Effect of Grain Disorientation on Early Fatigue Crack Propagation in FCC Polycrystals: Dislocation Dynamics Simulations and Corresponding Experimental Validation - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

Effect of Grain Disorientation on Early Fatigue Crack Propagation in FCC Polycrystals: Dislocation Dynamics Simulations and Corresponding Experimental Validation

Résumé

3-dimensional dislocation dynamics (DD) simulations are performed, in face-centred cubic bi-crystals, to study the microcrack interaction with first microstructural barrier under high cycle fatigue (HCF) loading conditions. Based on experimental observations, we presumed that microcracks are blocked by grain boundaries and that subsequent propagation/transmission occurs by the growth of surface relief in a secondary grain adjoining the primary crack. This mechanism is herein called indirect transmission and is found to strongly depend on grain-to-grain disorientation. A semi-analytical model proposed earlier is discussed with the DD simulation results in the context of first-barrier compliance. The proposed model describes the documented experimental results related to the effect ofgrain size, grain misorientation and microcrack propagation kineticsin fatigued 316L steel polycrystals.
Fichier principal
Vignette du fichier
CF7_paper_Robertson_21oct15.pdf (572.67 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01459847 , version 1 (07-02-2017)

Identifiants

Citer

Christian Robertson, G V Prasad Reddy, Christophe Déprés, Marc C. Fivel. Effect of Grain Disorientation on Early Fatigue Crack Propagation in FCC Polycrystals: Dislocation Dynamics Simulations and Corresponding Experimental Validation. 7th International conference on Creep, Fatigue and Creep-Fatigue interaction (CF7), Jan 2016, Kalpakkam, India. pp.477-481, ⟨10.1007/s12666-015-0754-y⟩. ⟨hal-01459847⟩
171 Consultations
110 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More