R. Abreu and A. Van-gemund, A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis, Proc. 8h Symposium on Abstraction, Reformulation and Approximation (SARA'09), 2009.

F. Afrati, A. Gionis, and H. Mannila, Approximating a Collection of Frequent Sets, Proc. 10th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp.12-19, 2004.

R. Agrawal, T. Imielinski, and A. Swami, Mining Association Rules between Sets of Items in Large Database, ACM SIGMOD International Conference on Management of Data, pp.207-216, 1993.

J. Bailey, T. Manoukian, and K. Ramamohanarao, A Fast Algorithm for Computing Hypergraph Transversals and its Application in Mining Emerging Patterns, Proc. 3rd IEEE International Conference on Data Mining (ICDM'03), pp.485-488, 2003.

R. Bayardo, Efficiently Mining Long Patterns From Databases, Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.85-93, 1998.

C. Berge, Hypergraphs : Combinatorics of Finite Sets, vol.45, 1989.

M. Boley, On Approximating Minimum Infrequent and Maximum Frequent Sets, Proc. 10th International Conference on Discovery Science (DS'07), pp.68-77, 2007.

J. F. Boulicaut, A. Bykowski, and R. Rigotti, Free-sets : a Condensed Representation of Boolean Data for the Approximation of Frequency Queries, Data Mining and Knowledge Discovery, vol.7, issue.1, pp.5-22, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01503814

D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases, Proc. International Conference on Data Engineering (ICDE'01), pp.443-452, 2001.

F. De-marchi and J. Petit, Zigzag: a new algorithm for mining large inclusion dependencies in database, Proc. 3rd IEEE International Conference on Data Mining (ICDM'03), pp.27-34, 2003.

G. Dong and J. Li, Efficient Mining of Emerging Patterns: Discovering Trends and Differences, Proc. 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining (SIGKDD'99), pp.43-52, 1999.

G. Dong and J. Li, Mining Border Descriptions of Emerging Patterns from DatasetPairs, Knowledge and Information Systems, vol.8, issue.2, pp.178-202, 2005.

A. Ducournau, A. Bretto, S. Rital, and B. Laget, A Reductive Approach to Hypergraph Clustering: An Application to Image Segmentation, Pattern Recognition, vol.45, issue.7, pp.2788-2803, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01011245

N. Durand and B. Crémilleux, ECCLAT: a New Approach of Clusters Discovery in Categorical Data, Proc. 22nd SGAI International Conference on Knowledge Based Systems and Applied Artificial Intelligence (ES'02), pp.177-190, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00324786

N. Durand and M. Quafafou, Approximation of Frequent Itemset Border by Computing Approximate Minimal Hypergraph Transversals, Proc. 16th International Conference on Data Warehousing and Knowledge Discovery (DaWak'14), pp.357-368, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01465114

T. Eiter and G. Gottlob, Hypergraph Transversal Computation and Related Problems in Logic and AI, Proc. 8th European Conference on Logics in Artificial Intelligence (JELIA'02), pp.549-564, 2002.

F. Flouvat, F. De-marchi, and J. M. Petit, A new classification of datasets for frequent itemsets, Intelligent Information Systems, vol.34, pp.1-19, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01381427

F. Flouvat, F. De-marchi, and J. Petit, ABS: Adaptive Borders Search of frequent itemsets, Proc. IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'04), 2004.

M. L. Fredman and L. Khachiyan, On the Complexity of Dualization of Monotone Disjunctive Normal Forms, Algorithms, vol.21, issue.3, pp.618-628, 1996.

K. Gouda and M. J. Zaki, GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets, Data Mining and Knowledge Discovery, vol.11, pp.1-20, 2005.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen et al., Discovering All Most Specific Sentences, ACM Transactions on Database Systems, vol.28, issue.2, pp.140-174, 2003.

J. Han, H. Cheng, D. Xin, and X. Yan, Frequent pattern mining: current status and future directions, Data Mining and Knowledge Discovery, vol.15, pp.55-86, 2007.

M. Hasan and M. J. Zaki, MUSK: Uniform Sampling of k Maximal Patterns, SIAM Data Mining Conference (SDM'09), pp.650-661, 2009.

C. Hébert, A. Bretto, and B. Crémilleux, A data mining formalization to improve hypergraph transversal computation, Fundamenta Informaticae, IOS Press, vol.80, issue.4, pp.415-433, 2007.

R. Jin, Y. Xiang, and L. Liu, Cartesian Contour: a Concise Representation for a Collection of Frequent Sets, Proc. 15th International Conference on Knowledge Discovery and Data Mining (KDD'09), pp.417-425, 2009.

M. Karonski and Z. Palka, One standard Marczewski-Steinhaus outdistances between hypergraphs, Zastosowania Matematyki Applicationes Mathematicae, vol.16, issue.1, pp.47-57, 1977.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel Hypergraph Partitioning: Applications in VLSI Domain, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.7, issue.1, pp.69-79, 1999.
DOI : 10.1109/92.748202

URL : http://www.cs.iitm.ernet.in/~shankar/teaching/cs680/foils/docs/hmetisTCAD99.pdf

D. Kavvadias and E. Stavropoulos, An Efficient Algorithm for the Transversal Hypergraph Generation, Graph Algorithms and Applications, vol.9, issue.2, pp.239-264, 2005.
DOI : 10.7155/jgaa.00107

URL : http://lca.ceid.upatras.gr/~estavrop/papers/JGAA2005.pdf

D. I. Lin and Z. M. Kedem, Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Sets, Proc. International Conference on Extending Database Technology (EDBT'98), pp.105-119, 1998.
DOI : 10.1007/bfb0100980

URL : http://ftp.gwdg.de/pub/languages/nyu.edu/tech-reports/tr742.ps.gz

H. Mannila and H. Toivonen, Levelwise Search and Borders of Theories in Knowledge Discovery, Data Mining and Knowledge Discovery, vol.1, issue.3, pp.241-258, 1997.

S. Moens and B. Goethals, Randomly Sampling Maximal Itemsets, Proc. ACM SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA'13), pp.79-86, 2013.
DOI : 10.1145/2501511.2501523

URL : http://poloclub.gatech.edu/idea2013/papers/p80-moens.pdf

K. Murakami and T. Uno, Efficient Algorithms for Dualizing Large-Scale Hypergraphs, Discrete Applied Mathematics, vol.170, pp.83-94, 2014.
DOI : 10.1016/j.dam.2014.01.012

URL : http://arxiv.org/pdf/1102.3813

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Efficient Mining of Association Rules Using Closed Itemset Lattices, Information Systems, vol.24, issue.1, pp.25-46, 1999.
DOI : 10.1016/s0306-4379(99)00003-4

URL : http://deptinfo.unice.fr/%7Epasquier/Articles/IS99.ps

K. Ramamohanarao, J. Bailey, and H. Fan, Efficient Mining of Contrast Patterns and Their Applications to Classification, Proc. 3rd International Conference on Intelligent Sensing and Information Processing (ICISIP'05), pp.39-47, 2005.
DOI : 10.1109/icisip.2005.1619410

URL : http://www.cs.mu.oz.au/~jbailey/papers/icisip05.pdf

F. Rioult, B. Zanuttini, and B. Crémilleux, Nonredundant Generalized Rules and Their Impact in Classification, Advances in Intelligent Information Systems, Series: Studies in Computational Intelligence, vol.265, pp.3-25, 2010.
DOI : 10.1007/978-3-642-05183-8_1

URL : https://hal.archives-ouvertes.fr/hal-00944355

D. P. Ruchkys and S. W. Song, A Parallel Approximation Hitting Set Algorithm for Gene Expression Analysis, Proc. 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'02), pp.75-81, 2002.
DOI : 10.1109/cahpc.2002.1180762

URL : http://www.ime.usp.br/~song/papers/sbac02.ps

K. Satoh and T. Uno, Enumerating Maximal Frequent Sets Using Irredundant Dualization, Proc. 6th International Conference on Discovery Science, pp.256-268, 2003.
DOI : 10.1007/978-3-540-39644-4_22

S. Vinterbo and A. Øhrn, Minimal Approximate Hitting Sets and Rule Templates, Approximate Reasoning, vol.25, pp.123-143, 2000.
DOI : 10.1016/s0888-613x(00)00051-7

URL : https://doi.org/10.1016/s0888-613x(00)00051-7

J. Vreeken, M. Van-leeuwen, and A. Siebes, Krimp: Mining Itemsets that Compress, Data Mining and Knowledge Discovery, vol.23, issue.1, 2011.
DOI : 10.1007/s10618-010-0202-x

URL : https://link.springer.com/content/pdf/10.1007%2Fs10618-010-0202-x.pdf

G. Yang, The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns, Proc. International Conference on Knowledge Discovery in Databases (KDD'04), pp.344-353, 2004.
DOI : 10.1145/1014052.1014091

F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, Mining Colossal Frequent Patterns by Core Pattern Fusion, Proc. 23rd International Conference on Data Engineering (ICDE'07), pp.706-715, 2007.
DOI : 10.1109/icde.2007.367916

URL : http://www.cs.uiuc.edu/~hanj/pdf/icde07_feidazhu.pdf