A. K. Geim and K. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, pp.183-91, 2007.
DOI : 10.1038/nmat1849

A. Bianco, All in the graphene family?a recommended nomenclature for two-dimensional carbon materials Carbon 65, pp.1-6, 2013.

A. Ferrari, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems Nanoscale, pp.4598-810, 2015.
DOI : 10.1039/c4nr01600a

URL : http://orbit.dtu.dk/ws/files/103452584/ferrari.pdf

L. Kavan, J. Yum, and M. Gratzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, ACS Nano, vol.5, issue.1, pp.165-72, 2011.
DOI : 10.1021/nn102353h

M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage, The Chemical Record, vol.123, issue.4, pp.211-234, 2009.
DOI : 10.1002/tcr.200900008

G. P. Keele, O. Neill, A. Mcevoy, N. Peltekis, N. Colemanac et al., Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene, Journal of Materials Chemistry, vol.8, issue.36, pp.7864-7873, 2010.
DOI : 10.1039/c0jm01527j

I. Janowska, F. Vigneron, D. Bégin, O. Ersen, P. Bernhardt et al., Mechanical thinning to make few-layer graphene from pencil lead Carbon, pp.3106-3116, 2012.
DOI : 10.1016/j.carbon.2012.02.064

X. Liu, M. Zheng, K. Xiao, Y. Xiao, C. He et al., Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite, Nanoscale, vol.53, issue.9, pp.4598-603, 2014.
DOI : 10.1038/srep01378

K. Paton, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials, vol.2, issue.6, pp.624-654, 2014.
DOI : 10.1126/science.1194372

L. Wu, W. Li, P. Li, S. Liao, S. Qiu et al., Powder, Paper and Foam of Few-Layer Graphene Prepared in High Yield by Electrochemical Intercalation Exfoliation of Expanded Graphite, Small, vol.222, issue.7, pp.1421-1430, 2014.
DOI : 10.1002/smll.201302730

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition Nano Lett, pp.30-35, 2009.

X. Hu and . Zhou, Health and Ecosystem Risks of Graphene, Chemical Reviews, vol.113, issue.5, pp.3815-3850, 2013.
DOI : 10.1021/cr300045n

J. Zhao, Z. Wang, J. White, and B. Xing, Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation, Environmental Science & Technology, vol.48, issue.17, pp.9995-10009, 2014.
DOI : 10.1021/es5022679

C. Spinato and . Ménard-, Moyon C and Bianco A 2014 Chemical functionalization of graphene for biomedical applications Functionalization of Graphene ed V Georgakilas, pp.95-139

J. Liu, L. Cui, and D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomaterialia, vol.9, issue.12, pp.9243-57, 2013.
DOI : 10.1016/j.actbio.2013.08.016

S. Goenka, V. Sant, and S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering, Journal of Controlled Release, vol.173, pp.75-88, 2014.
DOI : 10.1016/j.jconrel.2013.10.017

S. Shi, F. Chen, E. B. Ehlerding, and W. Cai, Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications, Bioconjugate Chemistry, vol.25, issue.9, pp.1609-1628, 2014.
DOI : 10.1021/bc500332c

A. Bianco, Graphene: Safe or Toxic? The Two Faces of the Medal, Angewandte Chemie International Edition, vol.4, issue.19, pp.4986-97, 2013.
DOI : 10.1002/anie.201209099

F. Mouchet, P. Landois, E. Sarreméjean, G. Bernard, P. Puech et al., Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis Aquat, Toxicol, vol.87, pp.127-164, 2008.

F. Mouchet, P. Landois, P. Puech, E. Pinelli, E. Flahaut et al., Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes, Nanomedicine, vol.5, issue.6, pp.963-74, 2010.
DOI : 10.2217/nnm.10.60

URL : https://hal.archives-ouvertes.fr/hal-01339444

F. Bourdiol, F. Mouchet, A. Perrault, I. Forquaux, L. Datas et al., Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae, Carbon, vol.54, pp.175-91, 2013.
DOI : 10.1016/j.carbon.2012.11.024

A. Bour, F. Mouchet, L. Verneuil, L. Evariste, J. Silvestre et al., Toxicity of CeO2 nanoparticles at different trophic levels ??? Effects on diatoms, chironomids and amphibians, Toxicity of CeO 2 nanoparticles at different trophic levels effects on diatoms, pp.230-236, 2015.
DOI : 10.1016/j.chemosphere.2014.07.012

M. S. Moldovan, H. Bulou, Y. J. Dappe, I. Janowska, and D. Bégin, On the Evolution of Pt Nanoparticles on Few-Layer Graphene Supports in the High-Temperature Range, The Journal of Physical Chemistry C, vol.116, issue.16, pp.9274-82
DOI : 10.1021/jp2124235

A. A. Pirzado, Y. Jouane, L. Normand, F. Akilimali, R. Papaefthimiou et al., Electrical Transport in ???Few-Layer Graphene??? Film Prepared by the Hot-Spray Technique: The Effect of Thermal Treatment, The Journal of Physical Chemistry C, vol.118, issue.2, pp.873-80
DOI : 10.1021/jp4103433

M. Orecchioni, D. Bedognetti, F. Sgarrella, F. M. Marincola, A. Bianco et al., Impact of carbon nanotubes and graphene on immune cells, Journal of Translational Medicine, vol.12, issue.1, p.138, 2014.
DOI : 10.1073/pnas.1222738110

A. B. Seabra, A. J. Paula, R. De-lima, and O. Alves, Nanotoxicity of Graphene and Graphene Oxide, Chemical Research in Toxicology, vol.27, issue.2, pp.159-68
DOI : 10.1021/tx400385x

Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li et al., Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells, ACS Nano, vol.4, issue.6, pp.3181-3187, 2010.
DOI : 10.1021/nn1007176

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves et al., The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations, Biomaterials, vol.34, issue.5, pp.1562-1571, 2013.
DOI : 10.1016/j.biomaterials.2012.11.001

H. Yue, W. Wei, Z. Yue, B. Wang, N. Luo et al., The role of the lateral dimension of graphene oxide in the regulation of cellular responses, Biomaterials, vol.33, issue.16, pp.4013-4034, 2012.
DOI : 10.1016/j.biomaterials.2012.02.021

J. Russier, E. Treossi, A. Scarsi, F. Perrozzi, H. Dumortier et al., Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells, Nanoscale, vol.20, issue.22, pp.11234-11281, 2013.
DOI : 10.1039/c3nr03543c

V. C. Sanchez, A. Jachak, R. Hurt, and A. Kane, Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review, Chemical Research in Toxicology, vol.25, issue.1, pp.15-34, 2012.
DOI : 10.1021/tx200339h

S. Y. Seong and P. Matzinger, Opinion: Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses, Nature Reviews Immunology, vol.29, issue.6, pp.469-78, 2004.
DOI : 10.1126/science.285.5430.1058

E. Zanni, D. Bellis, G. Bracciale, M. P. Broggi, A. Santarelli et al., Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model Nano Lett, pp.2740-2744, 2012.

C. Pretti, M. Oliva, D. Pietro, R. Monni, G. Cevasco et al., Ecotoxicity of pristine graphene to marine organisms, Ecotoxicology and Environmental Safety, vol.101, pp.138-183, 2014.
DOI : 10.1016/j.ecoenv.2013.11.008

G. Gollavelli and Y. Ling, Multi-functional graphene as an in??vitro and in??vivo imaging probe, Biomaterials, vol.33, issue.8, pp.2532-2577, 2012.
DOI : 10.1016/j.biomaterials.2011.12.010

F. Mouchet, P. Landois, V. Datsyuk, P. Puech, E. Pinelli et al., International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water, Environmental Toxicology, vol.7, issue.2, pp.136-181, 2011.
DOI : 10.1002/tox.20537