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Pierre-Louis Lions4, and Benjamin Moll5

March 3, 2014

Abstract

The purpose of this article is to get mathematicians interested in studying a
number of PDEs that naturally arise in macroeconomics. These PDEs come from
models designed to study some of the most important questions in economics. At
the same time they are highly interesting for mathematicians because their structure
is often quite difficult. We present a number of examples of such PDEs, discuss what
is known about their properties, and list some open questions for future research.

1 Introduction

Macroeconomics is the study of large economic systems. Most commonly this system
is the economy of a country. But it may also be a more complex system such as the
world as a whole, comprised of a large number of interacting smaller geographic regions.
Macroeconomics is concerned with some of the most important questions in economics, for
example: What causes recessions? Why are some countries so much poorer than others?

Traditionally macroeconomic theory has focused on studying systems of difference
equations or ordinary differential equations describing the evolution of a relatively small
number of macroeconomic aggregates. These systems are typically derived from the op-
timal control problem of a “representative agent”. In the last thirty years, however,
macroeconomics has seen the development of theories that explicitly model the equilib-
rium interaction of heterogeneous agents, e.g., heterogeneous consumers, workers and
firms (see in particular the early contributions of Bewley, 1986; Aiyagari, 1994; Huggett,
1993; Hopenhayn, 1992). The development of these theories opens up the study of a
number of important questions: Why are income and wealth so unequally distributed?
How is inequality affected by aggregate economic conditions? Is there a trade-off between
inequality and economic growth? What are the forces that lead to the concentration of
economic activity in a few very large firms? And why do instabilities in the financial
sector seem to matter so much for the macroeconomy?

Heterogeneous agent models are usually set in discrete time. While they are workhorses
of modern macroeconomics, relatively little is known about their theoretical properties
and they often prove difficult to compute. To make progress, some recent papers have
therefore studied continuous time versions of such models. Our paper reviews this liter-
ature. Macroeconomic models with heterogeneous agents share a common mathematical
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structure which, in continuous time, can be summarized by a system of coupled non-linear
PDEs: (1) a Hamilton-Jacobi-Bellman equation describing the optimal control problem
of a single atomistic individual; (2) an equation describing the evolution of the distribu-
tion of a vector of individual state variables in the population (such as a Fokker-Planck
equation, Fisher-KPP equation, or Boltzmann equation). While plenty is known about
the properties of each type of equation individually, our understanding of the coupled
system is much more limited. Lasry and Lions (2007) have termed such a system a mean
field game and obtained some theoretical characterizations for special cases, but many
open questions remain. The purpose of this article is to present important examples of
these systems of PDEs that arise naturally in macroeconomics, to discuss what is known
about their properties, and to highlight some directions for future research.

In Section 2 we present a model describing an economy consisting of a continuum of
heterogeneous individuals that face income shocks and can trade a risk-free bond that
is in zero net supply. This is the simplest model to illustrate the basic structure of het-
erogeneous agents framework used in macroeconomics, and it is the building block of
many models studying the interaction between macroeconomic aggregates and the dis-
tribution of income and wealth. In Section 3 we review PDEs that have been used to
describe the distribution of the many economic variables that obey power laws, e.g., city
and firm size, wealth and executive compensation. One building block of all of these
models is the Fokker-Planck equation for a geometric Brownian motion. This equation
is then combined with a model of exit and entry, for instance taking the form of a vari-
ational inequality of the obstacle type derived from an optimal stopping time problem.
In Section 4 we present a class of models describing processes of economic growth due to
experimentation and knowledge diffusion, or alternatively the percolation of information
in financial markets. These models generate richer, more non-local dynamics, that give
rise to Fisher-KPP or Boltzmann type equations.

In Section 5 we introduce a class of models that is substantially more complicated
than those in the preceding sections: models with “aggregate shocks” designed to study
business cycle fluctuations. These theories have the property that macroeconomic ag-
gregates, including the distribution of individual states, are stochastic variables rather
than just varying deterministically as in the models studied thus far. This creates the
difficulty that the distribution – an infinite-dimensional object – has to be included in
the state space of the individual optimal control problem. The resulting optimal control
problem is no longer a standard HJB equation but instead a “HJB equation in the space
of density functions,” a very challenging object mathematically. We present the most
canonical version of such a theory: the model in Section 2 but now with aggregate income
shocks. But in principle, any of the theories in the preceding sections could be enriched
by introducing such aggregate shocks. Finally, in section 6 we note that also models with
a finite number of agents, rather than a continuum as in the preceding sections, are of
interest in certain macroeconomic applications. We present a model of firm dynamics in
an oligopolistic industry which takes the form of a differential game.

Space limitations have forced us to leave out other important areas of macroeconomics
and economics more broadly where PDEs, and continuous time methods in general, have
played an important role in recent years. A good example is the large literature studying
the design of optimal dynamic contracts and policies. See for example the recent work by
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Sannikov (2008), Williams (2011), and Farhi and Werning (2013). Another area is given
by models of the labor market. See for example the recent contribution by Alvarez and
Shimer (2011) and the review by Lentz and Mortensen (2010). Finally, throughout this
paper we focus on equilibrium allocations in which individuals take as given the actions
of others rather than coordinating with them. As a result these equilibrium allocations
are in general suboptimal. Optimal allocations in heterogeneous agent models can be
analyzed along the lines of Nuño (2013) and Lucas and Moll (2014).

2 Income and Wealth Distribution

The discrete time model of Aiyagari (1994) Bewley (1986) and Huggett (1993) is one of the
workhorses of modern macroeconomics. This model captures in a relatively parsimonious
way the evolution of the income and wealth distribution and its effect on macroeconomic
aggregates. It is a natural framework to study the effect of various policies and institutions
on inequality. A huge number of problems in macroeconomics have a similar structure
and so this is a particularly useful starting point. The simplest formulation of the model
is due to Huggett (1993) and we here present a continuous time formulation of Huggett’s
model presented in Achdou, Lasry, Lions, and Moll (2014a).

There is a continuum of infinitely lived households that are heterogeneous in their
wealth a and their income z. Their income evolves exogenously according to a diffusion
process dzt = µ(zt)dt+σ(zt)dWt in a closed interval [z, z̄] (it is reflected at the boundaries
if it ever reaches them). Households can borrow and save at an interest rate r(t) which is
determined in equilibrium. The evolution of their wealth is chosen optimally as described
below. Importantly, there is a state constraint a ≥ a for some scalar −∞ < a ≤ 0. This
state constraint has the economic interpretation of a borrowing constraint, e.g. if a = 0
households can only save and cannot borrow at all. Households have utility functions
u(c) over consumption c that are strictly increasing and strictly concave (e.g. u(c) =
c1−γ/(1 − γ), γ > 0) and they maximize the present discounted value of utility from
consumption. The equilibrium can be characterized in terms of a HJB equation for the
value function v and a Fokker-Planck equation for the density of households g. In a
stationary equilibrium, the unknown functions v and g and the unknown scalar r satisfy
the following system of coupled partial differential equations (stationary mean field game)
on (a,∞)× (z, z̄):

1

2
σ2(z)∂zzv + µ(z)∂zv + (z + ra)∂av +H(∂av)− ρv = 0 (1)

−1

2
∂zz(σ

2(z)g) + ∂z(µ(z)g) + ∂a((z + ra)g) + ∂a (∂pH(∂av)g) = 0 (2)
∫

g(a, z)dadz = 1, g ≥ 0 (3)
∫

ag(a, z)dadz = 0 (4)

where the Hamiltonian H is given by

H(p) = max
c≥0

(−pc + u(c)) , (5)
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The function v satisfies a state constraint boundary condition at a = a and Neumann
boundary conditions at z = z and z = z̄. Solutions to the HJB equation (1) will in
general be smooth. Given this smoothness, it is possible to show that the state constraint
boundary condition is equivalent to

z + ra+ ∂pH(∂av) ≥ 0, a = a (6)

so that the trajectory of a points towards the interior of the state space. The interpretation
of the equilibrium condition (4) is as follows: wealth a here takes the form of bonds and
the equilibrium interest rate r is such that bonds are in zero net supply. That is, for every
dollar borrowed there is someone else who saves a dollar. Note that the interest rate r is
the only variable through which the distribution g enters the HJB equation (7).

The time-dependent analogue of (1) to (4) is also of interest. In the time-dependent
equilibrium, the unknown functions v and g satisfy the following system of coupled partial
differential equations (time-dependent mean field game) on (a,∞)× (z, z̄)× (0, T ):

∂tv +
1

2
σ2(z)∂zzv + µ(z)∂zv + (z + r(t)a)∂av +H(∂av)− ρv = 0 (7)

∂tg −
1

2
∂zz(σ

2(z)g) + ∂z(µ(z)g) + ∂a((z + r(t)a)g) + ∂a (∂pH(∂av)g) = 0 (8)
∫

g(a, z, t)dadz = 1, g ≥ 0 (9)
∫

ag(a, z, t)dadz = 0 (10)

where the Hamiltonian H is given by (5). The density g satisfies the initial condition
g(a, z, 0) = g0(a, z). For the terminal condition for the value function v we generally take
T large and impose v(a, z, T ) = v∞(a, z) where v∞ is the stationary value function, i.e.
the solution to the stationary problem (1) to (4). The function v also still satisfies the
state constraint boundary condition (6) and Neumann boundary conditions at z = z and
z = z̄.

Theoretical Results. Achdou, Lasry, Lions, and Moll (2014a) have analyzed some
theoretical properties of both the time-varying and stationary problems. We here briefly
review the (rather incomplete) theoretical knowledge of these problems, followed by a
list of open question regarding in particular the well-posedness of the problems. Achdou,
Lasry, Lions, and Moll (2014a) first analyze the stationary problem (1) to (4) under the
additional assumption that the state constraint satisfies a > −z/r. Since (6) can be
written as ∂av(a, z) ≥ u′(z + ra), one can see that this assumption implies that the state
constraint will bind for z low enough. That is, the borrowing constraint is “tight.” Of
particular interest is the stationary saving policy function

s(a, z) = z + ra+ ∂pH(∂av(a, z)),

that is the optimally chosen drift of wealth a, and the behavior of the implied stationary
distribution g. Importantly, one can show that the expansion of the function s around a
satisfies the following property: there exists z∗ with z < z∗ < z̄ such that

s(a, z) ∼ −s̄z
√
a− a, s̄z > 0, z ≤ z ≤ z∗, (11)
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meaning that in particular the derivative ∂as becomes unbounded when we let a go to
a. It then follows from this property that the stationary distribution g is unbounded and
has a Dirac mass at a = a for z ≤ z∗. The existence of a Dirac mass in the stationary
version of (7) to (10) of course complicates the mathematics substantially. At the same
time, it is also one of the economically most interesting predictions of the model. What
fraction of individuals in an economy such as the United States are borrowing constrained
and how we would expect this to change when various features of the environment (say
the stochastic process for z) change is an important question with wide-reaching policy
implications. That interesting economics and challenging mathematics go hand in hand
is one of the main themes of this paper.

Achdou, Lasry, Lions, and Moll (2014a) prove the existence of a solution to (1) to
(4), i.e. of a stationary equilibrium. The key step in the proof is to analyze solutions v
and g to (1) to (3) for given r and to show that the corresponding first moment of g,
m(r) =

∫

ag(a, z)dadz, goes to a as r → −∞ and that it becomes unbounded as we take
r to ρ−. It follows from this that there exists an r such that (4) holds. Currently open
theoretical questions are:

1. uniqueness of a solution to (1) to (4), i.e. of a stationary equilibrium

2. existence of a solution to (7) to (10), i.e. of a time-dependent equilibrium

3. uniqueness of a solution to (7) to (10), i.e. of a time-dependent equilibrium

The main difficulty in the first question, uniqueness of a stationary solution, lies in showing
that (or finding conditions under which) the first moment of g, m(r), is monotone as a
function of r.

Numerical Methods. Achdou, Lasry, Lions, and Moll (2014a) have also developed
numerical methods for solving both the stationary and time-dependent problems, based
on Achdou, Camilli, and Capuzzo Dolcetta (2012). Figure 1 plots the optimal stationary
saving policy function s and the implied distribution g. These are computed under the
assumption that u in (5) is given by u(c) = c1−γ/(1−γ) with γ = 2. In the figures, one can
see that s satisfies (11) and g has a Dirac mass for low z (the numerical method computes
discretized versions of the equations so the Dirac mass corresponds to a finite density).
Time-dependent solutions can be computed in a similar fashion and the evolution of the
distribution over time can be visualized as “movies,” see e.g. http://www.princeton.

edu/~moll/aiyagari.mov.

3 Models of Power Laws

One of the most ubiquitous regularities in empirical work in economics and finance is that
the empirical distribution of many variables can well be approximated by a power law.
Examples are the distributions of income and wealth, of the size of cities and firms, stock
market returns, trading volume, and executive pay. See Gabaix (2009) who reviews the
theoretical and empirical literature on power laws.
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Figure 1: Numerical Solution to Stationary Equilibrium, (7) to (10)

Gabaix (1999) has proposed a simple explanation of power law phenomena that natu-
rally leads to PDEs: many variables follow geometric Brownian motions, combined with a
“small friction” such as a minimum size in the form of a reflecting barrier or small “death
shocks.” The following material is based on Gabaix (2009). Consider a stochastic process

dzt
zt

= µ̄dt+ σ̄dWt, (12)

where µ̄ < 0 and σ̄ > 0 are scalars. For sake of concreteness, consider the case where
z represents the size or productivity of a firm and we are interested in the firm size
distribution. But of course z could be city size or any other variable as well. Further
assume that there is a minimum firm size zmin in the form of a reflecting barrier (other
mechanisms are possible as well and we explore some below). The stationary firm size
distribution f satisfies the Fokker-Planck equation

1

2
∂zz

(

σ̄2z2f
)

− ∂z(µ̄zf) = 0 (13)
∫

f(z)dz = 1, f ≥ 0, (14)

on (zmin,∞). It is easy to see that the solution to (13) is

f(z) = ζzζminz
−ζ−1, ζ = 1− 2µ̄

σ̄2
, (15)

that is, a power law with exponent ζ > 1. This basic idea can be generalized in a number
of ways and applied in a number of different contexts and we here review some of these
other applications.

3.1 Entry, Exit and Firm Size Distribution

An important paper by Luttmer (2007) has applied the same logic to the question why
the size distribution of firms follows a power law. We here review a simplified version
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of Luttmer’s model. The problem also corresponds to a continuous time formulation of
that originally studied by Hopenhayn (1992). Each firm has a profit function π(z,m[f ])
which is strictly increasing in its own productivity z, and strictly decreasing in a geometric
average of all other firms’ productivities1

m[f ] =

(
∫

zθf(z)dz

)
1

θ

, θ > 0.

The value of a firm is the present discounted value of profits. Firms’ productivity and
hence profits evolve according to the stochastic process dzt = µ(zt)dt+σ(zt)dWt which we
later specialize to (12), following Luttmer (2007). Firms have only one choice: whether to
remain active or whether to exit the industry. If a firm exits the industry it obtains a scrap
value ψ, but it can never reenter the industry. When firms exit, they mechanically get
replaced by a group of entrants of equal mass whose initial productivity is a random draw
from the distribution of productivities of currently active firms. Firms therefore solve a
stopping time problem and the value function v(z) can be characterized by a variational

inequality of the obstacle type (see e.g. Bardi and Capuzzo-Dolcetta, 1997). As before the
density of firms f satisfies a Fokker-Planck equation. In the stationary version of this
problem, the unknown functions v and f satisfy

min

{

ρv − 1

2
σ2(z)∂zzv − µ(z)z∂zv − π(z,m[f ]), v − ψ

}

= 0 (16)

1

2
∂zz

(

σ2(z)f
)

− ∂z(µ(z)f) = 0 (17)
∫

f(z)dz = 1, f ≥ 0, (18)

m[f ] =

(
∫

zθf(z)dz

)
1

θ

(19)

on R
+.2 Luttmer (2007) shows that under the assumption that µ(z) = µ̄z, σ(z) = σz with

µ̄ < 0 and σ̄ > 0 (i.e. zt follows (12)) and some other appropriately chosen assumption
(e.g. that π is a power function with appropriately chosen exponents), the system can be
solved explicitly. Importantly, the stationary distribution still satisfies (15) (where now

1This dependence is motivated as follows. Firms face demand functions (p(z)/P )−γ , γ > 1 where p(z)

is the price of firm z and P is a “price index” P =
(∫

p(z)1−γf(z)dz
)

1

1−γ . Each firm’s profit function is
given by

π = max
p

p
( p

P

)

−γ

− 1

z

( p

P

)

−γ

= (p̄− 1)zγ−1p̄−γP γ , p̄ =
γ

γ − 1

and the optimal price is p(z) = p̄/z so that P = p̄
(∫

zγ−1f(z)dz
)

1

1−γ and hence π(z,m[f ]) = (p̄ −
1)zγ−1(m[f ])−γ with θ = γ − 1.

2(16) can also be written somewhat more intuitively as

0 =

{

ρv − 1

2
σ2(z)∂zzv − µ(z)∂zv − π(z,m[f ]), v − ψ ≥ 0

v − ψ, ρv − 1

2
σ2(z)∂zzv − µ(z)∂zv − π(z,m[f ]) ≥ 0
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zmin is determined from (16)) thereby explaining the empirical regularity that the firm
size distribution follows a power law.

While the case in which zt follows a geometric Brownian motion (12) is very well
understood, a natural question is what the exit decision and the firm size distribution look
like for more general stochastic processes and perhaps also more general interdepencies
between firms m[f ]. For this more general setup, open questions are:

1. Existence and uniqueness of a stationary equilibrium, i.e. solutions to (16) to (19).

2. Existence and uniqueness of the time-dependent counterpart.

3. Development of numerical methods for solving both stationary and time-dependent
equilibria.

Stokey (2009) discusses other examples of stopping time problems in economics, many
of them describing richer version of the model of firm dynamics introduced in this section.
This includes the problem of firms that set their price subject to an adjustment cost.
These models are important in macroeconomics because the existence of frictions to the
adjustment of prices is the main motivation for the use of monetary policy to stabilize
business cycle fluctuations. Recent examples are given by Golosov and Lucas (2007) and
Alvarez and Lippi (2013).

3.2 Other Applications of Theories of Power Laws

The ideas presented in the preceding two sections have been used to understand the
emergence of power laws in a number of different contexts. For example, Benhabib, Bisin,
and Zhu (2011) and in particular Benhabib, Bisin, and Zhu (2013) develop models of the
wealth distribution whose mathematical structure is quite similar to the one presented
here. Similarly, Jones (2014) applies the same insights to the question why the top of the
income distribution (the infamous “one percent”) can be well described by a power law.

4 Knowledge Diffusion and Growth

We now present some models of knowledge diffusion that have recently been used in
macroeconomics, international trade and finance. These differ from the mean field games
presented in sections 2 and 3 that the law of motion of the distribution does not take
the form of a Fokker-Planck equation but instead that of equations that describe richer
more “non-local” dynamics, for example Fisher-KPP or Bolztmann type equations. They
also differ in that the long-run behavior of the systems they describe are not stationary.
Instead these models are designed to feature sustained growth. As such they can be used
to try to answer some of the most important questions in economics, for example: what
generates long-run growth? What is the relation between growth and inequality? In
section 4.1 we first present some problems that are purely “mechanical” in the sense that
they do not feature an optimal control problem. We then add such a control problem in
section 4.2.
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4.1 Diffusion and Experimentation as an Engine of Growth

The following is based on Alvarez, Buera, and Lucas (2008), Lucas (2009) and in particular
Luttmer (2012). Consider an economy populated by a continuum of individuals indexed
by their productivity or knowledge z ∈ R

+. The economy is described by its distribution
of knowledge with cdf G(z, t). The evolution of G is modeled as as a process of individuals
meeting others from the same economy, comparing ideas, improving their own productiv-
ity. Meetings happen at Poisson intensity α and from the point of view of an individual
a meeting is simply a random draw from the distribution G. When a meeting occurs, a
person z compares his productivity with the person he meets and leaves the meeting with
the best of the two productivities max{z, z′}. Individual productivities also fluctuate in
the absence of a meeting. In particular individuals “experiment” and their productivity
may either increase or decrease according to the process d log zt = σdWt, σ > 0. Given
this structure it is convenient to work with x = log z and the corresponding distribution
F , and one can show that this distribution satisfies

∂tF − σ2

2
∂xxF = −αF (1− F ), (20)

on R× R
+, and with boundary conditions

lim
x→−∞

F (x, t) = 0, lim
x→∞

F (x, t) = 1, F (x, 0) = F0(x), (21)

where F0(x) is the initial productivity distribution. As Luttmer (2012) points out this is
a Fisher-KPP type equation (Fisher, 1937; Kolmogorov, Petrovskii, and Piskunov, 1937)
whose theoretical properties are well understood (see e.g. McKean, 1975). In particular
one can show that (20) admits “traveling wave” solutions, i.e. solution of the form

F (x, t) = Φ(x− γt). (22)

One can further show that if the initial distribution is a Dirac point mass, the limiting
distribution is a traveling wave with γ = σ

√
2α. If the distribution F is a traveling

wave (22), productivity z = ex is on average growing at the constant rate γ and hence
one can say that the economy is on a “balanced growth path” with growth rate γ. The
interpretation of the formula for the growth rate γ = σ

√
2α is also very natural: it

says that it is the combination of “experimentation” parameterized by σ and “diffusion”
parameterized by α that is the engine of growth in this economy. Either force in isolation
would lead to stagnation, but the two together create sustained growth.

Economists have studied various versions of the Fisher-KPP equation (20). Lucas
(2009) and Alvarez, Buera, and Lucas (2008) study the version of (20) with σ = 0:

∂tF = −αF (1− F ), (23)

on R×R
+. To generate sustained growth they assume that the initial distribution satisfies

(1 − F0(x))/e
−ζx → c as x → ∞ for some constants c, ζ > 0, meaning that the initial

distribution for z = ex is asymptotically a power law as in (15).3 Luttmer (2014) studies

3As shown by Luttmer (2012), the traveling wave solution obtained in the case (20) with σ > 0 satisfies
this property and hence this is a relatively innocuous assumption.

9



the equation

∂tF − σ2

2
∂xxF = −αmin{F, 1− F}

on R× R
+ which can be solved explicitly.

4.2 Knowledge Diffusion and Search

While the models in the previous section are interesting in that they describe environments
in which there is sustained growth, they are somewhat less interesting than those in
sections 2 and 3 in that individuals in the economy did not make any choices, i.e. solve
optimal control problems. Lucas and Moll (2014) extend the setup in the previous section
to feature such an optimal choice. In this extension, one can then ask questions such as:
is the equilibrium growth rate of the economy optimal or should policy makers intervene
to boost (or perhaps depress) economic growth?

In Lucas and Moll (2014) individuals have one unit of time and they can split it between
producing with the knowledge they already have, or they can search for productivity
enhancing ideas. Search increases the likelihood of other individuals. In particular the
Poisson meeting rate of an individual who searches a fraction s of his time is α(s) which is
strictly increasing and concave. Conditional on a meeting the knowledge diffusion process
is exactly as described in the previous section. The cost of search is that it interferes
with production. In particular, the output of an individual with productivity z = ex who
searches a fraction s of his time is (1− s)ex. Individuals maximize the present discounted
value of future output. The equilibrium of this economy can be described in terms of a
system of two integro-PDEs for the value function v and the density of the productivity
distribution f :

∂tv +
σ2

2
∂xxv + max

s∈[0,1]

{

(1− s)ex + α(s)

∫ ∞

x

(v(y, t)− v(x, t))f(y, t)dy

}

− ρv = 0, (24)

∂tf − σ2

2
∂xxf + α(s∗(x, t))f(x, t)

∫ ∞

x

f(y, t)dy − f(x, t)

∫ x

−∞

α(s∗(y, t))f(y, t)dy = 0

(25)
∫

f(z, t)dz = 1, f ≥ 0. (26)

on R × R
+ and where s∗ is the maximand of (24). There is also an initial condition

f(x, 0) = f0(x). It can be seen that (20) is the special case of (25) in which the optimal
control s∗ and hence also α are constant across x-types, and written in terms of the cdf
F (x, t) =

∫ x

0
f(x, t)dx. However, in general, it will not be true that s∗ is constant for all

x. Instead, s∗ is usually decreasing in x. Lucas and Moll (2014) study the special case
of (24) to (26) with σ = 0. They show that the system admits solutions of the traveling
wave type, that is

v(x, t) = w(x− γt), f(x, t) = φ(x− γt)

and they develop numerical methods for computing such solutions numerically, and in
particular to find the growth rate γ of the system. However, there remain many open
theoretical questions, among these:
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1. Existence and uniqueness of a solution to (24) to (26).

2. Asymptotic behavior of f for different initial conditions f0, in particular the one
where f0 is a Dirac point mass. Does the solution converge to a traveling wave
f(x, t) = φ(x− γt)? If so, what does this limiting distribution look like? And what
is the growth rate γ?

3. Development of numerical methods for solving the time-dependent problem (24) to
(26).

Regarding the second question, a natural conjecture would be that the limiting distribu-
tion is a traveling wave with growth rate

γ = σ

√

2

∫ ∞

−∞

α(s∗(x))φ(x)dx.

This is the natural generalization of the formula γ = σ
√
2α in section 4.1 to the case

where s∗ varies across productivity types.
Ideas similar to those presented in this section in the context of search and knowledge

diffusion have been applied to different contexts. For example, Duffie, Garleanu, and
Pedersen (2005) and Lagos and Rocheteau (2009) and others use search theory to model
the trading frictions that are characteristic of over-the-counter (OTC) markets, and to
examine the effects of these frictions on asset prices and trading volumes.

4.3 Diffusion and International Trade

An alternative route to enrich the model of knowledge diffusion is to consider explicit
mechanisms mediating the interactions among individuals. One possible avenue is ex-
plored by Alvarez, Buera, and Lucas (2013), who consider a multi country model in
which knowledge is transmitted through the interaction with the sellers of goods to a
country. In their theory barriers to trade affect the composition of sellers to a country,
and therefore, they impact the diffusion of knowledge. The higher trade cost are the more
likely it is that sellers in a country are given by relatively inefficient local producers.

The central object in their theory is the distribution of productivities across potential
producers of different goods G(z, t), denoting the fraction of goods that can be produced
with productivity less than z. Similarly to the previous models, an individual producer
meets other producers at the constant Poisson rate α. The main difference is that now
draws come from the distribution of sellers, which dependents on the distribution of
productivities of producers from all countries in the worlds, and trade costs 1/κ, κ ∈ [0, 1].
As before, it is convenient to work with x = log(z) and the corresponding distribution F ,
and define δ = log(κ). For the case of a world with n symmetric countries the evolution
of the distribution F (x, t) solves the following delayed Fisher-KPP type equation4

∂tF = −α (1−M)F (27)

4Related equations have been study by Berestycki, Nadin, Perthame, and Ryzhik (2009).
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on R× R
+ where

M(x, t) =

∫ x

−∞

(

F (y − δ, t)n−1 + (n− 1)F (y + δ, t)F (y, t)n−2
)

∂xF (y, t)dy (28)

is the distribution of productivity of sellers to a country. The boundary conditions are
given by (21). For κ = 1 (δ = 0) and n = 1 this equation simplifies to the one analyzed
in Section (a), but more generally only the behavior of the solution for large x is fully
understood. One can show that this equation admits solutions of the traveling wave type

F (x, t) = Φ(x− γt), (29)

provided that (1 − F0(x))/e
−ζx → c as x → ∞ for some constants c, ζ > 0, that is the

initial distribution of productivity z = ex follows an asymptotic power law. It can also be
shown that the growth rate γ = nα/ζ . Natural open questions are:

1. Existence and uniqueness of a solution to (27) and (28).

2. Development of numerical methods for computing both stationary and time depen-
dent solutions.

Another interesting extension could be the addition of noise in the form of a geometric
Brownian motion to (27) along the lines of equation (20).

4.4 Information Percolation in Finance

A related class of models arises when studying the distribution of information across
individuals in an economy, e.g., beliefs about the value of a particular financial asset.
These models are useful to understand the dynamics of asset prices and how these are
affected when market participants do not share common beliefs about the “intrinsic”
value of a financial asset. A simple example is provided by Duffie and Manso (2007)
who consider the beliefs about the realization of a binary random variable. Individuals
are initially endowed with a prior about this realization. Over time, individuals randomly
meet at a constant Poisson rate α. Upon a meeting individuals exchange their information
and update their beliefs. In their example they show that beliefs are characterize by a
distribution over a sufficient statistic x, and the updating of beliefs after a meeting with
an individual of belief x′ is simply given by the sum of x and x′. The evolution of the
distribution of the sufficient statistic F (x, t) is given by the PDE

∂tf(x, t) = −αf(x, t) + α

∫ +∞

−∞

f(y, t)f(x− y, t)dy

This equation can be solved explicitly using Fourier transforms. A natural extension is
to endogenize the search effort α, similarly to section 4.2. This is pursued in Duffie,
Malamud, and Manso (2009). Other recent contributions in this area includes Amador
and Weill (2012) and Golosov, Lorenzoni, and Tsyvinski (2009).
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5 Business Cycles: Models with Aggregate Shocks

Some of the most important questions in macroeconomics are concerned with business
cycle fluctuations, that is the fluctuations of macroeconomic aggregates like GDP, aggre-
gate investment and asset prices like the interest rate. The models presented so far are
not well suited to address these questions because all of them featured macroeconomic
aggregates that are deterministic. Instead we want theories in which these aggregates
are stochastic. In an important paper Krusell and Smith (1998) have extended theories
with heterogeneity at the individual level to feature aggregate risk.5 We here present a
continuous time formulation from Achdou, Lasry, Lions, and Moll (2014b).

To introduce these ideas in the simplest possible way, consider the model of section 2
but assume that income is ztAt where zt is an idiosyncratic income process as before but
now income also has an aggregate component At. That is, if At falls by ten percent, it
means that the income of everyone in the economy falls by ten percent. For simplicity,
assume that At ∈ {A1, A2} is a two state Poisson process. The process jumps from
state 1 to state 2 with intensity φ1 and vice versa with intensity φ2. The introduction
of aggregate shocks creates a major difficulty: in contrast to the case without aggregate
uncertainty studied in section 2, it becomes necessary to include the entire distribution
of income and wealth g as a state variable in the optimal control problem of individuals.
This distribution is now itself a random variable and hence calendar time t is no longer a
sufficient statistic to describe the behavior of the system.

The aggregate state is (Ai, g), i = 1, 2 and the individual state is (a, z) so that the
value function of an individual is vi(a, z, g). This value function satisfies the equation

0 =
1

2
σ2(z)∂zzvi + µ(z)∂zvi + (Aiz + ri(g)a)∂avi

+ φi(vj(a, z, g)− vi(a, z, g)) +

∫

T [g, ∂avi](a, z)
δvi

δg(a, z)
dadz

+H(∂avi)− ρvi

(30)

T [g, ∂avi] =
1

2
∂zz(σ

2(z)g)− ∂z(µ(z)g)− ∂a (∂pH(∂avi)g) (31)

for i = 1, 2, j 6= i. The domain of this equation is (a,∞) × (z, z̄) × S where S is the
space of density functions. The Hamiltonian H is defined in (5) and δvi/δg(a, z) denotes
the functional derivative of Vi with respect to g at point (a, z). T defined in (31) is the
“Fokker-Planck” operator that maps functions g and ∂avi to the time derivative of g.
Note that (30) is not an ordinary HJB equation because of the presence of g in the state
space. The difficulty, of course, is that g is an infinite-dimensional object.

Achdou, Lasry, Lions, and Moll (2014b) develop methods for approximating (30) nu-
merically. In particular, they assume that aggregate shocks occur only finitely many times
and at finite time intervals of length ∆, that is at times τn = ∆n, n = 1, ..., N,N = 1

∆
.

It is then possible to represent (30) as a system of mean-field games, and crucially this is
a finite-dimensional problem. The hope is that the behavior of this system approximates
that of (30) as ∆ → 0.

5Also see Den Haan (1996).
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Models with aggregate shocks such as (30) are by far the most challenging in terms of
the mathematics, and many open questions remain. Among these are:

1. Existence and uniqueness of solutions to (30).

2. A theoretical understanding of the behavior of g. For example, given a stationary
process for At (such as the two-state Poisson process), does there exist a “stationary
equilibrium” for g? Similarly, are there certain regions of the space of density
functions S in which g lives “most of the time”?

3. Development of efficient and robust approximation schemes to (30) and results re-
garding their convergence.

One approach to obtaining more tractable formulations of models with aggregate shocks
has been to simplify the heterogeneity at the individual level. For example, Brunner-
meier and Sannikov (2014), He and Krishnamurthy (2012, 2013), Adrian and Boyarchenko
(2012) and Di Tella (2013) all study business cycles in models of financial intermediation
with frictions and argue that these frictions give rise to interesting non-linear behav-
ior of macroeconomic aggregates. For example, GDP may have a bi-modal stationary
distribution even if the driving stochastic process is uni-modal. These papers all make
the assumption that there are only two (or three) types of agents so that the wealth
distribution can be summarized by the share of wealth of one of the two types. The
big advantage of these two approaches is that this is a one-dimensional rather than an
infinite-dimensional object. Related, business cycle fluctuations can also be generated
from theories without aggregate shocks. An important early paper by Scheinkman and
Weiss (1986) demonstrates that in a model with only a finite number of agents (two in
their framework) idiosyncratic shocks (in combination with missing insurance markets)
can lead to aggregate fluctuations. See Conze, Lasry, and Scheinkman (1993) and Lippi,
Ragni, and Trachter (2013) for other applications of their framework. These authors again
make assumptions that avoid dealing with an infinite-dimensional problem. However, for
many interesting economic questions it may be necessary to consider richer form of het-
erogeneity. Our hope is therefore that some progress can be made on infinite dimensional
problems such as (30).

6 Models with Finite Number of Agents

In this paper we have mostly focused on models with a continuum of individuals (mean
field games). While these frameworks are useful to study a very large class of macroeco-
nomic phenomena, their applicability to other important macro questions is limited. In
some industries production is concentrated in a very small numbers of producers, who act
strategically when making their production, innovation, and pricing decisions. The strate-
gic nature of their decision could have important aggregate implications. For example,
Atkeson and Burstein (2008) consider a model with a continuum of sectors and a finite
number of firms in each sector to explain why there are large and systematic deviation
of the law of one price across countries. Aghion, Bloom, Blundell, Griffith, and Howitt
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(2005) study a model of innovation in duopolist industries to analyze the relationship
between competition and innovation.

In this section we introduce a continuous time version of the canonical model of firm
dynamics in an oligopolistic industry introduced by Ericson and Pakes (1995), and recently
studied by Weintraub, Benkard, and Roy (2008) and Doraszelski and Judd (2012), among
many others. We show that this model takes the form of a differential game.

There are two firms i = 1, 2 that compete with each other. Firm i has profits π(zi, qi, qj)
where j 6= i. Profits π are increasing in productivity zi and own quantity qj , but decreasing
in the quantity of the other firm qj . The quantity choice also affects the evolution of the
firm’s productivity which evolves as dzit = µ(zit, qit)dt + σ(zit)dWit. We assume that
there is “learning-by-doing” so that µ is increasing in qit (of course, other assumptions
are possible as well). We assume that the two firms play a Nash equilibrium, that is their
choices of qit are best responses to each other. Given the symmetry of the problem we
look for a symmetric Nash equilibrium. To this end denote by z a firm’s own productivity
and by x the productivity of the other firm. In a symmetric Nash equilibrium the value
function v(z, x) of a firm satisfies

σ2(z)

2
∂zzv +

σ2(x)

2
∂xxv + µ(x, q∗(x, z, ∂xv, ∂zv))∂xv +H(z, x, ∂zv, ∂xv)− ρv = 0 (32)

on R
+ × R

+, and where the Hamiltonians H and optimal choice q∗ jointly satisfy:

H(z, x, pz, px) = max
q

(π(z, q, q∗(x, z, px, pz)) + µ(z, q)pz)

q∗(z, x, pz, px) = argmax
q

(π(z, q, q∗(x, z, px, pz)) + µ(z, q)pz)

There are many possible extension of this simple framework. Naturally the model can be
generalized to n > 2. One can also consider version of the model with entry and exit of
firms, along the lines of the analysis in Section 3 (a). One way to model this process is to
consider a maximum number of potential firms n̄. In this case, the relevant “aggregate”
state is given by the vector of characteristic of all the active and potential firms, e.g.,
their respective z. An alternative route, which is the one that is typically followed in the
literature, is to assume that the state describing an individual firm takes only a finite
set of values. In this case, one can describe the aggregate state with the distribution of
firms over these (finite) characteristics. The first route leads naturally to PDE methods.
We are not aware of a general characterization of these problems. As in the previous
examples, the open questions are:

1. Existence and uniqueness of a solution to (32).

2. Development of numerical methods for computing both stationary and time depen-
dent solutions when the state variable is continuous.

7 Conclusion

We have surveyed a large literature in macroeconomics that studies theories that explicitly
model the equilibrium interaction of heterogeneous agents. These theories share a common
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mathematical structure which can be summarize by a system of coupled non-linear PDEs
or mean field game. Some of our examples are well understood problems in the theory of
PDEs, while others present new and challenging mathematical problems. We view this
to be a very promising area for future research, or, as economist like to say, wee see large
“gains from trade” between macroeconomists and mathematicians working on PDEs.

References

Achdou, Y., F. Camilli, and I. Capuzzo Dolcetta (2012): “Mean field games:
convergence of a finite difference method,” ArXiv e-prints.

Achdou, Y., J.-M. Lasry, P.-L. Lions, and B. Moll (2014a): “Heterogeneous
Agent Models in Continuous Time,” Working papers, Princeton University.

(2014b): “Wealth Distribution and the Business Cycle,” Working papers, Prince-
ton University.

Adrian, T., and N. Boyarchenko (2012): “Intermediary leverage cycles and financial
stability,” Discussion paper.

Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt (2005): “Com-
petition and Innovation: An Inverted-U Relationship,” The Quarterly Journal of Eco-

nomics, 120(2), 701–728.

Aiyagari, S. R. (1994): “Uninsured Idiosyncratic Risk and Aggregate Saving,” The

Quarterly Journal of Economics, 109(3), 659–84.

Alvarez, F., and F. Lippi (2013): “Price setting with menu cost for multi-product
firms,” EIEF Working Papers Series 1302, Einaudi Institute for Economics and Finance
(EIEF).

Alvarez, F., and R. Shimer (2011): “Search and Rest Unemployment,” Econometrica,
79(1), 75–122.

Alvarez, F. E., F. J. Buera, and R. E. J. Lucas (2008): “Models of Idea Flows,”
NBER Working Papers 14135, National Bureau of Economic Research, Inc.

(2013): “Idea Flows, Economic Growth, and Trade,” NBER Working Papers
19667, National Bureau of Economic Research, Inc.

Amador, M., and P.-O. Weill (2012): “Learning from private and public observations
of others? actions,” Journal of Economic Theory, 147(3), 910–940.

Atkeson, A., and A. Burstein (2008): “Pricing-to-Market, Trade Costs, and Inter-
national Relative Prices,” American Economic Review, 98(5), 1998–2031.

Bardi, M., and I. Capuzzo-Dolcetta (1997): Optimal control and viscosity solutions

of Hamilton-Jacobi-Bellman equations. Springer.

16



Benhabib, J., A. Bisin, and S. Zhu (2011): “The Distribution of Wealth and Fiscal
Policy in Economies With Finitely Lived Agents,” Econometrica, 79(1), 123–157.

(2013): “The distribution of wealth in the Blanchard-Yaari model,” Working
papers, NYU.

Berestycki, H., G. Nadin, B. Perthame, and L. Ryzhik (2009): “The non-local
Fisher-KPP equation: travelling waves and steady states,” Nonlinearity, 22(12), 2813.

Bewley, T. (1986): “Stationary Monetary Equilibrium with a Continuum of Indepen-
dently Fluctuating Consumers,” in Contributions to Mathematical Economics in Honor

of Gerard Debreu, ed. by W. Hildenbrand, and A. Mas-Collel. North-Holland, Amster-
dam.

Brunnermeier, M., and Y. Sannikov (2014): “A Macroeconomic Model with a Fi-
nancial Sector,” American Economic Review.

Conze, A., J. M. Lasry, and J. Scheinkman (1993): “Borrowing Constraints and
International Comovements,” Hitotsubashi Journal of Economics, 34(Special I), 23–47.

Den Haan, W. J. (1996): “Heterogeneity, Aggregate Uncertainty, and the Short-Term
Interest Rate,” Journal of Business & Economic Statistics, 14(4), 399–411.

Di Tella, S. (2013): “Uncertainty Shocks and Balance Sheet Recessions,” Working
paper, Stanford University.

Doraszelski, U., and K. L. Judd (2012): “Avoiding the curse of dimensionality in
dynamic stochastic games,” Quantitative Economics, 3(1), 53–93.

Duffie, D., N. Garleanu, and L. H. Pedersen (2005): “Over-the-Counter Mar-
kets,” Econometrica, 73(6), 1815–1847.

Duffie, D., S. Malamud, and G. Manso (2009): “Information Percolation With
Equilibrium Search Dynamics,” Econometrica, 77(5), 1513–1574.

Duffie, D., and G. Manso (2007): “Information Percolation in Large Markets,” Amer-

ican Economic Review, 97(2), 203–209.

Ericson, R., and A. Pakes (1995): “Markov-Perfect Industry Dynamics: A Framework
for Empirical Work,” Review of Economic Studies, 62(1), 53–82.

Farhi, E., and I. Werning (2013): “Insurance and Taxation over the Life Cycle,”
Review of Economic Studies, 80(2), 596–635.

Fisher, R. A. (1937): “The Wave of Advance of Advantageous Genes,” Annals of

Eugenics, 7(4), 355–369.

Gabaix, X. (1999): “Zipf’S Law For Cities: An Explanation,” The Quarterly Journal

of Economics, 114(3), 739–767.

17



(2009): “Power Laws in Economics and Finance,” Annual Review of Economics,
1(1), 255–293.

Golosov, M., G. Lorenzoni, and A. Tsyvinski (2009): “Decentralized Trading
with Private Information,” NBERWorking Papers 15513, National Bureau of Economic
Research, Inc.

Golosov, M., and R. E. Lucas (2007): “Menu Costs and Phillips Curves,” Journal

of Political Economy, 115, 171–199.

He, Z., and A. Krishnamurthy (2012): “A Model of Capital and Crises,” Review of

Economic Studies, 79(2), 735–777.

He, Z., and A. Krishnamurthy (2013): “Intermediary Asset Pricing,” American Eco-

nomic Review, 103(2), 732–70.

Hopenhayn, H. A. (1992): “Entry, Exit, and Firm Dynamics in Long Run Equilibrium,”
Econometrica, 60(5), 1127–50.

Huggett, M. (1993): “The risk-free rate in heterogeneous-agent incomplete-insurance
economies,” Journal of Economic Dynamics and Control, 17(5-6), 953–969.

Jones (2014): “A Schumpeterian Model of Top Income Inequality,” Working paper,
Stanford University.

Kolmogorov, A., I. Petrovskii, and N. Piskunov (1937): “A Study of the Diffusion
Equation with Increase in the Amount of Substance, and its Application to a Biological
Problem,” .

Krusell, P., and A. A. Smith (1998): “Income and Wealth Heterogeneity in the
Macroeconomy,” Journal of Political Economy, 106(5), 867–896.

Lagos, R., and G. Rocheteau (2009): “Liquidity in Asset Markets With Search
Frictions,” Econometrica, 77(2), 403–426.

Lasry, J.-M., and P.-L. Lions (2007): “Mean field games,” Japanese Journal of Math-

ematics, 2, 229–260.

Lentz, R., and D. T. Mortensen (2010): “Labor Market Models of Worker and Firm
Heterogeneity,” Annual Review of Economics, 2(1), 577–602.

Lippi, F., S. Ragni, and N. Trachter (2013): “State dependent monetary policy,”
Discussion paper.

Lucas, R. E. (2009): “Ideas and Growth,” Economica, 76(301), 1–19.

Lucas, R. E., and B. Moll (2014): “Knowledge Growth and the Allocation of Time,”
Journal of Political Economy.

Luttmer, E. G. (2012): “Eventually, noise and imitation implies balanced growth,”
Discussion paper.

18



(2014): “Competitive Knowledge Diffusion and Inequality,” Working papers,
Federal Reserve Bank of Minneapolis.

Luttmer, E. G. J. (2007): “Selection, Growth, and the Size Distribution of Firms,”
The Quarterly Journal of Economics, 122(3), 1103–1144.

McKean, H. P. (1975): “Application of brownian motion to the equation of kolmogorov-
petrovskii-piskunov,” Communications on Pure and Applied Mathematics, 28(3), 323–
331.

Nuño, G. (2013): “Optimal control with heterogeneous agents in continuous time,”
Working Paper Series 1608, European Central Bank.

Sannikov, Y. (2008): “A Continuous-Time Version of the Principal-Agent Problem,”
Review of Economic Studies, 75(3), 957–984.

Scheinkman, J. A., and L. Weiss (1986): “Borrowing Constraints and Aggregate
Economic Activity,” Econometrica, 54(1), 23–45.

Stokey, N. L. (2009): The Economics of Inaction. Princeton University Press, Prince-
ton, NJ.

Weintraub, G. Y., C. L. Benkard, and B. V. Roy (2008): “Markov Perfect In-
dustry Dynamics With Many Firms,” Econometrica, 76(6), 1375–1411.

Williams, N. (2011): “Persistent Private Information,” Econometrica, 79(4), 1233–1275.

19


