Periodic balanced binary triangles

Abstract : A binary triangle of size $n$ is a triangle of zeroes and ones, with $n$ rows, built with the same local rule as the standard Pascal triangle modulo $2$. A binary triangle is said to be balanced if the absolute difference between the numbers of zeroes and ones that constitute this triangle is at most $1$. In this paper, the existence of balanced binary triangles of size $n$, for all positive integers $n$, is shown. This is achieved by considering periodic balanced binary triangles, that are balanced binary triangles where each row, column or diagonal is a periodic sequence.
Liste complète des métadonnées
Contributeur : Jonathan Chappelon <>
Soumis le : vendredi 3 novembre 2017 - 15:29:15
Dernière modification le : jeudi 11 janvier 2018 - 06:27:31
Document(s) archivé(s) le : dimanche 4 février 2018 - 13:40:45


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01463665, version 2
  • ARXIV : 1702.03236


Jonathan Chappelon. Periodic balanced binary triangles. 2017. 〈hal-01463665v2〉



Consultations de la notice


Téléchargements de fichiers