A local model for the trianguline variety and applications

Abstract : We describe the completed local rings of the trianguline variety at certain points of integral weights in terms of completed local rings of algebraic varieties related to Grothendieck's simultaneous resolution of singularities. We derive several local consequences at these points for the trianguline variety: local irreducibility, description of all local companion points in the crystalline case, combinatorial description of the completed local rings of the fiber over the weight map, etc. Combined with the patched Hecke eigenvariety (under the usual Taylor-Wiles assumptions), these results in turn have several global consequences: classicality of crystalline strictly dominant points on global Hecke eigenvarieties, existence of all expected companion constituents in the completed cohomology, existence of singularities on global Hecke eigenvarieties.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01463366
Contributeur : Benjamin Schraen <>
Soumis le : jeudi 9 février 2017 - 15:04:02
Dernière modification le : samedi 18 février 2017 - 01:11:25

Identifiants

  • HAL Id : hal-01463366, version 1
  • ARXIV : 1702.02192

Citation

Christophe Breuil, Eugen Hellmann, Benjamin Schraen. A local model for the trianguline variety and applications. 2017. 〈hal-01463366〉

Partager

Métriques

Consultations de la notice

188