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Abstract 

 

Extreme weather occurrences carry enormous social and economic costs and routinely garner wide-

spread scientific and media coverage. The ability to predict these events is therefore a topic of crucial 

importance. Here we propose a novel predictability pathway for extreme events, by building upon 

recent advances in dynamical systems theory. We show that simple dynamical systems metrics can 

be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and 

temporal evolution on timescales of several days to a week. In regions where these patterns favour 

extreme weather, they afford a particularly good predictability of the extremes. We specifically test 

this technique on the atmospheric circulation in the North Atlantic region, where it provides predict-

ability of large-scale wintertime surface temperature extremes in Europe up to one week in advance. 

 

 

Significance Statement 

 

Extreme weather events carry major social and economic costs; improving their predictability is 

therefore of crucial importance. Forecasting the occurrence of a given extreme event can be more or 

less difficult depending on the state of the atmosphere from which the forecast is initialised. In this 

study we apply diagnostics from the field of dynamical systems analysis to identify the atmospheric 

states providing the best predictability and investigate their link to wintertime temperature extremes 

in Europe. We find that these states of “maximum predictability” correspond to significant changes 

in the frequency of very warm or cold spells, and are often followed by large-scale extreme 

temperature events. These findings can provide a useful complement to existing operational forecast 

tools. 

 

 

 

1. Introduction 

Dynamical systems techniques provide a rigorous mathematical framework for describing atmos-

pheric flows and, more generally, the climate system. Each instantaneous atmospheric state corre-

sponds to a point in phase space, and the evolution of the atmosphere can thus be described by the 

trajectory joining these points. Early efforts in this direction showed that atmospheric motions are 

chaotic and settle on a finite-dimensional attractor—namely “the collection of all states that the sys-

tem can assume or approach again and again, as opposed to those that it will ultimately avoid” (1). 

The attractor’s average dimension (D) indicates the minimum number of degrees of freedom needed 

to span the subspace occupied by the attractor. However, two major obstacles have limited the appli-

cation of dynamical systems analyses to atmospheric motions. First, computing D for systems with a 

large number of degrees of freedom is non-trivial and traditional approaches have proved unreliable 

when applied to atmospheric flows (2, 3). Moreover, this approach is ill-suited to study extreme 

weather events, which carry major social and economic costs (e.g. 4, 5) and attract intense scientific 

and popular attention (e.g. 6). The extremes are associated with transient states of the atmosphere (7). 

Their study therefore requires instantaneous, local properties, rather than average quantities such as 

D. 

 

Here we compute two instantaneous dynamical systems metrics for the atmospheric circulation over 

the North Atlantic: the instantaneous dimension (d) and the inverse of the persistence time (θ) of the 

daily mean 500 hPa geopotential height. The local properties of a dynamical system can be fully 

described by these two quantities (8). We then show that they provide a novel pathway for the pre-

diction of extreme weather events. We focus on a societally relevant case: wintertime (December, 

January and February – DJF) temperature extremes over Europe. Cold extremes can cause significant 

increases in mortality (e.g. 9), while warm extremes can affect snow and water availability and crop 

yields and therefore impact the local economies (e.g. 10, 11).  
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The North Atlantic region has been widely studied and its wintertime dynamics are dominated by 

well-known large-scale modes of variability, chief amongst them the North Atlantic Oscillation 

(NAO). The latter is a key source of atmospheric predictability in the region, across a broad range of 

timescales (e.g. 12, 13). A method selecting atmospheric configurations offering the maximum pre-

dictability would therefore be expected to capture some aspects of this mode, while hopefully also 

offering additional insights. This motivates our choice of the Euro-Atlantic region as the ideal testbed 

to verify whether our novel methodology is robust while at the same time providing a useful comple-

ment to more traditional analyses. However, we stress that our approach is entirely general and may 

be extended to other variables, seasons and geographical domains. We further envisage that the met-

rics we adopt may in the future be applied in an operational forecasting context. 

 

 

2. Data and Dynamical Systems Metrics 

We use daily mean 500 hPa geopotential height and 2-metre temperature data from the European 

centre for Medium Range Weather Forecasts’ ERA-Interim reanalysis (14). The datasets have a hor-

izontal resolution of 0.75° and 1°, respectively. We focus on the winter seasons (December-February, 

DJF) during 1979-2011, and select a domain covering the North Atlantic and Europe (75° W − 50° 

E, 25° N − 75° N). Previous analyses have shown that the dynamical systems metrics are insensitive 

to resolution and linearly insensitive to the exact geographical boundaries chosen (15). Mid-tropo-

spheric geopotential height is extensively used to describe the major modes of variability affecting 

the North Atlantic (e.g. 16) and more generally large-scale atmospheric features, including telecon-

nection patterns, atmospheric blocking and weather regimes (e.g. 17, 18). We therefore select it as a 

good proxy for the large-scale atmospheric circulation over the North Atlantic sector. Statistical sig-

nificance is assessed using both a Monte Carlo approach with 1000 random samples and a sign test 

showing areas where at least 60% of the composited events agree on the sign of the anomalies. As-

suming a binomial process with the same number of draws as the selected events and equal chances 

of positive or negative outcomes, this threshold is beyond the 99th percentile of the distribution. 

 

In order to compute the instantaneous dimension and inverse persistence, we interpret the 

geopotential height field as a point along the system’s trajectory in phase space. The values of d and 

θ for a specific point in phase space describe the local behaviour of the segments of the trajectory that 

pass close to that point. A scatter plot of d versus θ is shown in Figure S1. A derivation of the two 

metrics, based upon (8, 19-21), is provided in the supporting information. d is closely linked to the 

density of the trajectories (and hence to the local Lyapunov exponents), and provides a measure of 

the maximum divergence of the trajectories. In simple terms, a given atmospheric state with a low d 

is more likely to evolve in a similar way to all its neighbouring states than a case with high d. θ is the 

inverse of the average persistence time of trajectories around a given point, and it takes values in [0, 

1]. Atmospheric states with a low θ are persistent and will therefore evolve—and diverge from 

neighbouring states—slowly. Both quantities are therefore closely linked to the predictability 

afforded by a given atmospheric state. Figure 1a provides an idealised illustration of the above for 

trajectories with low instantaneous dimension (blue trajectories) and high persistence (red 

trajectories).  

 

We focus here on atmospheric configurations which have both low d and low θ, namely the states 

that should provide the maximum predictability of the trajectories’ forward paths. Specifically, we 

consider days where both d and θ are in the lowest 20 percentiles of their respective distributions. For 

the case of several consecutive days satisfying this condition, we select the first day in the series. The 

rationale behind this choice is to extract the maximum forward predictability from the metrics. This 

is also the most practical option for use in operational contexts. Say, for example, that we opted to 

select the local minimum of each threshold exceedance rather than the first day. For a series of several 

days continuously exceeding the threshold, the local minimum could only be determined at the end 
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of the series, while the initial exceedance can be spotted on the day it occurs. We do not simply select 

all days below the chosen percentile threshold because we wish to avoid double-counting when 

computing lagged composites. We term the selected events dynamical extremes. These account for 

~4.4% of the time steps, or roughly 4 days every winter. The choice of the 20th percentile as threshold 

is a compromise between the competing demands of selecting states that can be qualified as 

dynamical extremes and having a sufficiently large number of events. In fact, our aim is to identify a 

pathway for predictability which could be applied in an operational forecasting context. A result 

which, for example, were only to apply to 1 day every winter would have a limited value. Reasonable 

variations in this threshold were tested (22.5, 17.5, 12.5 percentiles) and were found not to 

qualitatively alter our conclusions (not shown). 

 

The 2-m temperature extremes at each grid point are defined as all days exceeding the 10th and 90th 

percentiles of the local distribution of deseasonalised anomalies. These are standard thresholds used 

in the literature (e.g. 22); repeating the analysis with the 5th and 95th percentiles (not shown) yields 

qualitatively similar results. The anomalies are defined as departures from the long term daily average. 

For example, the climatological value for the 1st December is given by the mean of all 1st Decembers 

in the dataset. We do not apply the same procedure as for the dynamical extremes to select temperature 

extremes because these are chosen based on their societal and economic impact rather than on 

considerations based on atmospheric configurations. It would indeed make little sense to only 

consider the first in a series of very cold or very warm winter days. 

 

 

3. A Dynamical Systems Predictability Pathway 

We now analyse the dynamical extremes as defined in Section 2 above. Figure 1b shows the compo-

site 500 hPa geopotential height anomaly patterns for the selected events. These correspond to an 

anomaly dipole which is reminiscent of a positive NAO phase, albeit shifted to the east. In principle, 

two points with similar d and θ could represent very different flow configurations. We find this not 

be the case: the vast majority of the composite members agree on the sign of the anomalies suggesting 

that, at least for dynamical extremes, similar flow configurations generally correspond to similar re-

gions in d – θ space. Coherent large-scale features are retained at positive lags, up to ~6-7 days fol-

lowing the selected extremes (Figure S2 a, c, e, g), beyond which sign agreement is largely lost. 

Consistently with our interpretation of d and θ, the atmospheric patterns associated with the largest 

instantaneous dimension and lowest persistence diverge quickly at positive lags, and the geopotential 

height anomaly composites largely lose coherence by lag +3 (Figure S2 b, d, f, h). 

 

Climate or weather extremes are, by their very definition, rare. They should therefore generally be 

associated with similarly unusual large-scale atmospheric flow patterns (e.g. 23). While there is no 

guarantee that dynamical extremes correspond to weather extremes at a specific location, it is there-

fore plausible to expect some correspondence between the two, at least at a continental scale. Figure 

2 displays the changes in the frequency of two-metre temperature extremes associated with dynamical 

extremes, relative to the wintertime climatology. A value of 1 means that the frequency of temperature 

extremes is insensitive to the dynamical extremes; a value of 0 that there are no temperature extremes 

for the selected dynamical extremes; a value of 2 that there are twice as many temperature extremes 

as in the climatology. At lag 0 (2a, b) the dynamical extremes correspond to a higher frequency of 

warm extremes and a decreased frequency of cold extremes across large parts of Western, Continental 

and Northern Europe. At lag +4 days (2c, d) the pattern is similar, but now displays larger frequency 

changes for the warm extremes over the Mediterranean. The only regions showing an inverse pattern, 

with decreased warm occurrences and increased cold occurrences are northern and western Scandi-

navia and the North Sea. By lag +6 days (2e, f) the largest changes in the temperature extremes have 

shifted eastwards and are now centred over Eastern and South-Eastern Europe. By day +8 (2g, h) 

there are two main regions of significant changes, with a heightened frequency of warm extremes 

over western Russia and a decrease in cold extremes over the Eastern Mediterranean. These changes 
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in extreme event frequency are largely consistent with the anomaly patterns shown in Figures 1b and 

S2. The cyclone-anticyclone dipole associated with the dynamical extremes, which displays a south-

west to north-east tilt, draws warm subtropical air over most of Europe, with the exception of northern 

and western Scandinavia. 

 

We next test the correspondence between dynamical extremes and the individual weather extremes at 

positive lags. Figure 3 displays the fraction of dynamical extremes which are followed within 2-4 

days (3a, b) and 5-7 days (3c, d) by a temperature extreme. Note that if more than one temperature 

extreme falls within the lag interval for a single dynamical extreme, only one is counted. The dynam-

ical extremes display significant hit rates for both warm and cold extremes across the whole continent 

up to 7 days. Hit rates for warm extremes locally exceed 40%, while hit rates for cold extremes reach 

below 4%. In other words, conditioning on a dynamical extreme significantly raises the chances of 

warm extremes and at the same time essentially excludes the possibility of cold extremes at a regional 

scale over several days. As expected, there is a good agreement between Figures 2 and 3, with the 

regions which show the largest positive changes in Figure 2, displaying high fractional matches in 

Figure 3. 

 

To further illuminate the predictability afforded by the dynamical extremes, we examine how the 

lagged distributions of regional temperature anomalies are modulated by the dynamical extremes. We 

focus on 3 broad domains selected to cover most of the European continent, marked by the black 

boxes in Figure 2c (see also Table S1). Figure 4 displays the cumulative distributions (CDFs) of land-

only area-averaged temperature anomalies over these domains for the full wintertime climatology 

(blue) and conditional on the occurrence of a low d and θ episode (red), at lags of  +2 to +4 days (4a, 

c, d) and +5 to +7 days (4b, d, f). In all domains, the dynamical extremes have major effects on the 

large-scale temperature anomalies. In Western Europe they correspond to significant increases in the 

90th percentile, and associated changes in the amount of days exceeding them, at short positive lags 

(4a). Over Eastern Europe a significant shift in both the 10th and 90th percentiles is seen at both lag 

ranges (4c, d). Over Russia there is relatively little change at short lags, while at days +5 to +7 there 

is a marked shift in the 90th percentile of the distribution (4f). Finally, we note that all medians of the 

distributions for dynamical extremes are statistically different from their climatological counterparts 

under a Wilcoxon rank sum test (24) at the 1% significance level. This is fully consistent with the 

reduction in cold extremes and increase in warm extremes shown in Figure 2.  

 

 

4. Relation with the NAO 

Temperatures extremes over Europe are often discussed in the context of the NAO (e.g. 22, 25). The 

two phases of the NAO are also the initialisation states that afford the best predictability in ensemble 

forecasts (13). Since the dynamical extremes should capture the atmospheric configurations offering 

the best predictability, it is not surprising that they resemble an NAO dipole. At the same time, it is 

important to highlight that these metrics provide complementary information to NAO-based analysis. 

We define a daily NAO index (NAOI) as the difference in average area-weighted 500 hPa height 

anomalies over the domains (70°W −10°W, 35°N−45°N) and (70°W −10°W, 55°N−70°N). This fol-

lows the definition adopted by the National Oceanic and Atmospheric Administration’s Physical Sci-

ences Division of the Earth System Research Laboratory 

(http://www.esrl.noaa.gov/psd/data/timeseries/daily/NAO/). The mean NAOI value for the dynam-

ical extremes is -0.10 at lag -4, 0.22 at lag 0 and 0.15 at lag +4 days. One can further repeat the 

analysis presented in Figures 2 and 3 selecting NAO+ extremes with the same procedure used for 

dynamical extremes. We now use the 80th percentile as threshold, so as to obtain a similar number of 

events to the dynamical extremes (~4.1% instead of ~4.4%). Only ~5.1 % of the selected NAO+ 

extremes matches a dynamical extreme; similarly, roughly 25% of days above the NAO+ threshold 

match days below the dynamical extremes threshold. Consistently with this, the changes in the oc-

currence of temperature extremes associated with the NAO display some important differences from 



6 

 

those seen for the dynamical extremes (cf. Figures 2 and S3). We further note that, while at lags 0 

and 4 the NAO has a stronger impact on the temperature extremes than the dynamical extremes, the 

two become comparable around lag +6 and by lag +8 the dynamical extremes display a stronger 

regional footprint. This is consistent with our interpretation of dynamical extremes as the atmospheric 

states which give the best forward predictability as opposed to states which instantaneously corre-

spond to the largest temperature anomalies. 

 

 

5. Discussion and Conclusions 

Simple instantaneous dynamical systems metrics can provide a robust indication of the atmospheric 

states providing the best forward predictability. Here, we apply this technique to the North Atlantic 

sector. A large part of the atmospheric variability, and predictability, in this region is associated with 

the NAO. It is therefore reassuring that the atmospheric configuration we obtain from our dynamical 

system analysis resembles an NAO dipole. At the same time the high predictability days we select, 

termed dynamical extremes, do not systematically match NAO extremes. We therefore conclude that 

a dynamical systems approach provides complementary information to an NAO-based analysis.  

 

Our dynamical systems perspective further provides a definition of extreme event which differs from 

the standard statistical view formalized by Pickands and Pareto (26), where extremes are large or 

small events with respect to a certain local observable. For complex fields, the dynamical systems 

approach can capture the crucial link between large-scale non-static phenomena and local effects. In 

the context of this study, a more traditional definition of a “geopotential extreme” could be for exam-

ple to compute a Euclidean distance of daily fields from the long-term mean field and define extremes 

as days in the top and bottom percentiles of this distribution. However, if this approach is used, se-

lecting a similar number of occurrences as for the dynamical extremes, the link between the geopo-

tential extremes and the predictability of temperature extremes over Europe is weak (see Figure S4 

and Text S2). 

 

On the contrary, the dynamical extremes provide a strong predictability pathway for wintertime tem-

perature extremes over the European continent at timescales of up to a week. This is underscored by 

the significant modulation of regional temperature extremes associated with dynamical extremes. In 

this respect, we highlight that a forecast of a decreased probability of an extreme can be as valuable 

societally and economically as the forecast of an increased probability of an extreme. The link be-

tween dynamical extremes and cold spells is therefore important, even though the extremes system-

atically correspond to decreased occurrences of low temperatures. An additional analysis considering 

states with low d and low θ separately (not shown) highlights that, in general, persistence provides a 

better indication of predictability than instantaneous dimension. This suggests that the rapidity with 

which nearby trajectories diverge from a neighbourhood is typically, but not always, more relevant 

than their maximum spread while doing so. The insights provided by the two dynamical systems 

metrics can complement the information issued by deterministic and ensemble forecasts, which are 

currently used by many national emergency response services (e.g. 27). The same metrics could be 

further used as diagnostic tools to evaluate current operational ensemble forecast products. 

  

The analysis presented in this study points to several pathways for future research. Keeping the focus 

on the North Atlantic, it is necessary to verify whether the low d and θ states which do not agree with 

the sign of the geopotential height anomaly composite actually correspond to a separate cluster in 

phase space relative to the ones that do. This would allow for a more accurate quantification of the 

predictability afforded by the dynamical extremes. More generally, the methodology we adopt could 

be applied to domains which, unlike the North Atlantic, might not have a clearly recognisable domi-

nant mode of atmospheric variability. An obvious caveat is that there is no guarantee that dynamical 

extremes will be associated with a given class of weather extremes over a specific geographical do-

main, meaning that this technique might not always be appropriate for targeted regional studies. At 
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the same time, we note that the dynamical systems metrics provide a general information about at-

mospheric trajectories, meaning that their use can be extended to predictability problems unrelated to 

extreme events. On the more technical side, it will be necessary to provide a robust quantification of 

the typical predictability horizon afforded by the dynamical systems perspective, by performing a 

comprehensive analysis on the variability of d and θ and their co-variance. It would be further inter-

esting to investigate the link between the predictability limit in a chaotic atmosphere as formulated 

by Lorenz and the magnitude of the extremes in d and θ. 
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Figure Captions 

 

Figure 1. a) Example of trajectories evolving from neighbourhoods (marked by the green spheres) 

with low instantaneous dimension (blue trajectories) and high persistence (red trajectories) in an ide-

alised 3-dimensional phase space. The low dimension implies that the maximum divergence of the 

blue trajectories is small, but gives no information on how rapidly they leave the neighbourhood. The 

high persistence implies that the trajectories are slow in leaving the neighbourhood, but gives no 

information on their maximum divergence. Composite 500 hPa geopotential height anomalies (m) 

for days corresponding to low d and θ (b). The grey shading marks regions where more than 60% of 

the members of the composite agree on the sign of the anomalies. The chance of this happening 

randomly is well below 1%. 

 

Figure 2. Fractional changes in the frequency of wintertime hot (a, c, e, g) and cold (b, d, f, h) surface 

temperature extremes conditional on low instantaneous dimension and high persistence events rela-

tive to the climatology, at (a, b) lag 0; (c, d) lag +4, (e, f) lag +6 and (g, h) lag +8 days. The black 

boxes in panel (c) mark the domains used in Figure 4 (see also Table S1). Only values exceeding the 

5% significance level, computed using a Monte Carlo procedure with 1000 random samples are 

shown. 

 

Figure 3. Fraction of low instantaneous dimension and high persistence extremes associated with hot 

(a, c) and cold (b, d) wintertime surface temperature extremes at a given location, at (a) lags +2 to +4 

and (b) lags +5 to +7 days. Only values exceeding the 5% significance level, computed using a Monte 

Carlo procedure with 1000 random samples (see Methods), are shown. 

 

Figure 4. Empirical cumulative distributions of land-only area-averaged 2-metre temperature anom-

alies (K). The blue curves correspond to the wintertime climatology; the red are conditional on the 

occurrence of a dynamical extreme 2 to 4 days (a, c, e) and 5 to 7 days (b, d, f) before. The dashed 

vertical lines mark the climatological 10th and 90th percentiles. The continuous vertical lines mark the 

medians of the two distributions. The blue crosses mark the statistical significance for the shift in the 

percentiles (horizontal bars) and the change in the number of events above/below the climatological 

percentiles (vertical bars). The edges of the bars correspond to the 5% significance level, computed 

using a Monte Carlo procedure with 1000 random samples (see Methods). See Table S1 for the do-

main boundaries. 

 
Figure S1. Scatter plot of d versus θ for 500 hPa geopotential height anomalies. The black lines mark 

the thresholds used to define the dynamical extremes (see Methods). 

 

Figure S2. Composite 500 hPa geopotential height anomalies (m) for days corresponding to low 

instantaneous dimension and high persistence (a, c, d, g) and days corresponding to high instantane-

ous dimension and low persistence (b, d, f, h) at lags of (a, b) 0, (c, d) +4, (e, f) +6 and (g, h) +8 days. 

The grey contours mark regions where more than 60% of the members of the composite agree on the 

sign of the anomalies. The chance of this happening randomly is below 1% (see Methods). 

 

Figure S3. Fractional changes in the frequency of wintertime hot (a, c, e, g) and cold (b, d, f, h) 

surface temperature extremes conditional on high NAO events relative to the climatology, at (a, b) 

lag 0; (c, d) lag +4, (e, f) lag +6 and (g, h) lag +8 days. Only values exceeding the 5% significance 

level, computed using a Monte Carlo procedure with 1000 random samples are shown. 

 

Figure S4. Fractional changes in the frequency of wintertime hot (a, c, e, g) and cold (b, d, f, h) 

surface temperature extremes conditional on geopotential extremes as defined in Text S2, at (a, b) lag 

0; (c, d) lag +4, (e, f) lag +6 and (g, h) lag +8 days. Only values exceeding the 5% significance level, 
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computed using a Monte Carlo procedure with 1000 random samples are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



11 

 

 

Figures 
 

 
Figure 1. a) Example of trajectories evolving from neighbourhoods (marked by the green spheres) 

with low instantaneous dimension (blue trajectories) and high persistence (red trajectories) in an ide-

alised 3-dimensional phase space. The low dimension implies that the maximum divergence of the 

blue trajectories is small, but gives no information on how rapidly they leave the neighbourhood. The 

high persistence implies that the trajectories are slow in leaving the neighbourhood, but gives no 

information on their maximum divergence. Composite 500 hPa geopotential height anomalies (m) 

for days corresponding to low d and θ (b). The grey shading marks regions where more than 60% of 

the members of the composite agree on the sign of the anomalies. The chance of this happening 

randomly is well below 1%. 
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Figure 2. Fractional changes in the frequency of wintertime hot (a, c, e, g) and cold (b, d, f, h) surface 

temperature extremes conditional on low instantaneous dimension and high persistence events rela-

tive to the climatology, at (a, b) lag 0; (c, d) lag +4, (e, f) lag +6 and (g, h) lag +8 days. The black 

boxes in panel (c) mark the domains used in Figure 4 (see also Table S1). Only values exceeding the 

5% significance level, computed using a Monte Carlo procedure with 1000 random samples are 

shown. 
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Figure 3. Fraction of low instantaneous dimension and high persistence extremes associated with hot 

(a, c) and cold (b, d) wintertime surface temperature extremes at a given location, at (a) lags +2 to +4 

and (b) lags +5 to +7 days. Only values exceeding the 5% significance level, computed using a Monte 

Carlo procedure with 1000 random samples (see Methods), are shown. 
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Figure 4. Empirical cumulative distributions of land-only area-averaged 2-metre temperature anom-

alies (K). The blue curves correspond to the wintertime climatology; the red are conditional on the 

occurrence of a dynamical extreme 2 to 4 days (a, c, e) and 5 to 7 days (b, d, f) before. The dashed 

vertical lines mark the climatological 10th and 90th percentiles. The continuous vertical lines mark the 

medians of the two distributions. The blue crosses mark the statistical significance for the shift in the 

percentiles (horizontal bars) and the change in the number of events above/below the climatological 

percentiles (vertical bars). The edges of the bars correspond to the 5% significance level, computed 

using a Monte Carlo procedure with 1000 random samples (see Methods). See Table S1 for the do-

main boundaries. 
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Introduction 
The present Supporting Information includes a brief description of how instantaneous dimension and 

persistence are computed (Text S1); a discussion of an alternative definition for atmospheric extremes 

based on Euclidean distance; a definition of geographical domains used for Figure 4 (Table S1); a 

scatterplot of instantaneous dimension versus persistence (Figure S1); an overview of the geopotential 

height anomalies associated to atmospheric states with high and low instantaneous dimension and 

persistence (Figure S2) and the equivalent of Figure 2 computed based on extreme NAO+ events 

(Figure S3) and maximum Euclidean distance of geopotential maps from the climatology (Figure S4) 

rather than dynamical extremes. 

 

Text S1 

In order to compute the instantaneous dimension and persistence of the geopotential height field, we 

treat each timestep in the dataset as a point along a single trajectory ξ(t). At each time t, we define the 

instantaneous properties of the state ξ. The properties change with time, and are therefore instantane-

ous. We further note that states which are close in phase space will have similar instantaneous prop-

erties, although the converse is not necessarily true.   

To compute our two metrics for a point ξ(t1), we consider the probability P associated with the trajec-

tory returning within a radius r of said point. We define the distance between ξ(t1) and all other ob-

servations along the trajectory as: 

 

𝑔(𝜉(𝑡)) =  −log (𝜍(𝜉(𝑡), 𝜉(𝑡1))) 

 

Where 𝜍 is a distance function (in our case the euclidean distance between the geopotential height 

maps) and the logarithm increases the discrimination of small separations. We then apply the Freitas-

Freitas-Todd theorem (19, 21) to express this probability as a generalised Pareto distribution: 

 

𝑃 (𝑔(𝜉(𝑡)) > 𝑞, 𝜉(𝑡1)) ≃ 𝑒
(

𝑥+𝜇(𝜉(𝑡1))
𝜎(𝜉(𝑡1))

)
   

 

The parameters μ and σ depend on the chosen ξ(t1). The instantaneous dimension is then given by: 
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𝑑(𝜉(𝑡1)) =  
1

𝜎(𝜉(𝑡1))
 

  

The threshold q in (2) above can be expressed as: 

 

𝑞 =  𝑒−𝑟 
 

Imposing that  𝑔(𝜉(𝑡)) > 𝑞 is therefore equivalent to the condition that the trajectory returns within 

a radius r of the point ξ(t1). q can therefore simply be set as a percentile of 𝑔(𝜉(𝑡)). 

In the present paper we use q = 0.98. Its appropriateness is determined by ensuring that more than 

95% of the observations along our trajectory satisfy the Anderson-Darling test at the 0.05 significance 

level. 

We can further compute a measure of the residence time of ξ(t) within a radius r of ξ(t1), by adding 

an extremal index parameter θ to (2): 

𝑃 (𝑔(𝜉(𝑡)) > 𝑞, 𝜉(𝑡1)) ≃ 𝑒
(𝜃(

𝑥+𝜇(𝜉(𝑡1))
𝜎(𝜉(𝑡1))

))
   

 

θ-1 is then the mean residence time of the trajectory within the neighbourhood defined by r. 

By applying the above procedure, we therefore obtain a value of d and θ for every timestep in our 

dataset. 

The only requirement of our methodology is that ξ(t) must be sampled from an underlying ergodic 

system. For further theoretical details, the reader is referred to (8, 15). 

 

Text S2 

As discussed in Section 5 in the main paper, we define geopotential extremes by first computing the 

Euclidean distance of daily 500 hPa geopotential height maps from the long-term winter climatology. 

We then apply exactly the same procedure as for the dynamical extremes (except that we now select 

events above the 80th percentile). This yields a similar number of events (~4.6% of winter days instead 

of ~4.4%). Finally, we produce maps of the fractional changes in the frequency of wintertime hot and 

cold surface temperature extremes over Europe (Figure S4), which can be compared to those shown 

in Figures 2 and S3. 

The geopotential extremes show a strong footprint on the European temperature extremes at short 

lead times (0-4 days), but have a weak link with the temperatures beyond this timescale. By lag +8 

the signal has completely disappeared. This is fully consistent with the physical interpretation of the 

geopotential extremes, which represent unusual instantaneous atmospheric configurations but a priori 

contain no information on the evolution of these states. 
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Domains for Regional Temperature Averages 

Name Latitude Longitude Short Name 

Western Europe 40°–50° N 10° W–15° E WE 

Eastern Europe 35°–55° N 15°–35° E EE 

Russia 45°–60° N 35°–50° E RUS 

Table S1. Domains used for the regional temperature averages shown in Figure 4. 
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Figure S1. Scatter plot of d versus θ for 500 hPa geopotential height anomalies. The black lines mark 

the thresholds used to define the dynamical extremes (see Methods). 
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Figure S2. Composite 500 hPa geopotential height anomalies (m) for days corresponding to low 

instantaneous dimension and high persistence (a, c, d, g) and days corresponding to high instantane-

ous dimension and low persistence (b, d, f, h) at lags of (a, b) 0, (c, d) +4, (e, f) +6 and (g, h) +8 days. 

The grey contours mark regions where more than 60% of the members of the composite agree on the 

sign of the anomalies. The chance of this happening randomly is below 1% (see Methods). 
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Figure S3. Fractional changes in the frequency of wintertime hot (a, c, e, g) and cold (b, d, f, h) 

surface temperature extremes conditional on high NAO events relative to the climatology, at (a, b) 

lag 0; (c, d) lag +4, (e, f) lag +6 and (g, h) lag +8 days. Only values exceeding the 5% significance 

level, computed using a Monte Carlo procedure with 1000 random samples are shown. 
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Figure S4. Fractional changes in the frequency of wintertime hot (a, c, e, g) and cold (b, d, f, h) 

surface temperature extremes conditional on geopotential extremes as defined in Text S2, at (a, b) lag 

0; (c, d) lag +4, (e, f) lag +6 and (g, h) lag +8 days. Only values exceeding the 5% significance level, 

computed using a Monte Carlo procedure with 1000 random samples are shown. 

 


