Indexation d'images 2D : vers une reconnaissance d'objets multi-critères

Résumé : D'importants volumes d'images numériques, conduisent aujourd'hui à une forte demande d'outils permettant d'indexer puis de rechercher une image. Indexer une image consiste à en extraire une signature. Rechercher une image dans une base consiste alors à comparer plusieurs signatures entre elles. Une indexation est dite basée sur le contenu lorsqu'elle utilise les données de bas niveau (couleur, texture) de l'image pour construire la signature. De tels systèmes sont face à une limitation fondamentale : ils permettent aux utilisateurs de rechercher des images d'après leurs caractéristiques de bas niveaux (matière) alors que ces derniers préfèreraient une recherche plus sémantique, relative à ce que l'image décrit (les objets présents, par exemple). Dans cette thèse, nous proposons un système d'indexation qui permet de réduire le fossé entre les données de bas niveau et la sémantique. Tout d'abord, l'utilisateur formule, lors de la requête, un modèle (prototype) de l'objet recherché. Lors de la comparaison, entre ce modèle et les images de la base, plusieurs critères sont utilisés, comme la forme mais aussi l'organisation spatiale de différentes zones d'intérêt. Une étape cruciale consiste justement à extraire de telles zones d'intérêt. Les approches de segmentation sont souvent entachées d'erreur, notamment à cause de variation d'éclairage dans la scène. Nous proposons donc de ne pas décrire une image par une segmentation unique mais plutôt par une hiérarchie de segmentations. Celle-ci représente l'image à différents niveaux de détails et se construit à partir de regroupements successifs de régions (groupements perceptuels), basés à la fois sur des critères de bas niveaux mais aussi géométriques. Durant la comparaison entre un modèle et une image, nous considérons les correspondances entre chacune des parties au lieu d'utiliser seulement le modèle dans sa globalité. Plus précisément, la correspondance prend en compte les formes des parties, à travers les descripteurs ART (Angular Radial Transform) et CSS (Curvature Scale Space). En outre, l'organisation spatiale de sparties entre elles est également prise en compte. Toutes ces caractéristiques sont combinées entre elles, par la théorie de l'évidence de Shafer afin d'en déduire une mesure unique de similarité
Type de document :
Pré-publication, Document de travail
4308; T. 2006
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01464802
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : vendredi 10 février 2017 - 15:01:08
Dernière modification le : samedi 11 février 2017 - 01:08:00

Identifiants

  • HAL Id : hal-01464802, version 1

Collections

Citation

Nicolas Zlatoff. Indexation d'images 2D : vers une reconnaissance d'objets multi-critères. 4308; T. 2006. <hal-01464802>

Partager

Métriques

Consultations de la notice

45