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Abstract

This article is concerned with the vibration of a sti� linear string in the presence of a rigid obstacle.
A numerical method for unilateral and arbitrary-shaped obstacles is developed, based on a modal
approach in order to take into account the frequency dependence of losses in strings. The contact
force of the barrier interaction is treated using a penalty approach, while a conservative scheme is
derived for time integration, in order to ensure long-term numerical stability. In this way, the linear
behaviour of the string when not in contact with the barrier can be controlled via a mode by mode
�tting, so that the model is particularly well suited for comparisons with experiments. An experimental
con�guration is used with a point obstacle either centered or near an extremity of the string. In this
latter case, such a pointwise obstruction approximates the end condition found in the tanpura, an
Indian stringed instrument. The second polarisation of the string is also analysed and included in the
model. Numerical results are compared against experiments, showing good accuracy over a long time
scale.

Keywords: Numerical methods, 3D string vibration, experimental study, unilateral contact, sound
synthesis, tanpura

1. Introduction

The problem of vibrating media constrained by a unilateral obstacle is a longstanding problem
which has been under study for more than a century [1, 2]. Indeed, the �rst important developments
can be attributed to Hertz with his formulation of a general law for the contact between elastic solids
in 1881 [3]. Since then, applications of contact mechanics can be found in such diverse �elds as
e.g. computer graphics [4], for instance for simulating the motion of hair [5]; to human joints in
biomechanics [6] or component interactions in turbines [7, 8]. A particular set of applications is found
in musical acoustics, where collisions are of prime importance in order to fully understand and analyse
the timbre of musical instruments [9, 10, 11]. Within this framework, the problem of a vibrating string
with a unilateral constraint, as a key feature of numerous instruments, is central and is particularly
important to the sound of Indian instruments [12, 13, 14], and also in the string/fret contact in fretted
instruments [15, 16].

The �rst studies on a vibrating string with a unilateral constraint were restricted to the case of an
ideal string with a rigid obstacle in order to derive analytical and existence results [17, 18, 19, 20, 21].
In particular, solutions to the cases of a centered point obstacle, a plane obstacle and a few continuous
obstacles have been obtained explicitly. Existence and uniqueness of the solution to the non-regularised
problem has been shown in the case of a string vibrating against point obstacles [22] and of a concave
obstacle if conservation of energy is imposed [20]. There are no general results when the obstacle is
convex. Moreover, Schatzman proved that the penalised problem with a point obstacle converges to

∗Corresponding author
Email address: issanchou@lam.jussieu.fr (Clara Issanchou )



the non-regularised problem [22]. The pointwise case is thus well-understood theoretically, and various
interesting properties have been demonstrated as mentioned above.

In addition, numerical studies have been undertaken to simulate collisions for more realistic string
models by including various e�ects, such as dispersion. Existing numerical methods include digital
waveguides [23, 24, 25], sometimes coupled with �nite di�erences [26] in the case of an ideal string, and
for a sti� damped string interacting with an obstacle located at one end of the string [14]. Other models
are based on a modal description of the string motion, as in [27] where an ideal string vibrating against
a parabolic obstacle at one boundary is considered, under the assumption of perfect wrapping of the
string on the bridge as in [28]. However, the existence of multiple contacts as a necessary condition
for simulating the sound of sitar has been established in [27, 29]. Contacts between a string and point
obstacles are modelled with a modal approach in [30] for a dispersive lossy string against a tanpura-like
bridge. The functional transformation method (FTM) is used in [15] for a string interacting with frets.
In the latter study, damping model is controlled by a few parameters only. Interaction between a
continuous system and a point obstacle is also modelled in [29], using a modal coe�cient of restitution
(CoR) method [31, 32], assuming in�nitesimal contact times.

More recently, energy-based methods have been developed, allowing the simulation of sti� lossy
strings against an arbitrarily shaped obstacle. Hamilton's equations of motion are discretised in [33],
and the case of the tanpura bridge is derived in [34]. Finite di�erence methods are used in [11] and
the special case of the interaction between a string and a fretboard is detailed in [16]. In these latter
models, eigenfrequencies and damping parameters cannot be arbitrary, but follow a distribution tuned
through a small number of parameters. In addition, these studies consider only one transverse motion
of the string, and numerical dispersion e�ects appear due to the use of �nite di�erence approximations.

The inclusion of the two transverse polarisations in the modeling of vibrating strings with contact is
also seldom seen in the literature. A �rst attempt has been proposed in [35] for the case of the violin,
where �nite di�erences are employed to model a linear bowed string motion, including interactions
between the string and �ngers as well as the �ngerboard. Early developments are also shown in [36],
extending the study presented in [33]. However, numerical results are not compared to experimental
measurements of the string motion.

Whereas an abundant literature exists on numerical simulations of a string vibrating against an
obstacle, only a few experimental studies have been carried out. Research on isolated strings is detailed
in [37, 30], and measurements on complete instruments are presented in [38, 39, 14], highlighting the
in�uence of the obstacle shape and position on the timbral richness of sounds. However a detailed
comparison of experiments with numerical results in order to understand the relative importance of
modeling features such as e.g. dispersion, nonlinearity and damping due to contact has not been
carried out.

The aim of this paper is twofold. First, an accurate and �exible numerical method is developed in
Section 2. The distinctive feature of the approach is that it relies on a modal description, in order to
take into account any frequency dependence of the losses, and also in order to eliminate any e�ect of
numerical dispersion. The contact law is formulated in terms of a penalty potential and an energy-
conserving scheme is derived, adapted to the modal-based approach. The convergence of the outcomes
of the models is then thoroughly studied in Section 3 for a pointwise obstacle, with a comparison
to an analytical solution. The second main objective of the study is to compare simulations with
experiments. For that purpose, the experimental protocol is presented in Section 4. The versatility of
the numerical method is illustrated with a mode by mode �tting of the measured linear characteris-
tics (eigenfrequencies and modal damping factors). Comparisons with experiments are conducted in
Section 5 for two di�erent point obstacles, located either at the string centre or near one extremity of
the string. The second polarisation is also measured and compared to the outcomes of a simple model
incorporating the horizontal vibration in Section 5.2.3.

2. Theoretical model and numerical implementation

2.1. Continuous model system

The vibrating structure considered here is a sti� string of length L (m), tension T (N· m−1), and
with linear mass density µ (kg· m−1). The sti�ness is described by the Young's modulus E (Pa) of
the material and the moment of inertia associated with a circular cross-section I = πr4/4, where r is
the string radius (m). The string is assumed to vibrate in the presence of an obstacle described by a
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�xed pro�le g(x), x ∈ [0, L], located under the string at rest (see Fig. 1). The obstacle is assumed to
be of constant height along (Oy). In the remainder of the paper, it is said to be a point obstacle when
it is a point along (Ox), however it still has a constant height along (Oy).

In this section we restrict ourselves to the vertical (Oz)-polarisation. The second, horizontal po-
larisation is taken into account in Section 2.7.

The transverse displacement u(x, t) of the string along (Oz) is governed by the following equation,
under the assumption of small displacements:

µutt − Tuxx + EIuxxxx = f, (1)

where the subscript t (respectively x) refers to a partial derivative with respect to time (respectively
space). The right-hand side term f(x, t) refers to the external contact force per unit length exerted by
the barrier on the string. Simply supported boundary conditions are assumed, which are commonly
used for musical strings having a weak sti�ness [30, 40]:

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, ∀t ∈ R+. (2)

No damping is included so far; a detailed model of loss will be introduced once modal analysis has
been performed, see Section 2.3.1.

u(x,t)

g(x)

x0
L

z

y

Figure 1: A string of length L vibrating against an obstacle g(x).

The contact force density f(x, t) vanishes as long as the string does not collide with the barrier.
The model to be employed here relies on a penalty approach where a small amount of interpenetration
is modeled. Penalisation methods are to be viewed in contrast with nonsmooth methods for which
no penetration is allowed [41, 42]. In order to derive a general framework, a two-parameter family of
power-law expression for the contact force is used:

f(x, t) = f(η(x, t)) = K [η(x, t)]
α
+ , (3)

where η(x, t) = g(x) − u(x, t) is a measure of interpenetration of the string into the barrier, and
[η]+ = 1

2 (η + |η|) is the positive part of η. This formulation allows the representation of a Hertz-like
contact force, where the coe�cients K and α can be tuned depending on the material in contact
[43, 44, 45]. This interaction model has already been used in the realm of musical acoustics for various
interactions�see e.g. [11, 46, 47, 10, 33]. In [47] for example, it is used to model the hammer-string
interaction in the piano, where the contact model describes the compression of the hammer felt. In the
present case of the string colliding with a rigid body, the force expression represents a penalisation of
the interpenetration that should remain small; as such, large values of K as compared to the tension
and shear restoring forces has to be selected. In the literature, current values used in numerical
simulations for this problem are in the range of 107 to 1015, see e.g. [33, 16, 11].

2.1.1. Energy balance

The continuous total energy of the system is detailed here. Energy considerations will be useful in
the remainder of the study in order to derive an energy-conserving and stable numerical scheme.

The contact force density (3) derives from a potential ψ:

f =
dψ

dη
, with ψ(η) =

K

α+ 1
[η]

α+1
+ . (4)
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The total energy of the system may be obtained by multiplying the equation of motion (1) by the
velocity ut. Employing integration by parts, one obtains the expression of the continuous energy:

H =

∫ L

0

[
µ

2
(ut)

2 +
T

2
(ux)2 +

EI

2
(uxx)2 + ψ

]
dx. (5)

It satis�es H ≥ 0 and the following equality:

dH

dt
= 0, (6)

implying that energy is conserved. The �rst three terms in (5) correspond respectively to the stored
energy due to inertia, tension and sti�ness. The �nal term denotes the energy stored in the contact
mechanism under compression.

2.2. Modal approach

The eigenproblem related to Eq. (1) without contact force f consists of �nding the functions φj(x)
which are the solutions of:

−Tφ′′j + EIφ′′′′j − µω2
jφj = 0, (7)

where ′ designates the spatial derivative, together with the boundary conditions given in Eq. 2. The
normal modes are thus:

φj(x) =

√
2

L
sin

(
jπx

L

)
for j ≥ 1, (8)

and are orthogonal and normalised such that
∫ L

0
φj(x)φk(x)dx = δjk.

The unknown displacement u(x, t), when truncated to Nm modes, may be written as û(x, t), de�ned
as

û(x, t) =

Nm∑
j=1

qj(t)φj(x), (9)

where qj(t) is the j
th modal amplitude. For simplicity, the hat notation is dropped in the remainder

of the paper.
Writing u as its expansion in (1) and using the orthogonality, one obtains:

µ(q̈ + Ω2q) = F, (10)

where the vector q = [q1, ...,qNm ]T contains modal coe�cients, q̈ is its second time derivative and Ω
is a diagonal matrix such that Ωjj = ωj = 2πνj .

Eigenfrequencies are given by νj = j c02L

√
1 +Bj2, where c0 =

√
T
µ is the wave velocity and B = π2EI

TL2

describes the inharmonicity created by taking into account the sti�ness of the string. Finally the right-

hand side vector F represents the modal projection of the contact force, with Fj =
∫ L

0
f(x, t)φj(x)dx.

2.3. Losses

In this section, a standard model of string damping mechanisms is reviewed. Damping due to air
friction and internal losses are �rst presented, then losses due to contact phenomena are modeled.

2.3.1. Air friction and internal losses

One advantage of using a modal approach is that damping parameters can be tuned at ease, as
recently used in [48] for the nonlinear vibrations of plates with the purpose of synthesising the sound
of gongs. A lossless string is described in equation (10), where the linear part corresponds to the
description of a lossless oscillator for each mode. Damping can therefore be introduced by generalising
each mode to a lossy oscillator. Eq. (10) thus becomes:

µ(q̈ + Ω2q + 2Υq̇) = F, (11)

where Υ is a diagonal matrix such that Υjj = σj ≥ 0. A damping parameter σj is thus associated to
each modal equation.
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In this contribution, the frequency dependence of losses is taken into account using the theoretical
model proposed by Valette and Cuesta [30]. This model is especially designed for strings, and shows a
strong frequency dependence that cannot be expressed easily in the time domain. It describes the three
main e�ects accounting for dissipation mechanisms in strings, namely friction with the surrounding
acoustic �eld, viscoelasticity and thermoelasticity of the material. The following expression of the
quality factor Qj = πνj/σj is introduced:

Q−1
j = Q−1

j,air +Q−1
j,ve +Q−1

te , (12)

where subscripts air, ve and te refer, respectively, to frictional, viscoelastic and thermoelastic losses.
The �rst two terms are de�ned as [30]:

Q−1
j,air =

R

2πµνj
, R = 2πηair + 2πd

√
πηairρairνj ,

Q−1
j,ve =

4π2µEIδve
T 2

ν2
j .

In these expressions, ηair and ρair are, respectively, the air dynamic viscosity coe�cient and density.
In the rest of the paper, usual values are chosen [49]: ηair = 1.8 × 10−5 kg m−1s−1 and ρair = 1.2 kg
m−3. To complete the model, two parameters remain to be de�ned: the viscoelastic loss angle δve,
and the constant value Q−1

te characterising the thermoelastic behaviour. As shown later in Section 4.2
(see also [30, 49]), these values can be �tted from experiments in order to �nely model the frequency
dependence of a real isolated string.

2.3.2. Damping in the contact

The model presented here may be complemented by nonlinear losses due to the contact, as described
e.g. in [50, 44, 11, 45]. To this end, the contact force given by (3) may be augmented according to the
Hunt and Crossley model [50]:

f =
dψ

dη
− ∂u

∂t
Kβ[η]α+, (13)

with β ≥ 0.

2.4. Spatial discretisation

To circumvent the di�culty associated with the expression of the contact force with modal coordi-
nates, a spatial grid is introduced, together with a linear relationship between modal coordinates and
the displacement at points in the grid. The grid is de�ned as xi = i∆x, where ∆x = L

N is the spatial
step and i ∈ {0, ..., N}. Since u(x0, t) = 0 and u(xN , t) = 0 ∀t ∈ R+, only the values of u on the grid
with i ∈ {1, 2, ..., N − 1} are examined in the following.
In the remainder of the paper we select Nm = N − 1 such that the number of interior grid points will
match the number of modes in the truncation. Then the modal expansion of u(x, t) can be written at
each point i ∈ {1, 2, ..., N − 1} of the selected grid as:

u(xi, t) = ui(t) =

N−1∑
j=1

qj(t)φj(xi) =

N−1∑
j=1

qj(t)

√
2

L
sin

(
jπi

N

)
. (14)

In matrix form, these relationships may be written as u = Sq, where the vectors u = [u1, ..., uN−1]T

and q = [q1, ..., qN−1]T have been introduced. The matrix S has entries Sij = φj(xi), ∀(i, j) ∈
{1, ..., N − 1}2, and its inverse satis�es the following relationship: S−1 = L

N ST .

2.5. Time discretisation

Let un represent an approximation to u(t) at t = n∆t, for integer n, and where ∆t is a time step,
assumed constant.

Di�erence operators may be de�ned as follows:

δt−un =
un − un−1

∆t
, δt+un =

un+1 − un

∆t
, δt.u

n =
un+1 − un−1

2∆t

δttu
n =

un+1 − 2un + un−1

∆t2
.
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The temporal scheme for discretising the equations of motion considers separately the modal linear
part and the nonlinear contact force. For the linear part (the left-hand side of Eq. (11)), an exact
scheme is proposed in [46] for a single oscillator equation. This scheme is here generalised to an
arbitrary number N − 1 of oscillator equations. This choice is justi�ed by the accurate description
of the frequency content and the stability property of this exact scheme, which perfectly recovers the
oscillation frequencies irrespective of the time step. For the contact force, in order to circumvent the
di�culty linked to the modal couplings in the right-hand side of Eq. (11), the relationship between u
and q given in the previous section is used in order to treat the contact in the space domain.

The temporal scheme for the oscillatory part of Eq. (11) may be written as:

µ

∆t2
(qn+1 −Cqn + C̃qn−1) = 0, (15)

where the right-hand side has been neglected for the moment. C and C̃ are diagonal matrices with
entries

Cii = e−σi∆t
(
e
√
σ2
i−ω2

i ∆t + e−
√
σ2
i−ω2

i ∆t
)
,

C̃ii = e−2σi∆t.

If there is no collision, and thus no contact force, so that the right-hand side equals zero, then the
scheme is known to be exact [46], thus ensuring the most accurate discrete evaluation of the linear
part. To determine the contact force, Eq. (11) is rewritten for the vector u thanks to the relationship
u = Sq:

µ

∆t2
(un+1 −Dun + D̃un−1) = fn, (16)

with D = SCS−1 and D̃ = SC̃S−1.

Following [11], the discrete approximation of the contact force is chosen as: fn = δt−ψ
n+1

2

δt.ηn , where

ψn+ 1
2 = 1

2 (ψn+1 +ψn) and ψn = ψ(ηn). The resulting scheme is conservative if there is no loss, and
dissipative otherwise (see Section 2.6).

The nonlinear equation to be solved at each time step is thus:

r + b +m
ψ(r + a)− ψ(a)

r
= 0, (17)

where r = ηn+1−ηn−1 is the unknown (with ηn = g−un), a = ηn−1, m = ∆t2

µ and b = Dun− (D̃ +

IN−1)un−1. The Newton-Raphson algorithm may be used to this end. This equation has a unique
solution [11], note however that the convergence of the Newton-Raphson algorithm is not guaranteed
and depends on the initial guess. Note also that in the speci�c case of a linear restoring force (i.e.
α = 1), an analytical solution is available as detailed in [51].

The additional damping term du
dtKβ[η]α+ due to collisions (see Section 2.3.2) may be discretised as

follows [11]: δt.u
nKβ[ηn]α+. Instead of (17), the equation to be solved at each time step is then [11]:

(IN−1 + L)r + b +m
ψ(r + a)− ψ(a)

r
= 0, (18)

where L is a diagonal matrix such that Lii = ∆t
2µKβ[ηi

n]α+.

2.6. Stability analysis

This section is devoted to the stability analysis of the numerical scheme. To this end, it is more
convenient to rewrite (16) with an explicit use of temporal discrete operators.

The equivalent representation may be written as:

µ
[
Č1δttq

n + Č2qn + Č3δt.q
n
]

= Fn, (19)
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with diagonal matrices Č1, Č2 and Č3 with the following entries:

Č1ii =
1 + (1− γi)ω

2
i ∆t2

2

1 + (1− γi)
ω2

i ∆t2

2 + σ∗i ∆t
,

Č2ii
=

ω2
i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗i ∆t
,

Č3ii
=

2σ∗i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗i ∆t
.

The coe�cients γi and σ
∗
i may be written as:

γi =
2

ω2
i∆t2

− Ai
1 + ei −Ai

,

σ∗i =

(
1

∆t
+
ω2
i∆t

2
− γi

ω2
i∆t

2

)
1− ei
1 + ei

,

where
Ai = e−σi∆t

(
e
√
σ2
i−ω2

i ∆t + e−
√
σ2
i−ω2

i ∆t
)

and ei = e−2σi∆t. (20)

The equivalent scheme for the displacement u may thus be written as:

µ
[
Ď1δttu

n + Ď2un + Ď3δt.u
n
]

= fn, (21)

where Ď1 = SČ1S−1, Ď2 = SČ2S−1 and Ď3 = SČ3S−1 are symmetric matrices. The force term is
expressed as in Section 2.5.

Let us introduce the inner product as:

〈u,v〉 = ∆x

N−1∑
j=1

ujvj ,

where ∆x is the spatial step.
Taking the inner product between equation (21) and δt.u

n, the following discrete energy balance is
obtained:

δt−H
n+ 1

2 = −µ
〈
δt.u

n, Ď3δt.u
n
〉
, (22)

where
Hn+ 1

2 =
µ

2

〈
δt+un, Ď1δt+un

〉
+
µ

2

〈
un+1, Ď2un

〉
+
〈
ψn+ 1

2 , 1
〉
. (23)

Because Ď3 is positive semi-de�nite (see the proof in AppendixA, Property 3), the scheme is thus
strictly dissipative. Therefore it is stable if the energy is positive.

The force potential being positive, and given Properties 1 and 3 demonstrated in AppendixA, the
stability condition can be rewritten as:〈

δt+un, (Ď1 −
∆t2

4
Ď2)δt+un

〉
≥ 0. (24)

It is therefore su�cient to show that (Ď1 − ∆t2

4 Ď2) is positive semi-de�nite to obtain stability, which

is true if (Č1 − ∆t2

4 Č2) is positive semi-de�nite. Consequently, the su�cient condition reads, ∀i ∈
{1, ..., N − 1}:

γi ≤
1

2
+

2

ω2
i∆t2

. (25)

After a straightforward manipulation, the condition is easily expressed as:

1 + ei +Ai
1 + ei −Ai

≥ 0,∀i ∈ {1, ..., N − 1}. (26)
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Eq. (26) is satis�ed if 1 + ei ± Ai > 0, which is always true (see Property 2 in AppendixA for the
proof), and hence the scheme is unconditionally stable. The limiting case σi = 0 corresponds to the
lossless string. Then γi reduces to:

γi =
2

ω2
i∆t2

− cos(ωi∆t)

1− cos(ωi∆t)
,

and unconditional stability is obtained, as in the lossy case.
Considering contact losses (see Eq. (18)) leads to the following discrete energy balance:

δt−H
n+ 1

2 = −µ
〈
δt.u

n, Ď3δt.u
n
〉
−
〈
δt.u

n, δt.u
nKβ[ηn]α+

〉
. (27)

Since
〈
δt.u

n, δt.u
nKβ[ηn]α+

〉
≥ 0, the dissipation in the system is then increased, and the stability

condition is not a�ected.

2.7. Second polarisation

-s s

A

-A

ff

vt

Figure 2: Friction force

In this section, the model is extended to include motion in the second polarisation of the string.
The two unknown displacements along (Oz) and (Oy) are respectively denoted as u(x, t) and v(x, t).
Assuming small displacements, the equations of motion for u and v are assumed uncoupled as long as
no contact arises. In particular, no coupling is included at boundaries. As soon as a contact point is
detected for the vertical displacement u, it is assumed that the horizontal displacement v undergoes a
friction force ff . The continuous equation for the displacement v may be written as:

µvtt − Tvxx + EIvxxxx = δxc
(x)ff , (28)

where δxc is a Dirac delta function centered at xc. Since the obstacle is assumed to be located at a
point along (Ox) in this study, contact is assumed to arise at the location of the point obstacle xc
only; it could, however, be extended to a larger contact surface. ff is a simple regularised Coulomb
friction law de�ned as (see Fig. 2):

ff (vt) = A


1 if vt < −s and u < g
vt/s if |vt| ≤ s and u < g
−1 if vt > s and u < g
0 if u ≥ g,

(29)

where vt is the velocity of the string, and A (N), s > 0 (m.s−1) are the two constant parameters
that de�ne the friction law. In particular, as shown in Section 5.2.3, these values can be �tted from
experiments.

The expression for the stored energy associated with (28) is given by:

H̃ =
µ

2

∫ L

0

(vt)
2dx+

T

2

∫ L

0

(vx)2dx+
EI

2

∫ L

0

(vxx)2dx ≥ 0, (30)

and satis�es
dH̃

dt
= Q̃, where Q̃ = vt(xc)ff (vt(xc)). (31)
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Applying the same method as for the contact between a string and a bow described in [46] and using
a �rst order interpolation operator, one obtains:

vn+1 −Dvn + D̃vn−1 =
∆t2

µ
J(xc)ff (ξn), (32)

where J(xc) is a vector consisting of zeros except at the obstacle position xc where its value is 1/∆x.
ξn = δt.v

n
c is the velocity of the string point interacting with the obstacle, which is the solution of the

following equation:

(−Dvn + (D̃ + IN−1)vn−1)c + 2∆tξn − ∆t2

µ∆x
ff (ξn) = 0,

where the subscript c designates the element corresponding to the obstacle position. This equation
depends on un through the force term ff , see Eq. (29). The discrete energy may be written as:

H̃n+ 1
2 =

µ

2

〈
δt+vn, Ď1δt+vn

〉
+
µ

2

〈
vn+1, Ď2vn

〉
. (33)

It satis�es:
δt−H̃

n+ 1
2 = −µ

〈
δt.v

n, Ď3δt.v
n
〉

+ δt.v
n
c ff (δt.v

n
c ). (34)

Since δt.v
n and ff (δt.v

n) are of opposite signs, the scheme is again strictly dissipative.

3. Validation test

3.1. Convergence study

The necessity of oversampling to avoid aliasing and obtain trustworthy results is mentioned in [33],
due to the nonlinear contact which generates high frequencies. In this part, a detailed study of
convergence is presented in order to �x the sampling rate that will be used for simulations.

L d T µ B
1.002 m 0.43 mm 180.5 N 1.17× 10−3 kg.m−1 1.78× 10−5

Table 1: Physical properties of the string

The particular string under study here is an electric guitar string manufactured by D'Addario, the
properties of which are detailed in Table 1. Under a tension of 180.5 N, it has a fundamental frequency
of approximately 196 Hz (G3). The initial condition is set to a symmetric triangular shape of height
u0,max = 1.8 mm with a smooth corner obtained by considering the 50 �rst modes, without initial
velocity. The observed signal is taken at 10 mm from the extremity x = L. Simulations are conducted
with Fs from 1960 Hz to 211 × 1960 Hz ≈ 4 MHz.

N = 2
α / K 107 109 1011 1013

1 2.4× 10−5 2.4× 10−6 3.0× 10−7 3.4× 10−8

1.5 2.2× 10−4 3.5× 10−5 5.5× 10−6 9.2× 10−7

2 8.7× 10−4 2.0× 10−4 4.4× 10−5 9.5× 10−6

N = 1002, centered point obstacle
α / K 107 109 1011 1013

1 2.1× 10−4 2.3× 10−6 1.9× 10−7 1.8× 10−8

1.5 1.4× 10−3 1.5× 10−4 7.6× 10−6 6.7× 10−7

2 1.8× 10−3 1.1× 10−3 1.3× 10−4 1.4× 10−5

Table 2: Maximal penetration (m), Fs = 2 MHz, B = 1.78× 10−5.

Convergence curves are presented in Fig. 3 for 1 and 1001 interior points (i.e. N = 2 and N = 1002
respectively), in the case of a centered point obstacle. The lossless and lossy string cases are presented
for N = 2, but only the latter is considered for N = 1002. Computations are conducted over 3 seconds,
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Figure 3: Relative L2 error versus Fs, over 3 seconds. Left: α = 1, centre: α = 1.5, right: α = 2. K = 107 (blue),
K = 109 (red), K = 1011 (black) and K = 1013 (magenta). (a) N = 2, lossless (solid lines) and lossy (dashed lines) sti�
string, B = 1.78× 10−5 (b) N = 1002, centered point obstacle, lossy sti� string, B = 1.78× 10−5.

corresponding to the duration used to compare experimental and numerical results in the following
section. Convergence tests are thus more strict than for short durations. The relative L2 error is
de�ned as: 

∑
t∈τ

(sref (t)− scur(t))2∑
t∈τ

(sref (t))2


1
2

, (35)

where scur is the current signal with Fs < 4 MHz and sref the reference signal with Fs ≈ 4 MHz.
Both are drawn from the string displacement at 10 mm from the boundary x = L. Sums are computed
over the set τ of discrete times at which the signal having the lowest sampling rate (about 2 kHz) is
evaluated. As is to be expected, the addition of losses leads to faster convergence. Also as is to be
expected, the smoother the contact is (which corresponds to larger values of α and / or smaller values
of K), the faster the convergence is, since less high frequency content is generated due to the contact.

The slope 2 corresponding to the order of the scheme is visible after a threshold sampling rate is
reached. For the �rst sampling rates, in most of the cases presented here, a plateau can be observed.
This may be due to the fact that for lower sampling rates, all the physical spectral content of the
signal is not yet fully represented, so that the expected convergence speed cannot appear. This would
explain that the sti�er the contact is, the larger the threshold sampling rate is, since higher frequencies
are generated. In the case N − 1 = 1, the �rst signals di�er from the 4 MHz signal mostly because of
a phase di�erence which increases at each contact, as illustrated in Fig. 4. Table 2 details maximum
penetration of the string in the obstacle for Fs = 2 MHz. The smoother the contact is, the larger the
penetration is. A correlation can be made between convergence behaviour and maximum penetration,
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Figure 4: Displacement with N − 1 = 1, K = 1013, α = 1.5. Fs ≈ 8 kHz (dark dash-dot line), 64 kHz (red dashed line)
and 4 MHz (blue line).

since penetration is directly linked to sti�ness of the contact and therefore to the amount of generated
high frequencies. When penetration is greater than the string diameter, the relative error for Fs = 2
MHz is smaller than 1× 10−2. For smaller penetration however, convergence is signi�cantly slower.

In the context of our study, rigid contact is intended so that values α = 1.5 and K = 1013 are
selected by empirical comparisons to experiments. In the case of a point obstacle, it appears that
smoothing the contact makes numerical signals di�er more from experimental ones, whereas making
it sti�er does not signi�cantly improve results. In order to conduct simulations, in the sequel, the
sampling rate is chosen as corresponding to a relative L2 error smaller than about 1 × 10−1. Then
a sampling rate of at least Fs = 1 MHz is necessary. For an extra degree of safety, Fs = 2 MHz is
selected in the following.

Fs N α K β
2 MHz 1002 1.5 1013 0

Table 3: Numerical parameters

3.2. Comparison to the analytical solution

The outcomes of the numerical scheme (16) are �rst compared to an analytical solution presented
by H. Cabannes [18, 52], for the case of an ideal string, with a centered point obstacle in contact with
the string at rest. The analytical solution assumes contact with no interpenetration, corresponding to a
perfectly rigid point obstacle. Consequently the numerical parameters for the contact law are selected
as α = 1.5 and K = 1013. The initial condition in displacement has the shape of a triangle, with an
initial velocity of zero everywhere. In order to facilitate comparisons with the analytical solution, results
are dimensionless in the present section. To this end, dimensionless values are used in simulations.
N − 1 = 1001 interior points and a dimensionless sampling rate Fs,d = 5000 (corresponding to a
sampling rate of about 2 MHz, see Section 3.1) are selected. Subscript d stands for "dimensionless".
Sti�ness and damping parameters are chosen as Bd = 2 × 10−5 and σd,j = j × 5 × 10−3, ∀j ∈
{1, ..., N − 1}.

For a qualitative comparison, Fig. 5 shows successive snapshots of the pro�le of the ideal string
during its vibration. As already noted in [18], the contact is persistent and occurs as long as the string
is under its rest position. With this view the numerical solution perfectly coincides with the analytical
one.

A more quantitative comparison is shown in Fig. 6, by focusing on the very beginning of the motion.
Also, in order to get a better understanding of the individual e�ects of damping and sti�ness terms
in the model, they are incorporated step by step to investigate how the solution departs from that of
the ideal string. The time series shown in Fig. 6 represents the output u(xm, t), where the point xm is
located at 9L/100. Fig. 6(a) and (b), for an ideal string, respectively without and with obstacle, show
that the numerical solution closely matches the analytical one. In particular, one can observe that the
fundamental frequency in the case with obstacle is equal to the one without obstacle multiplied by
the ratio 4/3, as theoretically predicted [52]. Fig. 6(c) shows the e�ect of damping on the numerical
simulation. Small unevennesses appears, speci�ed by arrows in Fig. 6(c). They are most probably
due to the rounding of traveling corners. Finally, adding a small sti�ness value in the string creates
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Figure 5: Snapshots of the motion of a dimensionless ideal string colliding with a point obstacle at centre (in black).
Comparison at six di�erent times of the �rst period between the analytical solution (blue circles) and the numerical one
(modal approach, red line). Simulation conducted with Fs,d = 5000, K = 1013, α = 1.5 and β = 0. Presented variables
are dimensionless.

dispersive waves, which in turn produce precursors since high frequencies arrive before lower ones at
the measurement point. Previously mentioned unevennesses also appear in this case because sti�ness
causes rounding of corners.

Finally, energy variations of the numerical sti� string are presented in Fig. 7, with and without
obstacle. As no damping is included in this numerical simulation, the energy is conserved: the nor-
malised energy variations from one time step to the next are small, and of the order of 10−10. One
can also observe that during the time interval where the contact occurs (indicated with a bold blue
line in Fig. 7b), small oscillations in the contact energy appear which are due to very small oscillations
of the string at the contact point. The behaviour of the string at this point will be further addressed
in Section 5.2.2. Consistency of numerical results compared to the analytical solution has thus been
highlighted, as well as e�ects of the string damping and sti�ness. Energy considerations have also been
presented. In the following, an experimental set up is presented, which will be exploited to compare
numerical results against experiments.

4. Experimental study

4.1. Experimental set up

4.1.1. Measurement frame

The string to be considered here is described in Section 3.1. The vibration of this string, isolated
from any surrounding structure, is studied on a measurement frame designed to this end [53, 49]
(see Fig. 8, where two con�gurations are presented: the �rst with a centered obstacle, the second
with an obstacle near a boundary). The string is plucked with a 0.05 mm diameter copper wire that
breaks at the initial time [49] at the middle of the string. The maximal initial displacement is about
u0,max = 1.5 mm in the rest of the paper. The vertical and horizontal displacements are measured
with optical sensors described in [54]. They are located near the string end at x = L, respectively at 1
cm (vertical) and 2 cm (horizontal). In the present study, the obstacle touches the string at rest. The
point obstacle is realised with a metal cuboid edge. It is mounted on a vertical displacement system
with a micron-scale sensitivity.
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Figure 6: Time signal of the dimensionless string at xm = 9L/100, comparison of analytical solution for an ideal string
(red dashed line), and numerical results (blue line). N = 1002, Fs,d = 5000. Variables are dimensionless. (a) ideal string
without losses or dispersion, and without obstacle. (b) ideal string with obstacle. (c) losses added in the numerical
simulation, with obstacle. (d) dispersive lossless numerical string with obstacle, Bd = 2× 10−5.

4.1.2. Contact detection

In order to detect contact between the string and the obstacle, an electrical circuit is installed on
the measurement frame (see Fig. 9). The switch links the string and the obstacle, which are both
conductive. Voltage at its terminals is measured as an indicator of contact, being null when the string
touches the obstacle. In order to avoid electric arcs for small distances between the string and the
obstacle, components inside the acquisition card (RNI = 300 kΩ and CNI = 10.4 pF) must be taken
into account. A 10 kHz alternative current has been employed and R = 100 kΩ has been chosen.

4.2. Identi�cation of linear characteristics

In order to identify linear parameters of the string, i.e. eigenfrequencies and modal damping
ratios, free vibrations of the string in the absence of the obstacle are measured and analysed with
the ESPRIT method [55]. This method is applied to 4 seconds of the signal, starting 0.2 seconds
after the string is plucked in order to avoid the transitory regime. Modes are treated one by one,
according to the procedure described in [56, 49]. The linear characteristics of 36 modes have been
recovered with the method, which covers a frequency range up to 7200 Hz. Beyond this frequency,
modes are not excited strongly enough in the measured signals and the signal to noise ratio becomes
too small to enable identi�cation. In order to determine the remaining values, theoretical models are
employed. The eigenfrequencies are then given by νj = j c02L

√
1 +Bj2 (see Section 2.2), where the

inharmonicity factor B (see Table 1) is determined by �tting the model to measurements. Damping
parameters are obtained from the damping model presented in Section 2. This representation depends
on two parameters, δve and Q

−1
te , which are determined from experimental �tting. Selected values are

δve = 4.5× 10−3 and Q−1
te = 2.03× 10−4. These parameters will be used in the rest of the paper.

Measured values together with uncertainties (obtained over nine measurements, covering repeata-
bility measurement errors and ESPRIT method uncertainties), theoretical model results and errors
between them are shown in Fig. 10 and 11. One can observe that the inharmonicity of the string
(and thus its sti�ness) is very small. The damping model gives a very accurate representation of the
measured losses. Uncertainties on frequencies are around 0.1 %, therefore not visible in Fig. 10. Errors
in the frequencies and quality factors are respectively smaller than 0.2 % and 25 %.

Finally, a highly controlled set up has been presented and linear parameters of the string have
been accurately determined. Obtained parameters can therefore be employed in the numerical model
described in Section 2 and a comparison between numerical and experimental results is possible.

5. Numerical vs experimental results

In this section, numerical and experimental signals are compared over long durations, in the time
and frequency domains. Three cases are considered: the vibrating string without obstacle, or with a
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Figure 7: Energetic behaviour of the numerical ideal lossless vibrating string, Fs,d = 5000. Variables are dimensionless.
Top: energy of the numerical signal; kinetic energy (red dashed line and circles); potential energy (dark line and

diamonds); total energy (blue dashed line). Bottom: relative energy variation Hn+1/2−H1/2

H1/2 (a) No obstacle. (b)

Centered point obstacle. The contact energy (magenta line) is also presented. Bold blue lines indicate the time interval
during which contact is persistent, resulting in an oscillatory pattern for the contact energy, shown in the upper inset.
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Figure 8: Schematic representation of the measurement frame.
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Figure 9: Electric scheme for contact detection.

point obstacle either centered or near a boundary, the latter constituting a two point bridge.
Selected string and numerical parameters are presented in Tables 1 and 3.
In all experimental results presented here except in Section 5.2.3, the initial condition is located in

the (xOz) plane, so that almost no initial energy is communicated to the horizontal polarisation. It
has indeed been observed in all measurements that with this type of initial condition the horizontal
oscillations were negligible. We thus focus on the vertical motion only in these cases. Associated
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sounds are available on the companion web-page of the paper 1. They correspond to the displacement
along (Oz) at x = 992 mm, resampled at 44.1 kHz.

5.1. No obstacle

Fig. 12 shows the comparison between experimental and numerical results, when there is no
obstacle, at the location of the optical sensor, i.e. at 1 cm from the edge x = L. The parameters of
the numerical simulation are speci�ed in Tables 1 and 3. Dispersion e�ects are clearly visible in the
�rst periods where the waveform is close to a rectangular function, then losses make the waveform
evolve with the same progression numerically and experimentally. A minor error in the amplitude of
the response is noticeable.

1Sounds are available in the companion web-page of the paper hosted by Elsevier as well as at
http://www.lam.jussieu.fr/Membres/Issanchou/Sounds_vibrating_string_point_obstacle.html.
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Figure 13: Vibrating string without obstacle, B = 1.78 × 10−5. Spectrograms of the displacement: (a) experimental,
(b) numerical.

The spectrograms of experimental and numerical signals are compared in Fig. 13, underlining the
similarity of the frequency content of both time series. Due to the nature of the initial condition (even
function with respect to the centre point), odd modes should not be excited. However one can observe
the trace of these modes in the experimental spectrogram, even though their amplitudes are more than
60 dB below the amplitude of the �rst mode. This should be attributed to small imperfections in the
string or boundary conditions, or to a small deviation of the experimental initial condition from the
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perfect symmetric triangle. In the simulation, the odd modes are completely absent. Finally, one can
also observe that the damping of the upper modes seems to be slightly underestimated in the numerical
simulation since their energy remains visible approximately 0.1 s longer on the spectrograms.

5.2. Centered point obstacle

In this section, the vibration of a string against a centered point obstacle is examined. First, the
string is excited in the (xOz) plane. The contact is investigated in detail and the second polarisation
is observed.

5.2.1. Temporal and spectral description
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Figure 14: Displacement of the string when vibrating with a centered point obstacle, B = 1.78 × 10−5. Comparison
between measurement (blue line) and numerical simulation (red line), vertical displacement at 1 cm near the edge x = L.
Expanded uncertainty at 95 % (gray). Bottom shows the temporal decrease of the energy numerically computed.

Fig. 14 presents numerical and experimental signals in the case of a centered point obstacle and
initial excitation along (Oz). As in Section 5.1, similarities can be observed, in the global shape of the
signal as well as in its detailed behaviour. The ratio between numerical frequencies without obstacle f1

and with the centered obstacle f2 satis�es
f1
f2
≈ 195.7

261.3 ≈
3
4 , as expected from the theory (see Section 3.2).

Fine features of the experimental signal are reproduced numerically, as can be seen in enlarged views
of the results. The dynamics including the contact is well-reproduced, and the numerical waveform
evolves similarly to the experimental one. However, a signi�cant error in amplitude appears, which
may be due to uncertainty in the obstacle position and height, non-ideal experimental boundaries and
initial conditions or dissipation as contact occurs. It could also be due to an imperfect rigid obstacle.
Note that adding losses in the contact as described in Section 2.3.2 reduces the amplitude, so that the
global shape better �ts the experimental one. Nevertheless, this is at the cost of the local waveform
shape, as illustrated in Fig. 15. Therefore no contact damping is included in the following (i.e. β = 0).

Spectrograms of experimental and numerical signals are presented in Fig. 16, they once again show
strong similarities. Since modes are coupled through the contact, there is no missing mode, contrarily to
the case without obstacle. A peculiar feature is a spectral resurgence zone around 8 kHz, underlined
by a brace in Fig. 16b, which clearly appears on both numerical and experimental spectrograms,
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Figure 16: Centered obstacle, B = 1.78× 10−5. Spectrograms: (a) experimental, (b) numerical.

showing that energy can be transfered thanks to the contact up to these high frequencies. It is also
a signature of the dispersion since cancelling the sti�ness term makes this zone disappear. A second
distinctive feature of the spectrograms is the appearance of spectral peaks with larger amplitudes,
around 1306 Hz, 2090 Hz, 2874 Hz, 3658 Hz, ..., see Fig. 16b where arrows indicate their presence.
The di�erence between two of each of these successive peaks is equal to 784 Hz, indicating that a rule
governs their appearance. This value of 784 Hz is related to the ratio 3/4 observed previously between
the fundamental frequency of the string (196 Hz) and the fundamental frequency of the oscillations in
the case with contact (261 Hz), since one has: 784 = 196× 4 ≈ 261× 3. Moreover, the dimensionless
value of the period associated to 784 Hz is equal to 0.5. Returning back to Fig. 6, one can observe
that in Fig. 6(c) and 6(d), an event appears each 0.5 time unit, the event could be either a change of
sign or the appearance of the unevenness marked by an arrow. This could explain why this frequency
is important in the spectrograms. Finally, one can also observe that the fundamental frequency of the
discussed behaviour is equal to 522 Hz (1306 − 784), which corresponds to the second partial of the
signal.
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5.2.2. Contact times

In the centered obstacle con�guration and according to the theoretical solution (see Section 3.2),
persistent contact arises as the string is under its rest position. This section aims at confronting
this result to experimental and numerical ones. To this end, the set up described in Section 4.1.2 is
employed. Fig. 17 shows experimental and numerical results. During the �rst periods, the contact is
clear and persistent experimentally. However as time progresses, it becomes more confused, certainly
because of dispersion which makes the waveform more complex.
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Figure 17: Top: experimental (blue line) and numerical (red dashed line) string displacement with a centered point
obstacle, B = 1.78× 10−5. Bottom: experimental tension between the string and the obstacle (blue line) and numerical
contact indicator function (red dashed line).

Numerical results have been obtained with the same string parameters as previously, K = 1013,
α = 1.5 and Fs = 2 MHz. According to values of the contact indicator function, which equals 0.5
if contact arises and 0 otherwise, the contact is persistent. In fact, at the contact point, the string
oscillates, however it does not make the contact indicator function switch since oscillations have an
amplitude around 10−8 m, which remains smaller than the penetration of the string in the obstacle,
around 10−7 m. The string thus oscillates under the rest position and contact detection remains
positive. This behaviour is strongly related to the choice of α and K. Higher sti�ness parameters
a�ect the contact persistence by decreasing the allowed penetration. For instance with α = 1.3 and
K = 1013, the penetration is about 10−8 m and �rst oscillations arise in the neighborhood of 0, such
that the indicator function oscillates at the beginning of each crenel.

5.2.3. 3D string motion

So far, the initial condition is given in the (Oz) direction only. An initial condition combining
(Oz) and (Oy) polarisations is now considered in the case of a centered point obstacle. Numerical and
experimental results are compared in Fig. 18, where numerical friction force parameters (see Section
2.7) are empirically determined as s = 10−5 m.s−1 and A = 0.12 N. Other parameters are unchanged.

The initial condition is similar to that used in the previous section except that approximately the
same amplitude (about 1 mm) is imposed along (Oz) and (Oy). The oscillation plane resulting from
this initial condition is thus at 45 degrees in (yOz).

Since the observation points are slightly displaced from one polarisation to the other, the displayed
displacement v has a larger amplitude. The main observation reported from Fig. 18 is the very fast
decay of oscillations along (Oy), since the motion cancels out after 0.025 s while the motion along (Oz)
continues during several seconds. The second comment is that the numerical scheme well reproduces
details of the decay of the displacement along (Oy), excepted small disturbances (of a few µm) when
the string touches the obstacle, which also slightly a�ect the displacement along (Oz) and may be due
to asperities on the obstacle which are not included in the model.
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Figure 18: Top and centre: experimental (blue line) and numerical (red line) string displacement along (Oz) (at 1 cm
near the edge x = L) and (Oy) (at 2 cm near the edge x = L) with a centered point obstacle and B = 1.78 × 10−5.
Bottom: numerical energy of u (blue line) and v (dark dashed line).

As expected from displacement signals, the energy along (Oy) decreases rapidly. The largest amount
of energy decrease arises when u is negative, which corresponds to contact times, so that friction is
applied on v.

5.3. Two point bridge

In this part, the bridge of a tanpura is modelled using a two point bridge constituted by a point
obstacle near a boundary, as explained in [30, 13]. The distance between the point obstacle and the
string boundary x = 0 is chosen as xb = 6 mm according to the range of values given in [30] (5 to 7
mm for a string of length 1 m).

Fig. 19 presents numerical and experimental signals in the case of a two point bridge. Again, the
global shape of the signal as well as detailed oscillations are �nely reproduced numerically. E�ect of
dispersion is faithfully described as can be seen on extended views at 0 and 0.2 s in particular. A slight
amplitude error appears, smaller than in the centered obstacle case, as well as a slight delay (20 degrees
after 1.5 s). Possible reasons are the same as in the previous case (see Section 5.2). Besides, the total
energy decreases faster than in the centered point obstacle case, itself decreasing faster than when
there is no obstacle. This could be explained by an improved transfer of energy to the high-frequency
range in the case of the two point bridge, where damping factors are larger.

Let us now focus on spectrograms (see Fig. 20). Note that only frequencies up to 4.8 kHz are shown,
contrarily to the case of the centered point obstacle. In the present case, no particular behaviour can
be seen for higher frequencies, and the presented spectrograms focus on the zone of interest. As in the
centered obstacle case, no missing mode is observed, due to the coupling of modes at the contact point.
A descending formant can be observed which follows a time evolution as described in [30] (experimental
study) and [34] (numerical study) where a string vibrating against a tanpura bridge is considered. Its
evolution is accurately reproduced by the numerical result, although some di�erences appear after
2 s, when the signal amplitude has become very small. The essential role of dispersion highlighted
in [30, 14] is again demonstrated through the spectrogram in Fig. 21 where dispersion is cancelled.
Comparing Fig. 20b and 21, one observes a similar ascending behaviour for lowest frequencies and
during the �rst 1 s of the signal. However spectrograms substantially di�er after in time as well as in
the high frequency range. This shows the essential role of dispersion in the rich and complex behaviour
of the signal.
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Figure 19: Displacement of the string when vibrating with a two point bridge, B = 1.78 × 10−5. Comparison between
measurement (blue line) and numerical simulation (red line), vertical displacement at 1 cm near the edge x = L.
Expanded uncertainty at 95 % (gray). Bottom shows the temporal decrease of the energy numerically computed.
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Figure 20: Two point bridge, B = 1.78× 10−5. Spectrograms: (a) experimental, (b) numerical.

6. Conclusion

In this paper, the motion of a sti� damped string against an obstacle has been studied numerically
and experimentally in both transverse polarisations. The present investigations focus on point obsta-
cles, but the scheme allows the consideration of arbitrarily shaped obstacles along (Oz). It is based
on a modal approach, allowing a �exible adjustment of numerical behaviour in the linear regime (i.e.,
the eigenfrequencies and frequency-dependent damping coe�cients). In particular, measured values
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Figure 21: Two point bridge. Numerical spectrogram, without dispersion.

can be employed so that very realistic results can be obtained, which constitutes a major advantage of
the method. While having a intrinsically modal nature, the scheme operates in the spatial domain. It
could therefore be interpreted as a spectral method [57] combined with a time-stepping method. It is
unconditionally stable, so that no bound on space and time steps is required for stability. Moreover, it
is exact when the collision force is not present, contrary to other existing methods such as Hamiltonian
methods [58, 33] and �nite di�erences [46]. The necessity of a high sampling rate has been highlighted
in order to obtain reliable results for simulations over a long duration. This a�ects the computation
time, which could be improved by de�ning a variable spatial step, �ner around the obstacle, and a
variable time step, �ner around contact events. Such re�nements should however be carefully handled,
since a variable space step would change the structure of involved matrices, and a variable time step
should be completed together with a sampling rate conversion without introducing additional artefacts.
The relevance of numerical results with regards to experiments has been demonstrated in Section 5.
To this end, a highly controlled experimental set up has been presented, as well as a reliable measure
of the string linear features. Then a �ne comparison between numerical and experimental results has
been completed over a long duration, with an obstacle either at the middle of the string or near one
boundary. In both cases, comparisons show an almost perfect agreement, without adding losses in the
contact law. Results thus demonstrate both the accuracy of the numerical method and its ability to
recover the most important physical features of the experiment. To the knowledge of authors, such a
detailed comparison is absent from the literature.

In the present study, no realistic excitation mechanism in relation to musical gesture is included.
The next step may thus be to incorporate the dynamics of the musician's �ngers [59]. Moreover,
di�erently shaped obstacles may be considered, including distributed barriers in order to simulate a
wider range of musical instruments. In addition, the coupling between transverse motions of the string
is limited and unilateral. A more complex model may be considered. In order to complete the model,
coupling to the structure could also be included as well as possible sympathetic strings [60, 61].
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AppendixA. Identities and inequalities for stability analysis

In this appendix, useful properties of the matrices involved in the numerical scheme are demon-
strated. Three main properties, directly used in the proof of the stability of the scheme, are shown.
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The following identities are also recalled for an N ×N positive semi-de�nite symmetric matrix M, and
un ∈ RN a vector.

1. 〈Mδttu
n, δt.u

n〉 =
1

2
δt− 〈δt+un,Mδt+un〉 (A.1)

2. 〈Mun, δt.u
n〉 =

1

2
δt−

〈
un+1,Mun

〉
(A.2)

These identities are useful in the course of the computations for demonstrating stability. The proof is
straightforward.

Let us give the �rst property.

Property 1. Let M be a N ×N positive semi-de�nite symmetric matrix and un, un+1 ∈ RN . Then
one has: 〈

un+1,Mun
〉
≥ −∆t2

4
〈δt+un,Mδt+un〉 . (A.3)

Proof. Because M is symmetric, we have the following equality for any two vectors u, v in RN :

〈u,Mv〉 = ∆x
∑
i,k

mikviuk = ∆x
∑
i,k

mikvkui = ∆x 〈v,Mu〉 .

The inequality then results from the following equality:

〈
un+1,Mun

〉
=

1

4

〈
un+1 + un,M(un+1 + un)

〉
− ∆t2

4
〈δt+un,Mδt+un〉 .

Assuming that M is semi-de�nite positive gives the result.

Property 2. Using the notations de�ned in Section 2.6, 1 + ei ±Ai > 0, ∀i.

Proof. Let us �rst consider the case 0 < σi < ωi.
Introducing X = σi∆t, Y = ωi∆t, and Z =

√
Y 2 −X2, one has:

1 + ei −Ai = 1 + e−2X − 2e−X cos(Z) > 1 + e−2X − 2e−X = f1(X).

f1(X) is positive since f ′1(X) > 0 and f1(0) = 0, therefore 1 + ei −Ai > 0. The same reasoning leads
to 1 + ei +Ai > 0.

Let us now study the case 0 < ωi < σi. In this case, de�ning Z =
√
X2 − Y 2:

1 + ei −Ai = 1 + e−2X − 2e−X cosh(Z) = f2(X,Z).

By assumption, 0 < ωi < σi, so that 0 < Y < X, and therefore 0 < Z < X. On one hand,
f2,X > 2(e−X − e−2X) > 0 and f2(0, Z) = 0 (since 0 < Z < X, the limiting case is X = Z = 0). On
the other hand, f2,Z = −2e−X sinh(Z) < 0 and f2(X,X) = 0. Finally, 1 + ei − Ai > 0. Obtaining
1 + ei +Ai > 0 is straightforward.

Property 3. Ď1, Ď2 and Ď3 (given in Section (2.6)) are symmetric and positive semi-de�nite.

Proof. The proof is given for Ď2 and Ď3. Given those, the proof for Ď1 is straightforward. Let us
�rst focus on Ď2.

Since Č2 is diagonal and S̃−1 = S̃T , symmetry of Ď2 is obtained by construction of the matrix:

Ď2 = SČ2S−1 = ∆xSČ2ST

of which coe�cients are given by:

Ď2ij
= ∆x

N−1∑
k=1

SikČ2kk
STkj = ∆x

N−1∑
k=1

SikČ2kk
Sjk,

with i, j ∈ {1, ..., N}.
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Let us now show that Ď2 is positive semi-de�nite. To do so, it is su�cient to show that Č2 is
positive semi-de�nite. Indeed:
Let C be a square diagonal matrix and D = S̃CS̃−1 with S̃ =

√
∆xS, where S is such that S̃−1 = S̃T .

Consider q and u such that u = S̃q. Then: 〈q,Cq〉 = qTCq = qT S̃T S̃CS̃T S̃q = 〈u,Du〉. Therefore,
if C is positive semi-de�nite, D is.

If diagonal coe�cients of Č2 are positive, then the proof is done. Since ωi > 0 ∀i, one has to show
that 1 + (1− γi)ω

2
i ∆t2

2 + σ∗i ∆t > 0. Developing and rearranging this expression, one obtains:

1 + (1− γi)
ω2
i∆t2

2
+ σ∗i ∆t =

ω2
i∆t2

2

(
1 +

1− ei
1 + ei

)[
1 + ei

1 + ei −Ai

]
. (A.4)

(A.4) is positive if 1+ei−Ai > 0. This is satis�ed (see Property 2), so that 1+(1−γi)ω
2
i ∆t2

2 +σ∗i ∆t > 0.

Finally, Ď2 is semi-de�nite positive. In the lossless case, which is a limiting case to the lossy one,
the demonstration is similar, starting from a reduced expression of coe�cients.

Let us now study Ď3, the symmetry of which is obtained as previously.
As for Ď2, it is su�cient to show that Č3 is semi-de�nite positive. The denominator of Č3ii is

positive as demonstrated above. Besides, one has:

σ∗i =
1− ei
1 + ei

[
ω2
i∆t

2

(
1 +

Ai
1 + ei −Ai

)]
. (A.5)

As previously, this quantity is positive. Finally, Ď3 is semi-de�nite positive. In the lossless case, this
matrix does not appear in the problem since it is null.
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