
Production-Driven Patch Generation

Thomas Durieux, Youssef Hamadi, Martin Monperrus

To cite this version:

Thomas Durieux, Youssef Hamadi, Martin Monperrus. Production-Driven Patch Generation.
Proceedings of the 39th International Conference on Software Engineering: New Ideas and
Emerging Results Track, 2017, Buenos Aires, Argentina. pp.23-26, 2017, .

HAL Id: hal-01463689

https://hal.archives-ouvertes.fr/hal-01463689

Submitted on 9 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01463689


Production-Driven Patch Generation
Thomas Durieux

University of Lille & Inria Lille, France
Youssef Hamadi

Ecole Polytechnique, LIX, France
Martin Monperrus

University of Lille & Inria Lille, France

Abstract—We present an original concept for patch generation:
we propose to do it directly in production. Our idea is to
generate patches on-the-fly based on automated analysis of the
failure context. By doing this in production, the repair process
has complete access to the system state at the point of failure.
We propose to perform live regression testing of the generated
patches directly on the production traffic, by feeding a sandboxed
version of the application with a copy of the production traffic,
the “shadow traffic”. Our concept widens the applicability of
program repair, because it removes the requirements of having
a failing test case.

I. INTRODUCTION

Program repair requires the presence of a failing test case to
reproduce a failure that has happened in production. Writing
such a failing test case is a really hard task, because the
developer in charge of reproducing a failure has little access
to the system state at the point of failure (she basically only
has logs). The difficulty of reproducing production failures
has a direct impact on applicability of program repair: with no
failing test, there is no patch generation. We aim at weakening
the requirements of program repair by removing the mandatory
presence of a failing test case.

Our intuition is to perform program repair directly in
production, so that the repair process has a direct access to
the system state at the point of failure. This paper presents an
architecture, called Itzal, it generates patches without requiring
a failing test case. The process of Itzal is as follows. First,
Itzal uses production assertions or runtime exceptions to
detect failures. Second, right after the failure is detected in
production, a patch is searched in a sandboxed environment
that mimics the production one. If a patch fixes the failure,
it is a “candidate patch”. Third, the patches are tested for
regression, directly in production, based on traffic that is an
exact copy of the production traffic – we call it shadow traffic.
Itzal has been realized in a prototype implementation for Java
which focuses on generating source code patches for null
dereferences.

This is a new line of research in automatic repair. Compared
to classical test-suite based patch generation (e.g. [1]), Itzal
does patch generation online, i.e. as soon as the failure
happens, with no need for reproducing the failure. Yet, Itzal is
not a classical runtime repair technique either (e.g. [2]): while
the patches are generated online in production, the system state
is never altered. The Itzal patches are applied later, once the
developer has validated them.

To sum up, our contributions are:

Figure 1: The Architecture of Itzal. The key idea is to duplicate
production traffic via a “shadower”, the duplicated traffic is
used to search for patches and to validate candidate patches.

• Itzal, an architecture for patch generation in production
that does not require a failing test case.

• The use of shadow production systems and shadow traffic
in the context of automatic repair to generate patches in
production.

• The design and implementation of a Java implementation
of this vision for null pointer exceptions.

This paper is based on content from Arxiv’s document
#1609.06848 [3] and is structured as follows. Section II
presents Itzal. Section III presents the related works and
Section IV concludes.

II. ITZAL

We now present Itzal, a novel software repair technique
for generating patches without requiring failing test cases,
directly in the production environment. Itzal is a “testless”
patch generation approach.

A. Intuition

The intuition behind Itzal is twofold. First, one can use
production runtime contracts to drive the generation of source
code patches. This includes classical pre- and post-conditions
and implicit contracts such that an accessed variable must not
be null. The latter is important because the violations of those
implicit contracts come for free in any modern runtime, usually
under the form of runtime exceptions.

The second intuition is that one can use the diversity of
the production inputs to perform in-the-field regression testing
on the synthesized patches. This has the advantage that the
regression exactly corresponds to what actually matters.



B. Architecture

The Itzal architecture is composed of seven components, as
shown in Figure 1.
1) The Unmodified Application (see Section II-B1) is the ap-

plication onto which automatic patch generation is plugged.
2) The Request Oracle Service (see Section II-B2) is a service

that determines whether the application has successfully
handle a request.

3) The Patch Synthesis Service (see Section II-B3) is the
service that searches for patches that fix a given failure.

4) The Regression Assessment Service (see Section II-B4)
performs regression testing on the generated patch. It ap-
plies the generated patches on the application and executes
the request on it.

5) The Regression Oracle (see Section II-B5) is the compo-
nent that validates the generated patches by comparing the
original output of Unmodified Application to the output of
the patched application for live production requests.

6) The Shadower (see Section II-B6) is used to duplicate the
requests of the Unmodified Application. The duplicated
requests are then sent in parallel to the Patch Synthesis
Service and the Regression Assessment Service.

7) And the Patch Reporting Service (see Section II-B7) is the
component that selects the best patches and communicates
them to the developers.

Algorithm 1 shows the interactions between each compo-
nent of the Itzal. Itzal receives the request from the client (line
1). Then it redirects the request to the Unmodified Application
(line 2). Once the request has been handled by the Unmodified
Application, the response is sent back to the client, yet it
is additionally sent to the Request Oracle Service (arrow a
in Figure 1) which verifies the viability of the output (line
4). If the Request Oracle Service determines that there is
a failure, the request is sent to the Patch Synthesis Service
(arrow b in Figure 1 and line 5). The patches generated
by Patch Synthesis Service which pass the Request Oracle
Service (i.e. fix the failure at hand) are sent to Regression
Assessment Service (line 6). If the request has succeeded (no
failure on the original application), the request is also sent
to the Regression Assessment Service (line 8) where all the
previously generated patches are being validated on-the-fly
against the new request. When the Regression Assessment
Service has identified valid patches with no regression, it sends
them to the Patch Reporting Service.

To sum up, Itzal does patch generation online, i.e. as soon
as the failure happens, directly in production. However, while
the patches are generated online, they are applied later, once
the developer has validated them. The side effects of patch
search or regression testing on the production state are com-
pletely sandboxed, with no interference with the production
environment.

1) The Unmodified Application: Itzal augments a produc-
tion application with automatic patch generation capabilities.
The requirement to deploy Itzal is that the application must use
requests, ie. must have a message-driven architecture. A web

Algorithm 1 The main Itzal algorithm
Input: A: the Unmodified Application
Input: G: the Patch Synthesis Service
Input: V: the Regression Assessment Service
Input: O: Request Oracle Service

1: while new request rclient from Client do
2: out put = A(rclient )
3: send out put to Client
4: if O(out put) is failure then
5: patches = send rclient to G
6: push patches to V
7: else
8: send rclient to V for regression
9: end if

10: if ∃ validated patches ∈V then
11: p← order the patches
12: report p to developers
13: end if
14: end while

application, or a web REST service are examples of message-
driven applications.

The type of request may vary between applications, for
example a request in a web application will be the request
sent by a user’s browser to a web-server, in a micro-service
application, the request will typically be a REST message, in a
mobile application, a request would be a touch event triggered
when a user touches a mobile device’s screen.

2) Request Oracle Service: The responsibility of the Re-
quest Oracle Service is to verify whether the application has
succeeded to answer the request. For instance, in a web-server,
the Request Oracle Service can check the HTTP request return
code (“assert response code != 500 (internal server error)”),
of check the presence or not of an exception. Itzal works with
generic oracles such as checking the absence of exceptions
(e.g. in a web request container or in a thread monitor), and it
can also work with domain-specific oracles written by software
engineers on top of domain concepts and data (e.g. the returned
XML must comply with a specific schema). When possible,
the Request Oracle Service provide some information about
the failure to help the Patch Synthesis Service to search for a
patch. The information provided by default is the stack trace
when the failure is based on an exception.

The Itzal does not require a perfect Request Oracle Service,
i.e. the Request Oracle Service may miss some failures (false
negatives). In the case of false negatives, when the Request
Oracle Service misses the failure detection, Itzal simply does
not generate patches: this is unfortunate but it impacts neither
the original application nor the patches generated for the other
failures. In the case of false positives, when the Request Oracle
Service detects a failure when there is no failure in reality,
the Patch Synthesis Service would generate patches, yet they
would be lilkely benign if they pass regression testing done
by the Regression Assessment Service.



3) Patch Synthesis Service: The Patch Synthesis Service is
the service that synthesizes patches that fix a failing request.
Itzal can work with any patch synthesis approach compatible
with the Request Oracle Service. The patches are applied to
the failure point, for instance at the line where an exception has
occurred. For a given failure point, the Patch Synthesis Service
performs an exhaustive application of all possible patches.

For each tentative patch, Patch Synthesis Service calls the
Request Oracle Service (arrow c in Figure 1) to verify that the
request has been correctly handled by the patch template under
consideration (the failure has been fixed). Because the Patch
Synthesis Service generates the patches only based on one
request (the failing one), the patches may break the behavior
of the application for other requests, in other word, the may
introduce a regression. Thus, if the patch is successful on the
failing request, the corresponding patch is transferred to the
Regression Assessment Service (arrow d in Figure 1) that will
further validates its correctness based on other requests.

The application and execution of candidate patches can
change the state of the application in runtime. Consequently,
each execution is done in a sandboxed environment, this
nullifies the potential side effects of the request or of the patch
templates. The sandboxed environment contains a shadow state
of the application, which is regularly synchronized with the
production one. Since the space of patches is sometimes large,
Itzal uses a time budget. It explores the patch alternatives
sequentially until they are all explored or until the time budget
is consumed.

Itzal can work with any patch model, whether domain-
specific (such as out-of-bounds exception) or generic (à la
Genprog [1]). Similarly, Itzal can be applied to binary code if
the patch synthesis technique supports it. Our current prototype
generates patches for null dereferences. If the patch model
generates too much patches, i.e. the search space is too large,
this would be a problem because it would represent a huge
computation effort on the Patch Synthesis Service and much
more importantly on the Regression Assessment Service.

4) Regression Assessment Service: The patches generated
by the Patch Synthesis Service can introduce regressions
because their generation only involves one request (the failing
one). The Regression Assessment Service has the responsibly
to check the behavior of the application when the generated
patches are injected against other requests. It detects these
regressions by comparing the output of the Unmodified Appli-
cation against the output of the patch-augmented application.
If the output is different, it means that the patch has introduced
a regression, and the patch is consequently marked as invalid.
This comparison is done on-the-fly, directly on production
traffic. Doing regression testing “live” has the advantage that
there is no need to record the potentially enormous amount of
production data.

5) Regression Oracle: The Regression Oracle compares the
output of the Unmodified Application (arrow g in Figure 1)
and the output of a patched version in the Regression Assess-
ment Service for the same request. If the outputs are different,
the Regression Oracle marks the current patch as invalid. For

example, a regression oracle for a web server compares the
HTML text of both versions. The comparison is not necessarily
a byte-to-byte one, it can include heuristics to discard transient
information such as time, cookie identifiers, etc.

6) Shadower: The role of the Shadower is to create shadow
traffic from actual end-user traffic coming into the application.
The “shadow traffic” is made of production requests that are
duplicated one or several times and sent to sandboxed shadow
applications. In our case, the shadow applications are the Patch
Synthesis Service and Regression Assessment Service.

In Itzal, the Shadower receives the requests from the clients
duplicates them and sends one duplicate to each service of the
architecture (arrows a, b, and f in Figure 1). The response is
also shadowed for the regression oracle service (arrow g in
Figure 1).

In the context of web applications, the concept of running
multiple instances of an application is well known and heavily
used: this is done for load balancing and rolling deployment.
The difference between a load balancer and a Shadower is
twofold: first, a load balancer does not duplicate the traffic;
second, a load balancer does not send requests to sandboxed
”sinks” as Itzal does.

Since Itzal is a production technique, it must have a reason-
able impact on the performance of the application. In order
to minimize the impact on the Unmodified Application, Itzal
computes the Regression Assessment Service and the Patch
Synthesis Service asynchronously. Indeed, the goal of Itzal
is to perform patch generation, not automatic error recovery
system. Hence, the Shadower directly sends the output as soon
as the Unmodified Application has handled a request (even if
there is a failure). Itzal does not have to wait for the end of
the patch search or the end regression testing for sending the
response back to the client. The Shadower is thus the only
component that impacts the performance of the Unmodified
Application. The Shadower requires to 1) copy and reroute
requests on the fly and 2) maintain an appropriate shadow
state of the system under consideration. In a typical HTTP-
based setup, the cost of the former is similar to that of classical
web proxies and load balancers, which are extensively used in
production systems. The latter point is more an open question:
very few works study production state shadowing, neither
in academia nor in industry. It may be a costly operation
if databases are naively copied for instance. However, we
envision piggy-backing on the latest advances in efficient
online backups and copies of file systems.

7) Patch Reporting Service: The Patch Reporting Service
is the service that communicates the results of Itzal to the
developers (arrow i in Figure 1).

It happens that multiple patches (corresponding to multiple
patch templates) successfully pass the regression test over
production traffic. Consequently the Patch Reporting Service
has to sort the patches in order to first propose the most
useful ones to the developers. To sort, the Patch Reporting
Service uses the number of execution of the patched line in
the Regression Assessment Service (the number of requests
that execute the patch). The idea is that the more a patch has



been executed by the Regression Assessment Service, the less
likely it is to introduce a regression.

We now discuss the reporting medium to the human devel-
oper. There are several types of communication that can be
used in the Patch Reporting Service. In the current prototype,
we have a dashboard where the developers follow in real time
the failures, the generated patches and the progression of the
patch validation.

C. Prototype Implementation for Java

We have implemented a prototype of Itzal for Java in a
tool named Itzal4j, dedicated to reactive applications based on
HTTP. Itzal4j generates patches for null dereference failures.
In Itzal4j, the Request Oracle Service is based on exceptions.
Any uncaught exception happening during the processing of
a request is considered as a failure. The Patch Synthesis
Service is dedicated to null pointers and uses the NPEFix
technique [4] for searching the space of possible patches for
null dereferences. Sandboxing of patch search is achieved
using Docker, a major software containerization platform
which provides powerful sandboxing (both disk and IO based).
In our implementation, the Patch Synthesis Service sends
all candidate patches to the Regression Assessment Service
using an HTTP-based protocol. For the Regression Oracle, we
compare the body of the HTTP response of the Unmodified
Application against the output produced by the patched appli-
cation (e.g. the HTML body text). If the outputs match, the
patch is considered validated for the current request otherwise
the patch is permanently marked as invalid. The Shadower is
implemented on top of a HTTP proxy implementation in Java
called “Jetty Proxy”. The Patch Reporting Service of Itzal4j
is a web dashboard, where the developers can access in real
time the current patches of Itzal: the ones that have fixed at
least one failure and the patch that are under regression testing.
For each patch, they can visualize the number of failures of
the system detected by the Request Oracle Service, see the
actual patch code, and the patch validation metrics such as
the number of executions done by the Regression Assessment
Service.

III. RELATED WORK

Our work is much inspired by the classical work on runtime
repair. Rinard et al. [2] present a technique called “failure
oblivious computing” to avoid illegal memory accesses by
adding additional code around each memory operation during
the compilation process. Assure [5] is a self-healing system
based on error-virtualization. Long et al. [6] proposes the
concept of “recovery shepherding” in a system called RCV.
Those techniques do not produce patches and do not perform
regression testing in production.

Gu et al. [7] presents Ares a runtime error recovery for
Java exceptions using JavaPathFinder (JPF). The two majors
differences with Itzal4j are: first Itzal4j is safer, it does not
modify the production state of the application as Ares does,
and secondly, while Ares performs runtime repair, Itzal4j

produces source code patches that are then communicated to
the developers.

Perkins et al. [8] propose ClearView, a system for automat-
ically repairing errors in production. Itzal and ClearView both
perform repair in production, yet they are very different: 1)
ClearView does not produce source code patches while Itzal
does; 2) ClearView modifies the production state, while Itzal
only modifies the sandboxed shadow requests and state (this
means that ClearView can mess up the application while Itzal
never does so); 3) ClearView works with learned invariant-
based oracles, while Itzal uses human designed request oracles.

The concept of shadow traffic is related to the execution of
multiple versions of the same software in parallel, called in the
literature “multi-version execution” [9], or “parallel execution”
[10]. However, none of the related work uses shadow traffic
to generate patches.

IV. CONCLUSION

In this paper, we have presented Itzal, an approach for
generating patches in production. The failure detection that
triggers the patch search is achieved with runtime assertions,
and the regression assessment is done on live production
traffic. In Itzal, the patch search is done in a fully sandboxed
environment, with no interference with the production data.
Our future work now consists of devising an approach to
fully automatically store a shadow of the production state,
and to efficiently synchronize the shadow state with the actual
production state.

REFERENCES

[1] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[2] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, “Enhancing server availability and security through failure-
oblivious computing.” in OSDI, vol. 4, 2004, pp. 21–21.

[3] T. Durieux, Y. Hamadi, and M. Monperrus, “Production-driven patch
generation and validation,” arXiv preprint arXiv:1609.06848, 2016.

[4] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic
patch generation for null pointer exceptions using metaprogramming,”
in IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2017.

[5] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “Assure: automatic software self-healing using rescue
points,” ACM SIGARCH Computer Architecture News, vol. 37, no. 1,
pp. 37–48, 2009.

[6] F. Long, S. Sidiroglou-Douskos, and M. Rinard, “Automatic runtime er-
ror repair and containment via recovery shepherding,” in ACM SIGPLAN
Notices, vol. 49, no. 6. ACM, 2014, pp. 227–238.

[7] T. Gu, C. Sun, X. Ma, J. Lü, and Z. Su, “Automatic runtime recovery
via error handler synthesis,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 684–695.

[8] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan et al.,
“Automatically patching errors in deployed software,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 87–102.

[9] P. Hosek and C. Cadar, “Safe software updates via multi-version
execution,” in Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013, pp. 612–621.

[10] O. Trachsel and T. R. Gross, “Variant-based competitive parallel execu-
tion of sequential programs,” in Proceedings of the 7th ACM Interna-
tional Conference on Computing Frontiers, 2010.


