the solution to this system is of the
form h = Vy + Av. The unknown scalar A can be computed
utilizing the trigonometric constraint and a constraint on the
normal vector:

cos?(0) + sin?(f) — 1 =0,

2 2 _
ny +ny, = 1.

(30)
(1)
Starting from equation 30 the constraint can be derived

by substituting cos(f) and sin(f) with expressions in hq
and ho. In a next step ¢, is substituted with equation 21.

5

The relation n2 + n?/ = 1 can be used to cancel out many

terms in the equation and one obtains:
h%ni + h3n2 + h%ni + hin2

—2(h1h2 + h3h4)nwny —1=0. (32)

Using (34-36) the equation can be rewritten in terms of
hi,ha, h3, hy, hs:

hihE — 2hihohshe + h3h2 + h3hE

—2hzhahshe + h3h2 — h2 — h2 = 0. (33)

Substituting symbolically the entries of h = Vy + Av
into equation 33 results in a 4" order polynomial in the
remaining unknown A (the expanded equation is not shown
due to its excessive length). Root solving for the variable A
gives 4 solutions for the parameter sets hq, ha, h3, ha, hs.

The decomposition of the homography into translation
and rotation parameters of the relative motion follows the
same steps as the one in section 3.2. However, it differs as the
normals n, and n, are not given and need to be computed
in the process. We again back-substitute the entries of H
from (27) into (26). First we compute ¢, using the relation
n? + nfl =1,

t, = (34)

+1/hi + hi.

This gives two solutions for ¢, which differ in the sign
and which leads to two further sets of derived solution sets.
Now the unknown normals can be computed.

_h5
. = , 35
n - (35)
—h
n, = tﬁ. (36)

After this the procedure of section 3.2 can be followed
again to compute the remaining parameters with the fol-
lowing equations, however, using both solutions for ¢,, n,
and n,,

t, = nx(h4—h1) —ny(h2—|—h3), (37)
ty = ’I’Ly(hl — h4) — nL(hg + h3) (38)

The angle 6 can be computed from the relation
cos(0) = hi+ngt,. (39)

An interesting fact in this case is, that only one of the two
available equations from the third point is used. Although
for the RANSAC loop it is still necessary to sample 3 points
for this method, it is now possible to do a consistency check
on the third point correspondence. To be an outlier free
homography hypothesis the one remaining equation has
also to be fulfilled. This can easily be tested and if it is not
fulfilled the hypothesis is prematurely rejected. This gives
a computational advantage over the standard 3pt essential
matrix method [3], because inconsistent samples can be
detected without testing on all the other point correspon-
dences.
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3.4 3pt Relative Pose using the Homography Con-
straint

In this section we discuss a 3pt formulation of the camera
pose estimation with a known vertical direction. It differs
from the algorithms in the previous section as it does not
need the presence of scene planes. A 3pt algorithm has
already been presented by [3] but using an essential matrix
formulation. With this 3pt algorithm we propose an alter-
native to the previous essential matrix algorithm but based
on a homography formulation. We start from (14), instead
of assuming the plane to be parallel to the gravity vector
we don’t make any assumption on the plane orientation and
therefore use 3 parameters n,, ny, n, for the fully unknown
plane normal, which leads to:

H=R, — [ts, ty,ts]" [P, 1y, 7] (40)

The camera-plane distance is absorbed by t the same way
as in the previous sections.

The homography matrix then consists of the following
entries:

cos(f) —tyn, —sin(f) —tyn, —tyn,
H = |sin(d) —tyn, cos(d) —tyn,  —tyn, (41)
—t,ny —t.ny 1—1t.,n,

The unknowns we are seeking for are the motion pa-
rameters cos(6),sin(6), t;, t,,t, and the normal [ng, n,,n.]|
of the plane spanned by the 3 point correspondences. Re-
call that the standard 3pt essential matrix algorithm only
solves for the camera motion, while the 3pt homography
algorithm provides the camera motion and a plane normal
with the same number of correspondences. To solve for
the unknowns we setup an equation system of the form:
q; x Hq; = 0 and expand the relations to obtain the
following two polynomial equations:

aty —bt, —wjz;sin(0) — w;y; cos(9) + yjw; = 0, (42)
—aty + ct, +wjz; cos(0) — w;y; sin(f) — x;w; = 0, (43)
where:
= wj:cmz + wjymy —+ wjnzwi,
b = yywin, +yin.z; + yinyyi, (44)
C = TjNgTi + T;WiNy + TiNyY;-

The third equation obtained from q; x Hq; = 0 is omitted
since it is a linear combination of the two other equations.
Therefore each point correspondence gives 2 linearly inde-
pendent equations and there are two additional quadratic
constraints, the trigonometric constraint and the unit length
of the normal vector that can be utilized:

sin?(#) 4 cos?(6)

2 2 2 _
ny+n,+n; = L

1, (45)
(46)

The total number of unknowns is 8 and the two quadratic
constraints together with the equations from 3 point cor-
respondences give a total of 8 polynomial equations in
the unknowns. An established way to find an algebraic
solution to such a polynomial equation system is by using
the Grobner basis technique [30]. By computing the Grobner

TABLE 1
Comparison of the degenerate conditions (yes means degenerate) for
the standard 3pt method, the proposed 3pt homography method, the
2pt methods and the 2.5pt method.

3pt-essential | 3pt-hom | 2pt | 2.5pt
collinear points no yes no no
collinear points parallel yes yes no no
to translation direction
points  coplanar  to yes yes no no
translation vector

basis a univariate polynomial can be found which allows
to find the value of the unknown variable by root solving.
The remaining variables can then be computed by back-
substitution. To solve our problem we use the automatic
Grobner basis solver by Kukelova et al. [31], which can be
downloaded at the authors webpage. The software automat-
ically generates Matlab-Code that computes a solution to the
given polynomial equation system (in our case the above
specified 8 equations). The produced Matlab-Code consists
of 299 lines and thus cannot be given here. The analysis of
the Grobner basis solutions shows, that the final univariate
polynomial has degree 8, which means that there are up to
8 real solutions to our problem.

3.5 Degenerate Configurations

In this section we discuss the degenerate conditions for
the proposed algorithms. In previous works [3], [18], [17]
the degenerate conditions for the standard 3pt method
for essential matrix estimation have been investigated in
detail. In these papers multiple degenerate conditions are
identified. It is also pointed out that a collinear configura-
tion of 3D points is in general not a degenerate condition
for the 3pt method, while it is one for the 5pt method.
Degenerate conditions for the standard 3pt algorithm how-
ever are collinear points that are parallel to the translation
direction and points that are coplanar to the translation
vector. We investigated if these scenarios also pose degen-
erate conditions for our proposed algorithms, the 2pt, 2.5pt
and 3pt homography method by conducting experiments
with synthetic data. Degenerate cases could be identified
by a rank loss of the equation system matrix or for the
Grobner basis case as a rank loss of the action matrix. For
the 3pt homography case this revealed that the proposed
method shares the degenerate conditions of the standard 3pt
method but in addition also has a degenerate condition for
the case of collinear points. This is understandable as the
3pt homography method also solves for the plane normal
which then has an undefined degree of freedom around the
axis of the collinear points. For the 2pt (both 2pt methods
share the same properties) and 2.5pt algorithm these special
cases however, do not pose degenerate conditions. More
information in case of knowledge or partial knowledge of
plane parameters allows to avoid degeneracy in the cases
critical for the more general 3pt methods. The results of the
comparison are summarized in Table 1.
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4 EXPERIMENTS
4.1 Synthetic Evaluation

To evaluate the algorithms on synthetic data we chose the
following setup. The average distance of the scene to the
first camera center is set to 1. The scene consists of two
planes, one ground plane and one vertical plane which
is parallel to the image plane of the first camera. Both
planes consist of 200 randomly sampled points. The base-
line between two cameras is set to be 0.2, i.e., 20% of the
average scene distance, and the focal length is set to 1000
pixels, with a field of view of 45 degrees.
Each algorithm is evaluated under varying image noise and
increasing IMU noise. Each of the two setups is evaluated
under a forward, into the scene (along the z-axis) and a
sideways (along the x-axis) translation of the second camera.
In addition the second camera is rotated around each axis.
To evaluate the robustness of the algorithms we compare
the relative translation and rotation separately. The error
measure compares the angle difference between the true
rotation and the estimated rotation. Since the translation is
only known up to scale, we compare the angle between the
true- and estimated translation. The errors are computed as
follows:

o Angle difference in R
¢r = arccos((Tr(RRT) — 1)/2)
e Direction difference in t:

& = arccos((t"t)/([[t[[E[]))

Where R, t denote the ground-truth transformation and R,
t are the corresponding estimated transformations.

Each data point in the plots represents the 5-quantile!
(Quintiles) of 1000 measurements.

4.1.1 Relative Pose

Fig. 3 and Fig. 4 compare the 2-point algorithm to the gen-
eral 5pt-essential matrix [2], 4pt-homography [1] and 3pt-
essential matrix [3] algorithms. Notice, in these experiments
the camera poses were computed from points randomly
drawn from the ground plane. Since camera poses estimated
from coplanar points do not provide a unique solution for
the 5pt, 4pt and 3pt-essential matrix algorithm we evaluate
each hypothesis with all points coming from both planes.
The solution providing the most inliers is chosen to be the
correct one. This evaluation is used in all our synthetic
experiments. Similarly Fig. 5 and Fig. 6 show a comparison
of the 2.5pt algorithm with the general 5pt, the 4pt and the
3pt-essential matrix algorithms. Here the camera poses are
computed from points randomly sampled from the vertical
plane only.

The evaluation shows that knowing the vertical direction
and exploiting the planarity of the scene improves motion
estimation. The 2pt and 2.5pt algorithms outperform the
5pt and 4pt algorithm, in terms of accuracy. Under perfect
IMU measurements the algorithms are robust to image
noise and perform significantly better than the 5pt and 4pt
algorithm. With increasing IMU noise their performance are
still comparable to the 5pt algorithm and superior to the 4pt
algorithm.

1. The k-quantile represents the boundary value of the k*" interval
when dividing ordered data into k regular intervals. For k = 2, the
2-quantile represents the median value.

4.1.2 3pt Homography

Fig. 7 and Fig. 8 compare the 3pt-homography based al-
gorithm to the general 5pt [2] and the 3pt-essential matrix
algorithms [3]. The evaluation shows that the proposed
method outperforms the 5pt algorithm, in terms of accuracy.
Under perfect IMU measurements the algorithm is robust
to image noise and performs significantly better than the
5pt algorithm and equally good as the 3pt-essential matrix
algorithm. With increasing IMU noise the performance of
the 3pt-essential matrix and 3pt-homography algorithms are
still comparable to the 5pt algorithm.

4.1.3 Timings

We evaluate the run-time of all algorithms on an Intel i7-
2600K 3.4GHz using Matlab. To provide a fair comparison
all algorithms were implemented in Matlab. No mex files
were used, except for the reduced row echelon function rref,
which is required by the 3pt-essential and 3pt-homography
algorithms. All timings were averaged over 1000 runs. Ta-
ble 2 summarizes the run-times for each of the six algo-
rithms. The high run time of the 3pt-homography algorithm
is due to the complexity of the Grobner basis solution, which
has to perform Gauss-Jordan elimination on the 443x451
elimination matrix.

For one RANSAC iteration the timings can vary dras-
tically between algorithms. This is due to the different
solution spaces the algorithms provide. To have the same
error measure for all algorithms, we choose to use the re-
projection error to select the correct camera poses among
a set of possible poses. For instance the 2pt algorithm pro-
vides one unique camera pose, while the 5pt algorithm can
provide up to 10 different essential matrices. In addition for
each essential matrix 4 possible camera poses exist and need
to be verified to find the correct pose, which can result in a
total of 40 possible camera poses. While the homography
formulations directly provide sets of camera poses. Even
though the hypothesis estimation of the 3pt-homography
algorithm has a larger constant time complexity, compared
to its essential matrix counter part, one RANSAC iteration
is cheaper, since fewer potential poses need to be evalu-
ated. The table clearly shows that the computation time is
dominated by the hypothesis selection (re-projection error
computation) and not by the solver. In all experiments we
used a set of 200 point correspondences.

TABLE 2
Run-time comparison of different pose estimation algorithms. The
second column provides timings for estimating the hypothesis. The
third column provides timings for one RANSAC iterations, which
includes the selection of the right solution from a set of hypothesis. The
last column shows the average number of real solutions (camera
poses) provided by the respective algorithm. See text for more details.

Hypothesis RANSAC Avg.
Method Estimation(ms) | 1 Iteration(ms) | # Solutions
2pt 0.09 8.31 2
2.5pt 0.22 33.45 8
3pt-homography 27.28 55.17 6.85
3pt-essential 0.49 25.02 6.18
4pt-homography 0.18 8.65 2
5pt-essential 0.42 64.33 16.02
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4.2 Real Data Experiments

In the following section we evaluate the proposed algo-
rithms on both an indoor and outdoor environment.

4.2.1 Error Measure

In order to compare the estimated camera poses to the
ground-truth, we used the relative pose error (RPE) measure
as proposed by Sturm [32]. The RPE compares the local
accuracy of the trajectory over a fixed time interval A, that
corresponds to the drift of the trajectory. The RPE at time
step ¢ can be defined as:
Ei = (Q7'Qita) " (P 'Pisa), (47)
where Q;,P; € SE(3) represent the ground truth and
estimated poses respectively. E; then represents the relative
error. For a sequence of n camera poses, m = n — A indi-
vidual relative pose errors are then estimated. From these
errors, we propose to compute the root mean squared error
(RMSE) over all time indices of the translational component
as

1 m
RMSE(E;.,,A) = Ezntrans(Ei)Hz, (48)
=1

where trans(E;) refers to the translational components
of the relative pose error E;.

4.2.2 Vicon Dataset

In order to have a practical evaluation of the 2pt, 2.5pt and
3pt algorithms, several real datasets have been collected
with reliable ground-truth, see Fig. 9. The ground-truth data
has been obtained by conducting the experiments in a room
equipped with a Vicon motion capture system made of 22
cameras. We used the Vicon data as inertial measures and
scale factor in the different experiments. The sequences have
been acquired with a perspective camera mounted either
on teleoperated Segway mobile robot (Fig. 9) or with a
handheld system in order to have planar and 3D trajectories.
In both cases the cameras are synchronized with the Vicon
system. The image resolution used is 1624 x 1234 pixels.
The length of these trajectories is between 20 and 50 meters
and the number of images is between 150 and 350 per
sequence. Robot motion speed is about 1m/s. Two different
sets have been acquired, one set showing the ground plane
dominantly and another set showing the walls dominantly.

We perform a comparison of the 2pt, 2.5pt and 3pt-
homography with the 5pt algorithm in order to show the
efficiency of the proposed methods. First, we use [33] to
extract and match SIFT [34] features. The same matched
feature point sets are used for the different algorithms and
form the input to RANSAC [35] in order to select the inliers.
For RANSAC we use a fixed number of 100 iterations, in all
our experiments.

Figure 10 shows the evaluation of the 2pt ground plane
algorithm. The trajectories obtained with 2pt (red curve)
and 5pt (black curve) are compared with the ground-truth
(blue curve) from Vicon. In all these experiments, even if
both approaches propose trajectories globally with a similar
shape than the ground-truth, we can note that the 2pt

8
TABLE 3
Root Mean Squared Error overview.

Sequence 2pt (mm) | 5pt (mm)
Ground Sequence I 8.94 48.55
Ground Sequence II 9.28 56.66
Ground Sequence III 18.46 65.39
Ground Sequence IV 14.25 93.30
Ground Sequence V 25.61 34.46
Ground Sequence VI 39.75 67.45

TABLE 4

Root Mean Squared Error overview for the Wall Sequence.

Method Wall Sequence I | Wall Sequence 11
2.5pt 60.65 41.60
Spt-essential 24.97 27.84
3pt-essential 27.44 64.65
3pt-homography 27.26 65.96

algorithm provides better results than the 5pt method. In the
case of planar trajectories, that is sequence I, II, IV in Fig. 10,
it is worth noting that the 2pt algorithm has a very low drift
in the vertical axis while the 5pt accumulates significant
error. Over the six sequences, the mean angular error in
translation is equal to 0.1883 radians for the 2pt and 0.3380
for the 5pt.

The root mean squared error as defined in equation 48
is given for all 6 sequences in Table 3. The 2pt clearly
outperforms the 5pt algorithm, providing a 1.69 x —6.54x
lower error compared to the 5pt algorithm.

Figure 11 compares the different trajectories obtained
from the 2.5pt (red curve), the 3pt-homography algorithm
(green curve), the 3pt-essential matrix algorithm (magenta
curve) and the 5pt (black curve), to the ground-truth (blue
curve) obtained from the Vicon system.

In Table 4 we compare the RMS-error of the different
algorithms. The 2.5pt algorithm shows similar performance
compared to the standard 5pt algorithm and both 3pt algo-
rithms, however having the advantage of a much simpler
derivation.

This experiments also demonstrated that the assump-
tions taken for the 2pt algorithm (flat ground plane) and
for the 2.5pt algorithm (vertical walls) are met in practical
situations and can be used in real applications.

4.2.3 2pt Algorithm in a SFM Pipeline

In this final experiment we demonstrate the usage of the
2pt algorithm within an incremental SEM pipeline. The 2pt
algorithm is used to replace the 5pt algorithm within the
SFM pipeline. For this experiment the MAVMAP [36] SFM
pipeline has been adapted to compare the 2pt algorithm to
the 5pt algorithm. Two-view pose estimation is used when
processing each new frame. To compute the relative pose
between two consecutive frames we estimate the essential
matrix in case of the 5pt algorithm and the homography
for the 2pt algorithm. Afterwards full bundle adjustment is
performed to compute precise camera poses and 3D points.
The main goal of this experiment is to show that the 2pt
can in practice replace standard algorithms (like the 5pt) for
gaining a speed up but by maintaining the accuracy of the
system.
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For this experiment a UAV data set of a parking lot
(denotated ParkingLot data set) is used. Images were cap-
tured by a gimbal mounted camera, such that the z-axis of
the camera aligns with the gravity direction. The dataset
was recorded at a native resolution of 24MP. The UAV was
equipped with GPS and the GPS trajectory is utilized as
ground truth for comparison. Figure 12 shows the results for
this experiment. Figure 12(a) shows the output of the SFM
system, resulting 3D point cloud (densified with SURE [37]),
camera positions (red) and GPS positions (green). Fig-
ure 12(b) shows RPE plots for an experiment using the
5pt (black) algorithm and the 2pt (red) algorithm. Both
algorithms lead to almost identical results. The value of the
remaining RPE error is mainly due to the uncertainty of the
GPS measurements and expected in this form. The resulting
re-projection error after bundle adjustment is 0.249px for the
2pt case and 0.246px for the 5pt case, almost identical. To be
clear, the reason for the identical re-projection error comes
from bundle adjustment. This experiment demonstrates that
the proposed 2pt algorithm can successfully replace the
standard 5pt in a SFM system seamlessly but with the
advantage of a gained speed-up.

5 CONCLUSION

In this paper we presented novel algorithms for relative
pose estimation. The proposed methods differ from previ-
ous algorithms by utilizing a known common direction and
assumptions about the environment. This makes it possible
to derive algorithms that need less point correspondences
for relative motion estimation as compared to state-of-the-
art methods. This leads to improved RANSAC performance,
which is a fundamental building block of any motion es-
timation or SFM system. In our paper we show through
a variety of experiments with synthetic and real data the
usability of the method. In particular, the results of our real
world experiments clearly demonstrate that the assump-
tions about ground plane and vertical walls really hold in
typical usage scenarios. Our algorithms have successfully
been used for indoor robot navigation as well as for 3D
reconstruction of aerial images taken from a UAV.

In addition to pure ego-motion estimation, there exists
another obvious use case for our proposed algorithms,
which has not been investigated in this work. Our methods
not only provide the motion between views but are also
able to detect the different scene planes of the environment.
In an environment consisting of vertical walls and ground
plane, the proposed 2pt methods could do plane detection
more efficient and robust as compared to the otherwise used
general 4pt homography method.

APPENDIX A

AN ALTERNATIVE SOLUTION TO THE 2PT HOMOG-
RAPHY FORMULATION

The general homographic relation for points belonging to a

3D plane and projected into two different views is defined
as follows:

q; = Haq;, (49)

9

with q; = [2;,y;,w;] T and q; = [z;,y;,w;] " the projective
coordinates of the points between the views i and j. H is
given by:

H=R- étnT,
where R and t are respectively the rotation and the trans-
lation between view ¢ and j and where d is the distance
between the camera i and the 3D plane described by the
normal n.

In our case, we assume that the camera intrinsic parameters
are known and that the points q; and q; are normalized.
We also consider that the attitude of the cameras for the
both views are known and that these attitude measurements
have been used to align the camera coordinate system
with the ground plane. In this way, only the yaw angle 6
between the two views remains unknown. Similarly, since
we consider that the ground plane constitutes the visible 3D
plane during the movement of the cameras, we can note that
n=1[0,0,1".

Consequently, equation(50) can be written as:

(50)

cos(f) —sin(d) 0 ¢l 0 i
H=| sin(d) cos(d) 0 |—-—=1]0 , (51)
0 o 1] 1|1

d being unknown, translation can be known only up to scale.
Consequently, the camera-plane distance d is set to 1 and
absorbed by t. We then obtain:

cos(f) —sin(f) O te 071"
H = sin(f) cos(d) O | — | ty 0| (52)
0 0 1 t. 1
cos(d) —sin(0) —t,
= sin(f)  cos(6) —ty (53)
0 0 1-1,

If 1 —t, # 0, then the homography can be scaled, by
deviding H by 1 — ¢, which results in:

cos(9) _sin(0) _ _t,
1—t. 1-—t, 1-t.
H= | sin(d) cos(®) _ t, (54)
T—t, 1—t. 1t
0 0 1

In a general manner, this homography can be written as

hiy —hs hs
H=| ha h1 hg (55)
0 0 1

The problem consists then in estimating this homogra-

phy. In this way, we consider the following relation:
q; x Hq; =0, (56)

where X denotes the cross product. In our case, we obtain:

zj hi  —hy hs T
yi | X | ha hi hy yi | =0, (57)
wiy; — w;(hex; + hay; + haw;)
—w;x; + wj(hix; + hoyi + haw;) =0.
xj(how; + hiy; + haw;) — yj(hix; + hay; + haw;) )
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The third equation being a linear combination of the two
others, we only consider the two first lines of the previous
system and obtain:

iY; — wjhzxi - wjhlyi - wjh4wi
—wixj + wjhlxl- - wjhgyi — ’LUjhg’wi

) } =0, (59)

which can be finally rewritten as

hy
7’(ij1' 7’LU]'"E1' 0 —iji hg o —wiyj
|: W;T; —W;Y; Wi;w; 0 :| h3 _[ WX 4 :|
ha
(60)

We can observe that two points are sufficient in order to
estimate the hy,l = {1,2,3,4} elements and that the system
can be easily extended to n points in order to obtain an over
determined system. This possibility is then very interesting
because it permits to apply a RANSAC algorithm in order
to reject the outliers.

Once the hy,l {1,2,3,4} estimated, we are then
able to evaluate the motion parameters, i.e., 0,t,,t, and
t.. By identification between (55) and (54), we know that
hi = < and hy = 20 Then, if hy # 0, we have

T—t.
tan(f) = h—f and fmally 9 = arctan(h ). Due to the
periodicity of arctan two solutions arises, 0 and 0 + 7. If

hy =0, then § = £7.

Knowing the angle yaw 6 between the two views and if
hi # 0, we then have t, = 1— %@ 1fp; =0, then§ = +7
and we can use the relation hy = Sm(g) ,toobtaint, = 1+~

Consequently, we can deduce the two remammg translatlon
parameters t, = hg(t. — 1) and t, = ha(t. — 1).
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Fig. 9. Left, Vicon arena used to record the ground-truth dataset. Center, teleoperated Segway mobile robot capturing data. Right, sample image
captured by the robot.
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