Statistical discrete geometry

Abstract : Following our earlier work, we construct statistical discrete geometry by applying statistical mechanics to discrete (Regge) gravity. We propose a coarse-graining method for discrete geometry under the assumptions of atomism and background independence. To maintain these assumptions, restrictions are given to the theory by introducing cut-offs, both in ultraviolet and infrared regime. Having a well-defined statistical picture of discrete Regge geometry, we take the infinite degrees of freedom (large n) limit. We argue that the correct limit consistent with the restrictions and the background independence concept is not the continuum limit of statistical mechanics, but the thermodynamical limit.
Type de document :
Pré-publication, Document de travail
18 pages, 16 figures, the information contained in this article was extracted from a doctoral the.. 2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01461395
Contributeur : Carlo Rovelli <>
Soumis le : mercredi 8 février 2017 - 10:32:11
Dernière modification le : vendredi 10 février 2017 - 01:12:19

Identifiants

  • HAL Id : hal-01461395, version 1
  • ARXIV : 1607.08629

Collections

Citation

Seramika Ariwahjoedi, Valerio Astuti, Jusak Sali Kosasih, Carlo Rovelli, Freddy Permana Zen. Statistical discrete geometry. 18 pages, 16 figures, the information contained in this article was extracted from a doctoral the.. 2017. 〈hal-01461395〉

Partager

Métriques

Consultations de la notice

49