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1 Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille, France, 2 CNRS, Architecture et Fonction des
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Abstract

Type VI secretion systems (T6SS) are trans-envelope machines dedicated to the secretion of virulence factors into eukaryotic
or prokaryotic cells, therefore required for pathogenesis and/or for competition towards neighboring bacteria. The T6SS
apparatus resembles the injection device of bacteriophage T4, and is anchored to the cell envelope through a membrane
complex. This membrane complex is composed of the TssL, TssM and TagL inner membrane anchored proteins and of the
TssJ outer membrane lipoprotein. Here, we report the crystal structure of the enteroaggregative Escherichia coli Sci1 TssJ
lipoprotein, a two four-stranded b-sheets protein that exhibits a transthyretin fold with an additional a-helical domain and a
protruding loop. We showed that TssJ contacts TssM through this loop since a loop depleted mutant failed to interact with
TssM in vitro or in vivo. Biophysical analysis of TssM and TssJ-TssM interaction suggest a structural model of the membrane-
anchored outer shell of T6SS. Collectively, our results provide an improved understanding of T6SS assembly and encourage
structure-aided drug design of novel antimicrobials targeting T6SS.
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Introduction

Pathogenic bacteria have evolved numerous and original

strategies to invade host tissues, colonize new niches or to kill

predators. Bacteria are able to adhere to various surfaces and to

actively release protein toxins. The delivery of effectors in the

milieu, into host cells or bacteria involves dedicated machineries

called secretion systems. Among the six secretion systems identified

in Gram negative bacteria, the recently identified Type VI

secretion system (T6SS) is composed of 13 core components which

form a trans-envelope apparatus [1]. The T6SS are highly

versatile in terms of functions [1–4]. T6SS have been found to be

required for resisting predation or for pathogenesis in several

bacteria: in Vibrio cholerae, the T6SS is required to escape amoeba

predation, or for killing host cells by modification of the host cell

cytoskeleton and subsequent impairing phagocytic activity [5–6].

Beside the role of several T6SS in pathogenesis towards animal or

plant models, it was recently reported that T6SS are involved in

stress sensing, in regulating bacteria-bacteria interactions or in

targeting other bacterial cells, and may therefore help in

competition towards a specific niche [2,7,8]. When not required

for pathogenesis, T6SS yet provide a critical advantage to

neighbouring bacteria, allowing an improved colonization effi-

ciency.

A hallmark of T6SS is that two proteins are found in culture

supernatants of bacteria producing T6SS: Hcp and VgrG [1]. The

crystal structures of Hcp and VgrG have been reported: Hcp

forms hexameric rings leaving a pore of ,40 Å [9] whereas three

VgrG assemble to form a syringe-like structure [10–12].

Phylogenetic and structural data have shown that these two

proteins share remarkable homologies with bacteriophage com-

ponents. The Hcp structure is superimposable to the major tail

protein gpV of bacteriophage l (bacteriophage T4 gp19 protein;

[9,13]) whereas VgrG has a fold highly similar to the gp27-gp5

complex, the cell puncturing device of bacteriophage T4

[10,11,14]. Several other subunits of Type VI secretion systems

also share a common evolutionary history with other bacterio-

phage baseplate or sheath components [1,15]. These include TssE,

a homologue of the baseplate gp25 protein, and TssB and TssC,

which have been shown to form tubular structures resembling the

bacteriophage tail sheath (the nomenclature used in this

manuscript follows the general Tss nomenclature [16]). Interest-

ingly, the Vibrio cholerae TssB/TssC (VipA/VipB) tubular structures

are disassembled by TssH, an AAA+ traffic ATPase of the Clp
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family [17]. The current model suggests that these proteins may

assemble an extracellular tubular structure composed of the Hcp

protein carrying the VgrG protein at the tip [18]. This upside-

down bacteriophage structure will thus deliver the VgrG protein in

the milieu or into host cells [12,19]. Several VgrG proteins carry

an additional C-terminal domain which acts as an effector module

with functions interfering with the host cytoskeleton or the host

physiology [12].

Beside bacteriophage-derived components, a number of mem-

brane-associated proteins were shown to be critical for T6SS.

Among these components, TssL and TssM have close homologues

in Type IVb secretion systems [1,15,20]. Two other T6SS genes,

tssJ and tssH encode an outer membrane (OM) lipoprotein and an

AAA+ ATPase, two components regularly found in bacterial

secretion systems or in trans-envelope structures allowing the

assembly of cell surface appendages [1,21]. An immunoprecipita-

ble complex composed of four proteins, TssJ, TssL, TssM and

TagL has been evidenced in enteroaggregative Escherichia coli

(EAEC) [22,23]. TssM is an inner membrane (IM) protein with

three transmembrane segments. Homologues of TssM in Agrobac-

terium tumefaciens and Edwardsiella tarda have been shown to interact

with homologues of the TssL inner membrane protein and of the

outer membrane lipoprotein TssJ [20,24]. TssL interacts with

TagL, an inner membrane protein carrying a peptidoglycan-

binding motif of the OmpA/Pal/MotB family that anchors the

T6SS to the cell wall [22,23]. This membrane complex therefore

links both membranes and the peptidoglycan layer. Although in

vivo data have been accumulated on the topology of the membrane

complex subunits and their interactions, little is known on the

structural organization of these proteins. To gain structural

information on the assembly of this complex, we initiated the

purification of the different subunits. We report here the crystal

structure of the TssJ protein of the enteroaggregative Escherichia coli

Sci1 T6SS which likely constitute a prototype for all TssJ-like

proteins. We also present biochemical data on the TssM protein

and on the TssJ-TssM interaction. We provide in vitro and in vivo

evidence for the function of a specific loop of TssJ in mediating

contact with the TssM subunit, which therefore provide

fundamental insight into T6SS biogenesis and topology.

Results

Crystal structure of the EAEC TssJ protein
A fragment of the tssJ gene of the sci1 cluster from

enteroaggregative Escherichia coli consisting of amino-acid residues

2-155 of the processed TssJ lipoprotein (residues 25-178 of the full-

length protein) was cloned in the Gateway vector pETG20A, with

an N-terminal fusion hexahistidine tagged thioredoxin for

purification [25]. This construct consists of a polypeptide chain

starting at the glycine residue following the cysteine anchoring

TssJ to an acyl chain. The numbering used in this report follows

the sequence of the mature lipoprotein, between residues Cys1

(here mutated in Gly) and Lys155. The TssJ protein was purified

by affinity chromatography and gel filtration, and the native TssJ

protein was obtained upon fusion and tag cleavage by the TEV

protease.

TssJ was analyzed by MALS/QELS/UV/RI (on-line multi-

angle laser light scattering/quasi-elastic light scattering/absor-

bance/refractive index detectors) experiments [26]. The protein

was shown to be a monomer at a concentration of 4 mg/mL

(230 mM) at pH 7.5 in the presence of 100 mM NaCl. Mass and

hydrodynamic radius calculation performed with the ASTRA

software (Wyatt Technology) using a dn/dc value of 0.185 mL/g

indicated a mass of 172606800 Da, close to the theoretical mass

of 16,899 Da (Figure S1, Tables S1 & S2).

TssJ crystallized readily with 2.2 M ammonium sulfate as a

precipitant at pH 6.0 in sitting nano-drops [27]. We collected a

native dataset and a dataset from a crystal soaked in CsI/NaI at

beamline Proxima 1 (Soleil synchrotron, Saint-Aubin, France).

The structure was solved from 2.0 Å resolution SIRAS (single

isomorphous replacement with anomalous scattering) maps

calculated using CsI as phasing agents, and the resolution limit

was extended to 1.35 Å with the native data set (Figure S2, Table

S3). The polypeptide chain could be traced from residue Ile23 to

Pro151. The segment 1-22 anchoring the protein to the

membrane via Cys1 and its phospholipid thioester as well as the

last four residues were not ordered in the crystal.

A unique TssJ molecule is contained in the asymmetric unit,

and the PISA server [28] did not identify any sufficient

interactions between TssJ molecules related by crystallographic

symmetry. We can therefore conclude that TssJ is a monomer in

solution.

TssJ has the topology of a b-sandwich formed by two four-

stranded b-sheets (Figure 1). Sheet one is composed or b-strands

4(-1), 1, 7 and 8 (1), and is packed against sheet 2 which contains

b-strands 3(-1), 2, 5(-1) and 6. The other face of b-sheet 2 one is

covered in part by three short helices (h1-3) occurring between b-

strands 2 and 3. These helices exhibit B-factors larger than

average, in particular the segment 56-71, between helices 2 and 3

which has very weak electron density. Of particular interest are the

loops located between strands 1 and 2, and between strands 5 and

6. Another long loop incorporates the g1 helix between strands 6

and 7.

Searching the protein database for structurally related proteins

with Dali [29] returned significant hits with transthyretin (1sn5

[30]; Z = 6.4; rmsd [root mean-square deviation] = 3.2 Å) on 87

residues among 116 involved in comparison (Figure 1C) and with

5-hydroxy-isourate hydrolase (3iwu [31]; Z = 6.3; rmsd = 3.3 Å).

Both proteins originate from vertebrates, a mammalian blood

transport protein and an enzyme from zebra fish, respectively

[30,31]. Dali also returned the recently determined structure of the

Author Summary

Type VI secretion systems (T6SS) are specialized secretion
machines responsible for the transport of virulence factors.
T6SS are versatile as they are able to target both
eukaryotic and prokaryotic cells. They therefore play an
important role in pathogenesis by acting directly on the
host, as well as eliminating competing bacteria from the
niche. At a molecular level, T6SS are composed of a
minimum of 13 proteins called core-components, all
required for the activity of the secretion system. These
core-components can be divided in two groups: soluble
proteins having a common evolution history with bacte-
riophage T4 subunits, and membrane or membrane-
associated proteins required for anchoring the bacterio-
phage-like structure to the envelope. Here, we report the
crystal structure of one of the membrane-associated core
component, the TssJ lipoprotein. The structure exhibits a
transthyretin fold supplemented with additional structural
elements. One of these, a loop connecting two beta-
strands, is responsible for the interaction of the TssJ
lipoprotein with the C-terminal domain of the inner
membrane protein TssM. We propose that these two
proteins link the two membranes and form a channel
accommodating the bacteriophage-like structure. These
results provide important new insights to understand the
biogenesis of these secretion apparati.

TssJ Crystal Structure and Interaction with TssM
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ExsB lipoprotein from the P. aeruginosa Type III secretion system

(T3SS) [32], although with lower scores (2yjl; Z = 5.2;

rmsd = 4.0 Å; Figure S3). Noteworthy, TssJ helical domain

(residues 57-71) is absent in transthyretin, 5-hydroxy-isourate

hydrolase and ExsB, but a single helix is located on the same face,

between strands 4 and 5 of transthyretin (Figure 1C). The

extended loop (residues 38-45) between stands 1 and 2, forming a

protruding extension, is also absent in the three proteins

(Figure 1C, Figure S3). In the crystal, this loop points out of the

core of the protein and is stabilized by contacts with a symmetry

related molecule, although this contact is not biologically relevant

due to its limited interface.

Sequence alignments of TssJ from the enteroaggregative E. coli

Sci1 have been performed with the 49 closest sequences in the non

redundant (NR) database (Figure S4). The 33 first sequences do

not present insertions nor deletions, while the 17 more divergent

ones exhibit a 3-residue insertion in the loop between stands 1 and

2, making this loop even longer. On the 16 conserved residues, 13

Figure 1. Structure of the enteroaggregative E. coli T6SS TssJ subunit. (A) Stereoview of TssJ in ribbon representation and rainbow coloring,
from blue (N-term) to red (C-term); the sequence is represented above. Figure made with Pymol [61]. (B) Topology cartoon of TssJ (same coloring as
in (A)). (C) Structural comparison of TssJ and its nearest homologue, transthyretin (1sn5), after superimposition. The topology is identical for both
proteins and their b-sandwiches superimpose within 3.2 Å. Note the presence of an extra helical domain in TssJ, and an extra helix (top) in
transthyretin.
doi:10.1371/journal.ppat.1002386.g001

TssJ Crystal Structure and Interaction with TssM
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are present in the X-ray structure (Figure S5). The two first

residues (Cys1 and Gly2) are of functional importance in TssJ

proteins: Cys1 is the N-terminal acylated residue whereas Gly2 is

responsible for the Lol-dependent outer membrane targeting [21].

Three conserved prolines (at positions 90, 99 and 116) are

involved in structural integrity of strands-joining loops. A group of

aromatic residues, Tyr65, Phe113 and Trp123 form also a

structurally important hydrophobic cluster stabilizing the a-helical

domain against the b-sandwich core. The other residues are

scattered along the polypeptide chain and do not reveal

interpretable features.

Analysis using the CASTp software [33] did not identify

significant surface cavities with a volume larger than 100 Å3. In

contrast, when the TssJ structure is overlaid with transthyretin and

ExsB (Figure 1C, Figure S3), two domains protrude from the core

of the protein: the loop between strands 1 and 2 (residues 38-45)

and the helical domain (residues 57-81), the latter one presenting

very high B-factors, especially between residues 65 and 75 (Figure

S6A). The calculation of contact electrostatic potential did not

highlight any hydrophobic or positively or negatively charged

surface patches, but indicated a scattered and balanced charges

distribution over the whole surface (Figure S6B).

TssM ekto-domain and sub-domains production and
characterization

Enteroaggregative E. coli TssM is a large - 1129 amino-acids -

protein with an N-terminal cytoplasmic domain (1-387) bearing

three trans-membrane helices and a periplasmic domain of 744

residues (termed hereafter ekto-domain; Aschtgen and Cascales,

unpublished data). JPRED [34] secondary structure predictions

reveal that the first ,500 residues (386-930) of the ekto-domain

are helical while the C-terminus (931-1129) is essentially a b-

domain (Table S2). We expressed three constructs of TssM

domains in fusion with Trx and His tags: the ekto-N-terminal

domain (ekto-Nt, 386-930), the ekto-C-terminal domain (ekto-Ct,

931-1129) and the full-length ekto domain (386-1129). The ekto-

Nt domain was well expressed and soluble up to 0.7 mg/mL

without the need of detergent addition. The ekto-Ct domain was

produced as inclusion bodies and could not be purified. The full-

length TssM-ekto was expressed in large quantities and remained

soluble after TEV cleavage. It could be concentrated up to 9.0

mg/ml without the need of detergent. The CD spectra of these

domains indicated that TssM-ekto-Nt is predominantly formed of

a-helices, while a contribution of b-strands appears in the full-

length TssM (Table S2, Figure S7A).

In vivo and in vitro interaction of TssJ with TssM
Since the TssJ lipoprotein has been proposed to facing the

periplasm [21], we tested whether TssJ interacted with TssM-ekto

in an in vivo co-immunoprecipitation assay. TssM-ekto and the two

deletion variants, TssM-ekto-Nt and TssM-ekto-Ct were cloned

downstream a signal peptide allowing their targeting to the

periplasm. All TssM constructs were fused to a FLAG epitope.

The full-length, acylated TssJ protein was produced with a C-

terminal hemagglutinine (HA) tag [21]. Both proteins were

produced from compatible plasmids in E. coli K12 (i.e., devoid of

T6SS gene cluster) to test for direct interaction. Cells expressing

both TssM-ekto and TssJ proteins were treated with formaldehyde

and subjected to membrane solubilization. Solubilized extracts

were then used in an immunoprecipitation assay with the anti-

FLAG antibody. TssJ co-precipitated with TssM, whereas no TssJ

was found associated with the resin in absence of TssM-ekto

(Figure 2A). These results demonstrate that TssJ interacts with the

periplasmic domain of TssM in vivo. Similar experiments

performed with the TssM-ekto sub-domains further showed that

TssJ interacts with TssM-ekto-Ct but not with the TssM-ekto-Nt

variant (Figure 2A).

Purified TssJ and TssM-ekto produced in E. coli were tested in

an in vitro interaction assay. Both proteins were mixed with a slight

molar excess of TssJ and were subjected to gel-filtration. A peak

was observed at an elution time slightly shorter compared to that

Figure 2. TssJ interacts with the C-terminal domain of TssM. (A)
Solubilized extracts of E. coli K12 W3110 strain producing (+) or not (-)
HA-tagged TssJ and FLAG-tagged TssM-ekto or -Nt or –Ct derivatives
were subjected to immunoprecipitation with anti-FLAG-coupled beads.
The total solubilized material (T) and the immunoprecipitated material
(IP) were loaded on a 12.5%-acrylamide SDS PAGE, and immunode-
tected with anti-HA (TssJ; lower panel) and anti-FLAG (TssM-ekto and
sub-domains; upper panel) monoclonal antibodies. Immunodetected
proteins are indicated on the right. Molecular weight markers are
indicated on the left. (B) Gel filtration showing the direct interaction of
TssM-ekto with TssJ. The SDS-PAGE analysis of the fractions is shown on
the left panel. The chromatogram of the gel filtration is shown on the
right panel. (C) MALS/QELS/UV/RI analysis of the TssM-ekto/TssJ
complex.
doi:10.1371/journal.ppat.1002386.g002

TssJ Crystal Structure and Interaction with TssM
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of TssM-ekto alone, and analysis of this peak by SDS page

revealed the presence of both partners (Figure 2B). Mass and

hydrodynamic radius calculations confirmed the formation of the

TssJ-TssM complex with a mass of 99,97062,000 Da and a 1:1

stoichiometry (Figure 2C, Table S2). Together, these results

demonstrated that TssM-ekto and TssJ interact directly and form

a complex of 1:1 stoichiometry.

We analyzed the strength of the interaction by performing a

surface plasmon resonance study (SPR) with a Biacore X100. TssJ

was covalently coupled to a CM5 chip and TssM-ekto was injected

in the microfluidic channel. The sensorgrams indicated that TssM-

ekto was released in a short time without the necessity of chip

regeneration (Figure 3A). The Kd could be calculated from the

levels of the sensorgrams at equilibrium, since the values of Kon and

Koff could not be obtained in such a context. The average of three

experiments yielded a Kd value of 2.160.25 mM (Figure 3B). We

then performed the symmetrical experiment using covalently linked

TssM-ekto to the chip. Upon TssJ injection, a Kd value of

4.060.5 mM was measured (Figure 3B). In contrast, injection of

TssM-ekto-Nt domain on the TssJ-coupled CM5 chip did not result

in any signal on the sensorgram, revealing that TssJ does not

interact with the TssM N-terminal, a-helical domain in vitro. The

TssM-ekto-Ct domain was not tested in this assay as it was produced

as inclusion bodies and could not be purified. Collectively, the data

from the in vivo and in vitro experiments demonstrate the existence of

a 1:1 stoichiometry complex between the C-terminal periplasmic

domain of TssM and the TssJ lipoprotein, with a Kd of 2-4 mM.

TssJ interaction mutants
Interactions between proteins require surface complementari-

ties. The three dimensional structure of TssJ shows that it lacks any

crevice able to host any putative TssM-ekto protruding domain. In

contrast, TssJ exhibits extensions, compared to transthyretin and

ExsB, which could interact with crevices on TssM. The helical

domain is located on the face of the b-sandwich opposite to the N-

and C-termini, while the extended loop is located at the apical side

of the b-sandwich, opposite to the N-terminus, and hence to the

outer membrane. These sites are however close enough to

participate to a large interaction area with TssM. We therefore

constructed TssJ mutants deleted of residues 39-42 from the L1-2

loop (TssJ-DL1-2) and of the helical domain (TssJ-Dadom). The

TssJ-DL1-2 mutant was expressed at similar level that the native

protein, both in vivo and in vitro. The TssJ-DL1-2 mutant was found

to be soluble, monomeric, and with a CD spectrum closely similar

to that of the native protein (Figure S7B), indicating that the TssJ-

DL1-2 mutant was properly folded. By contrast, TssJ mutants

deleted or partly deleted of the helical domain were little produced

in vivo, and not produced in vitro, precluding further studies with

them. An hydrophobic patch at the interface between TssJ core

and the helical domain (Phe113, Trp123) might have been

exposed to solvent, probably inducing aggregation.

The TssJ-DL1-2 mutant was tested (i) for function in a

complementation assay and (ii) in vivo and in vitro interaction with

TssM-ekto. The presence of Hcp in the culture supernatant has

been previously shown to reflect the correct assembly of the

machine. Whole cells and supernatants of DtssJ cells expressing

full-length wild-type or mutant TssJ were separated by centrifu-

gation and the presence of Hcp in both fractions was assessed by

western-blot. As shown in Figure 4A, the wild-type TssJ protein

was functional while TssJ-DL1-2 did not complement the tssJ

mutation for Hcp release. We then tested whether the deletion

mutant of TssJ interacts with the periplasmic domain of TssM in

Figure 3. Measure of the interaction between TssM-ekto and TssJ by Surface Plasmon Resonance. (A) Sensorgram and saturation curve
of the titration of Trx-TssJ by Trx-TssM-ekto. The CM5 chip (BIAcore) was coated with TssJ N-terminal thioredoxine fusion with 600 response units (RU)
and the Trx-TssM-ekto was injected in the microfluidic channel. (B) Sensorgram and saturation curve of the titration of Trx-TssM-ekto by TssJ. The
CM5 chip was coated with TssM-ekto N-terminal thioredoxine fusion with 3000 response units, and TssJ was injected in the microfluidic channel. The
KD values were obtained using the fitting tool of the BIAevaluation software (BIAcore).
doi:10.1371/journal.ppat.1002386.g003

TssJ Crystal Structure and Interaction with TssM
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an in vivo co-immunoprecipitation assay. Figure 4B shows that

TssJ-DL1-2 did not co-immunoprecipitate with TssM-ekto.

This conclusion was validated by in vitro analyses. First, analysis

of a mixture of TssM-ekto and TssJ-DL1-2 by gel filtration

revealed a unique peak eluting at the same volume as TssM-ekto

alone. SDS-PAGE analysis of the different fractions demonstrated

the presence of TssM only (Figure 4C). We then performed SPR

experiments with TssM-ekto covalently linked to a CM5 chip.

Whereas we detected a 2-4 mM interaction between TssM-ekto

and TssJ, injection of the TssJ-DL1-2 mutant at a concentration up

to 10 mM failed to produce any deviation of the sensorgram,

indicating thus a lack of interaction between TssM and TssJ-DL1-

2. Coupled to the observation that TssJ-DL1-2 was correctly

folded, we concluded that the L1-2 loop of TssJ is a critical

determinant for the TssJ-TssM interaction.

Discussion

Type VI secretion systems are important determinants of

bacterial pathogenesis, either by the secretion of toxic molecules to

host cells, or by competing with bacterial rivals towards the

colonization of a specific niche [1,2]. Several studies have

demonstrated the implications of T6SS in the virulence of Vibrio

cholerae towards amoeba or animal/human host cells, of Edward-

siella tarda towards fishes, or of Burkholderia sp. towards animal host

cells [5,6,24,35,36]. Similarly, high levels of antibodies directed

against the HSI-1 Hcp protein of Pseudomonas aeruginosa have been

detected in the sputum of cystic fibrosis patients [9]. With the

observation that the HSI-1 T6SS is dedicated to the competition

against other bacteria, including pathogens [8,37], the presence of

Hcp antibodies suggests that an intense bacterial warfare occurs in

specific niches of animal or human bodies. As an inroad to better

understand how T6SS are built, we initiated a structural,

biophysical and functional characterization of the T6SS core

components. We reported here the crystal structure of the TssJ

lipoprotein, a critical core-component of Type VI secretion

systems, and its interaction with TssM.

TssJ structure and interaction with TssM
The TssJ-TssM complex is part of a larger complex involving

the inner membrane TssL protein and the peptidoglycan-

associated TagL protein [22]. This membrane sub-complex of

T6SS therefore links both membranes and the peptidoglycan

layer, forming a trans-envelope, periplasm spanning, structure.

Few structures have been reported so far in T6SS: the Hcp and

VgrG proteins which are structural/exported components that

share homologies with bacteriophage subunits [9,11]. This study

thus reports the first structure of a T6SS membrane complex

component and provides clues on specific interaction sites.

TssJ is a b-sandwich resembling transthyretin with two

additional elements: a protruding loop and a small helical domain.

Sequence alignment of the T6SS TssJ homologues showed that all

TssJ proteins share these additional elements (Figure S4),

suggesting that the EAEC TssJ structure likely constitutes a

prototype for T6SS-associated TssJ proteins. Because these regions

are not required for the canonical fold but are conserved among

TssJ homologues, we thought they may represent potential site of

Figure 4. The L1-2 loop of TssJ is required for TssJ-TssM
complex formation. (A) In vivo Hcp release assay. HcpFLAG release
was assessed by separating whole cells (WC) and supernatant (Sn)
fractions from tssJ cells carrying the empty vector (tssJ), the vector
encoding wild-type TssJ (tssJWT) or the vector encoding the TssJ-DL1-2
mutant (tssJDL1-2). 2 6108 cells and the TCA-precipitated material of the
supernatant from 56108 cells were loaded on a 12.5%-acrylamide SDS-
PAGE and immunodetected using the anti-FLAG monoclonal antibody
(lower panel) and the anti-TolB polyclonal antibodies (lysis control;
upper panel). (B) Solubilized extracts of E. coli K12 W3110 strain
producing (+) or not (-) FLAG-tagged TssM-ekto and HA-tagged TssJ or
TssJ-DL1-2 mutant were subjected to immunoprecipitation with anti-
FLAG-coupled beads. The total solubilized material (T) and the
immunoprecipitated material (IP) were loaded on a 12.5%-acrylamide
SDS PAGE, and immunodetected with anti-HA (TssJ and TssJ-DL1-2;
lower panel) and anti-FLAG (TssM-ekto; upper panel) monoclonal
antibodies. Immunodetected proteins are indicated on the right.

Molecular weight markers are indicated on the left. (C) Affinity
purification of TssJ-DL1-2 with TRX-His6-TssM-ekto. The Coomassie
blue-stained SDS-PAGE shows the fractions of the purification steps
(Load, fraction 1; Wash, fractions 2-4; Elution, fractions 5 and 6). The
positions of the proteins of interest are indicated on the right.
doi:10.1371/journal.ppat.1002386.g004
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functionality. Indeed, using in vivo assays, we found that deletion of

the extended loop L1-2 abrogates Hcp secretion, while the helical

domain is necessary for TssJ stability. In vivo and in vitro protein-

protein interaction studies further showed that the L1-2 loop of

TssJ is required for efficient interaction with the periplasmic

domain of TssM. Although present in all TssJ homologues, this

loop is not well conserved in terms of amino-acid composition and

length. The sequence alignment presented Figure S4 reveals two

TssJ sub-families based on the L1-2 length (5- or 8-amino-acids).

Because this loop is a critical determinant of the TssJ-TssM

interaction, one may hypothesize that these variations may

modulate specificity between TssJ and TssM homologues.

Specificity between these two proteins can therefore be a

determinant during T6SS assembly to ensure proper recognition

between the cognate subunits when several T6SS gene clusters are

encoded within the same genome. SPR experiments showed that

the Kd between TssJ and TssM was ,2-4 ı̀M, while a 1:1

stoichiometry was determined by MALS/QELS/UV/RI. Sub-

domain dissection of TssM further demonstrated that TssJ does

not interact with the TssM-ekto-Nt domain, but rather with the

TssM-ekto-Ct domain.

Organization of the T6SS outer shell
TssM-ekto-Ct domain localization in the sequence, opposite to

the N-terminal trans-membrane helices imbedded in the IM,

suggests that it should be close to the outer membrane. The

hypothesis of the vicinity of TssM-ekto-Ct with the OM is further

reinforced by the interaction of TssM-ekto-Ct with TssJ. However,

formation of a T6SS outer shell based on TssM implies the

establishment of lateral TssM-TssM interactions. The monomeric

state of TssM-ekto in solution, as determined by MALS/QELS/

UV/RI experiments, as well as the SPR data, are not in favor of

this hypothesis. However, these interactions may still be

established with the full length TssM molecules, since they could

interact through their transmembrane helices. Our data, as well as

the current knowledge on T6SS, made it possible to suggest a

T6SS topology model (see Figure 5). As previously reported, TssL,

TagL and TssM interact at the IM [22] whereas our data showed

that the C-terminal domain of TssM interacts with TssJ at the OM

(Figure 5). We propose that the TssL-TagL-TssM-TssJ complex

may therefore form a trans-envelope spanning channel, as

exemplified in other secretion systems [38-41].

A chaperone role of TssJ?
The TssJ core domain (residues 2-155) is anchored to the

membrane through a thioether linkage between Cys1 and a

diacylglycerol. Residues 2-22 have been found to be non-ordered

in the crystal structure, providing to TssJ a wide radius of

periplasm exploration for catching TssM. Interestingly, the TssM-

ekto-Ct domain is predicted to be essentially formed by b-strands.

One interesting hypothesis that remains to be tested is that the

TssJ lipoprotein may contribute to the folding or the stability of the

TssM-ekto-Ct domain. A chaperone-like role for lipoproteins has

already been demonstrated in most bacterial secretion systems: in

Type II secretion systems (T2SS), the GspS lipoprotein acts as a

pilotine to allow the passage of the GspD secretin through the

periplasm and help to its proper insertion in the outer membrane

[42]. Similarly, in T3SS, cognate lipoproteins serve as insertion

helper for outer membrane secretins [43,44]. More generally,

lipoproteins associated with cell envelope spanning structures are

often involved in machine assembly or nucleation factor. In T4SS,

the VirB7 lipoprotein is covalently linked to the VirB9 outer-

membrane associated component through a disulfide bridge [45],

is required for stability of VirB9 and of the VirB9-VirB10 outer

membrane translocon [39], and has been suggested to be

necessary for the early stages of T4SS biogenesis [46–48].

Interestingly, the TssJ fold is similar to that of the P. aeruginosa

T3SS-associated ExsB outer membrane lipoprotein [32]. This

observation suggests that these two structures may represent a

family of lipoproteins associated with macromolecular systems

sharing a common evolutionary history. It is noteworthy that ExsB

does not exhibit the L1-2 loop and the helical domain found in

TssJ (Figure S3) highlighting the specific role of these two elements

in Type VI secretion.

Drugability of the TssM-TssJ interaction
Our data showed that the 4 amino-acids protruding loop L1-2

of TssJ is required for a functional TssJ-TssM interaction. This

should be analyzed in light of the SPR experiments, reporting a Kd

value in the mM range, suggesting that the interaction does not

involve a large surface area of interaction, such as the 600-900 Å2

typical of Fab/protein interfaces that would assemble with Kd

values down to the nM range [49]. This observation as well as the

complete loss of TssJ-TssM interaction when the L1-2 loop is

deleted let us to conclude that there is no other interaction area

between TssM and TssJ. Interestingly, the size of the L1-2 loop is

comparable with that of medium sized organic molecules that

could therefore be good candidates to fit into the TssM

complementary cavity and compete for TssJ binding. T6SS being

important determinant of pathogenesis, biofilm formation or inter-

bacterial competition, this observation paves the way for the

identification of anti-microbial molecules targeting T6SS assembly

[50].

Materials and Methods

Bacterial strains, medium, growth conditions and
chemicals

Escherichia coli K12 DH5a was used for cloning procedures. The

enteroaggregative E. coli strain 17-2 (kindly provided by Arlette

Darfeuille-Michaud, University of Clermont-Ferrand, France) and

its DtssJ derivative [DsciN; 21] were used for this study. EAEC

strains were routinely grown in LB medium at 37uC with shaking.

Plasmids were maintained by the addition of ampicillin (200 mg/

ml) or kanamycin (100 mg/ml).

Constructions for in vivo studies
Constructions of plasmid pSciNHA (encoding the WT EAEC

TssJ protein fused to a C-terminal HA epitope) and pHcpFLAG

(encoding the Hcp protein fused to a C-terminal FLAG epitope)

have been previously reported [21]. Deletion of the L1-2 loop has

been introduced into pSciNHA by site-directed mutagenesis using

mutagenic primers annealing upstream and downstream of the

sequence to be deleted (59-CCAGGGAGGCCATTAACACCG-

GTGGCGCCTCGGTTGTGGTGCGGATTTATC and 59-G-

ATAAATCCGCACCACAACCGAGGCGCCACCGGTGTTA-

ATGGCCTCCCTGG). pSciSp, encoding the EAEC TssM-ekto

domain (amino-acids 386 to 1129) fused to a signal peptide for

periplasm targeting, has been constructed by a double PCR

technique using pASK-IBA4 as template and oligonucleotides

IBA-Sp5 (59-CGCTACCGTAGCGCAGGCCGCTAGCGATT-

ATAAAGACGACGATGACAAAAGTCTGGTTGCTGAAGT-

ACAGGAACAGATTCGTCCG [sequence encoding the FLAG

epitope tag underlined]) and IBA-Sp3 59-GCCTTTTTCGAAC-

TGCGGGTGGCTCCATCAGTCAGTCTCCTCCACGGTAT-

CCCCGG). Plasmid encoding TssM-ekto-Nt (amino-acids 386 to

973) has been obtained by site-directed mutagenesis by introduc-

tion of a stop codon at codon Asn974 using pSciSp as template

TssJ Crystal Structure and Interaction with TssM
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and oligonucleotides 59- GGATGTGGCGTTCACCACAGGT-

TAAGCGGGGCTGCATTTTGAGCTGC and 59- GCAGCT-

CAAAATGCAGCCCCGCTTAACCTGTGGTGAACGCCA-

CATCC. Plasmid encoding TssM-ekto-Ct (amino-acids 972 to

1129) has been constructed by a double PCR technique using

pASK-IBA4 as template and oligonucleotides IBA-Spb5 (59-

CGCTACCGTAGCGCAGGCCGCTAGCGATTATAAAGAC-

GACGATGACAAAGGTAACGCGGGGCTGCATTTTGAGC-

TGCG) and IBA-Sp3. Primers were obtained from custom

oligonucleotides synthesized by Eurogentec. Polymerase Chain

Reactions (PCR) were performed with a Biometra thermocycler,

using the Pfu Turbo DNA polymerase (Stratagene; La Jolla, CA).

All constructs have been verified by DNA sequencing (GATC).

In vivo Hcp release assay
Supernatant and cell fractions have been separated as

previously described [21]. Briefly, 26109 cells producing FLAG

epitope-tagged Hcp were harvested and collected by centrifuga-

tion at 2,000 6 g for 5 min. The supernatant fraction was then

subjected to a second low-speed centrifugation and then at

16,000 6 g for 15 min. The supernatant was then filtered on

sterile polyester membranes with a pore size of 0.2 mm (membrex

25 PET, membraPure GmbH) before precipitation with trichlor-

oacetic acid (TCA) 15%. Cells and precipitated supernatant were

then resuspended in loading buffer and analyzed by SDS-PAGE

and immunoblotting with the anti-FLAG M2 monoclonal

antibody (Sigma-Aldrich). As control for cell lysis, Western blots

were probed with antibodies raised against the periplasmic TolB

protein.

In vivo co-immunoprecipitation assays
Co-immunoprecipitation experiments were performed essen-

tially as previously described [51]. 26109 exponentially growing

cells were harvested, washed with 20 ml of 10 mM sodium

Figure 5. Schematic representation of the enteroaggregative E. coli T6SS. The outer (OM) and inner membranes (IM) are represented in light
green. The T4 phage-like central puncturing device includes Hcp (green disks) and VgrG (purple). The ‘‘tail sheath’’ TssBC (VipAB) proteins are shown
in blue, around the central Hcp/VgrG pilum. The TssBC proteins constituting a sheath encompassing the Hcp tube has not been evidenced but is
speculated based on the similarities between the T6SS TssBC subunits and the bacteriophage T4 sheath [4,17]. The three-transmembrane inner
membrane TssM protein (yellow) interacts with the TssL IM protein (blue) [20]. TssL interacts with TagL (green), an IM protein that anchors the T6SS to
the cell wall [22]. TssM C-terminal domain interacts with a loop of the outer membrane lipoprotein TssJ [this study]. In this model, the TssL-TagL-
TssM-TssJ complex forms a trans-envelope spanning channel.
doi:10.1371/journal.ppat.1002386.g005
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phosphate buffer (NaPi, pH 6.8), and resuspended in NaPi buffer

supplemented with para-formaldehyde 1%. After incubation at

room temperature for 20 minutes, the cross-linking reaction was

quenched by the addition of 0.3 M Tris-HCl pH 6.8, and the cells

were washed twice in Tris-HCl 20 mM pH 6.8. The cell pellet

was then subjected to solubilization for 30 min at 37uC in TES

(Tris-HCl 10 mM, pH 7.5, EDTA 5 mM, SDS 1%) in presence of

protease inhibitors (Complete, Roche), and diluted 15-fold in TNE

(Tris-HCl 10 mM, pH 7.5, EDTA 5 mM, NaCl 150 mM)

supplemented with 1% Triton X-100. After incubation 2 hours

at room temperature with vigorous shaking, the extract was

centrifuged 15 min at 18000 x g to remove unsolubilized material.

Supernatants were then incubated overnight at 4uC with anti-HA

antibody coupled to Agarose-Protein G beads (Roche). Beads were

then washed twice with TNE supplemented with 1% Triton X-

100, once in TNE supplemented with 0.1% Triton X-100 and

Tween 0.1% and once in TNE supplemented with 0.1% Triton

X-100. The immunoprecipitated material was heated in loading

buffer prior to analyses by SDS-PAGE and immunoblotting.

Constructions for in vitro studies and purification
procedures

tssJ and tssM-ekto of enteroaggregative Escherichia coli strain 17-2

were cloned into pETG-20A (a kind gift from Dr Arie Geerlof,

EMBL, Hamburg) expression vector according to standard

GatewayTM protocols. The final constructs encoded the target

genes and an N-terminal fusion with hexahistidine tagged

thioredoxine followed by a TEV protease cleavage site. Both

plasmids were transformed in Escherichia coli T7 Iq pLysS (New

England Biolabs) expression strain. Cells were grown at 37uC in

Terrific Broth until the OD600 reached 0.9 and the tssJ or tssM

expression was inducted with 0.5 mM isopropyl-b-thio-galactoside

(IPTG) overnight at 25uC and 17uC, respectively. After cells

harvesting, the lysis was done by adding 0.25 mg/ml lysozyme,

followed by sonication. Soluble protein was separated from

inclusion bodies and cell debris by 30 min of centrifugation at

20,000 g. We used an AKTA FPLC system to four steps of

purification: a Ni2+ affinity chromatography (HisTrap 5 ml GE

Healthcare) with a step gradient of 250 mM Imidazole, an

overnight TEV His protease digestion at 4uC with a 1:10 (w/w)

protease: protein ratio, a second Ni2+ affinity chromatography; a

preparative Superdex 75 (GE Healthcare) gel filtration run in

20 mM Tris pH 8, 100 mM NaCl. Gel filtration of TssM-ekto was

performed in a preparative Superose 6 in 20 mM Tris pH 8.0,

200 mM NaCl, 5% glycerol.

In vitro co-purification assays
Co-purification of TssM-ekto and TssJ was performed in three

steps on a AKTA FPLC system: a Ni2+ affinity chromatography in

a step gradient of 250 mM Imidazole of the mixture Trx-(His6)-

TssM-ekto and TssJ, an overnight TEV His protease digestion at

4uC with a 1:10 (w/w) protease: protein ratio and a preparative

Superose S6 (GE Healthcare) gel filtration run in 20 mM Tris

pH 8.0, 200 mM NaCl, 5% glycerol.

Biophysical experiments
Size exclusion chromatography (SEC) was performed on an

Alliance 2695 HPLC system (Waters) using a KW803 and KW804

columns (Shodex) run in 10 mM HEPES pH 7.5, 150 mM NaCl

at 0.5 ml/min. MALS, UV spectrophotometry, QUELS and RI

were achieved with MiniDawn Treos (Wyatt Technology), a Photo

Diode Array 2996 (Waters), a DynaPro (Wyatt Technology) and

an Optilab rEX (Wyatt Technology), respectively, as described

[26]. Mass and hydrodynamic radius calculation was done with

ASTRA software (Wyatt Technology) using a dn/dc value of

0.185 mL/g.

Circular dichroism spectra of TssJ, TssJ-DL1-2 mutant and

Trx-TssM-ekto were recorded in 20 mM NaH2PO4 pH 7,2,

150 mM NaCl using a Jasco J-810 spectropolarimeter.

The Surface Plasmon Resonance measurements were per-

formed in a 10 mM Tris pH 8, 150 mM NaCl, 0.005% detergent

TWEEN using a BIACORE X100 (BIAcore). The chip CM5

(BIAcore) was coated with TssJ N-terminal thioredoxine fusion

with 600 response units (RU). We also used the inverse set-up,

coating the chip CM5 with TssM-ekto N-terminal thioredoxine

fusion with 3000 response units. Binding assays with TssJ N-

terminal thioredoxine fusion covalently linked to the chip CM5

were performed with TssM N-terminal thioredoxine fusion at 10,

5, 2.5, 1.25, 0.625, 0.312 mM. We also performed the binding

assays with the chip CM5 coated with TssM N-terminal

thioredoxine fusion at 40, 20, 10, 5, 2.5, 1.25, 0.625, 0.312 mM.

The signal from the uncoated reference cell and the buffer

response was subtracted from all measurements. The KD values

were obtained using the fitting tool of the BIAevaluation software

(BIAcore). A 1:1 binding model was assumed in all cases.

Crystallization and structure determination
TssJ crystallization trials were carried out in sitting-drop vapor

diffusion method at 20uC in 96-well Greiner crystallization plates

using a nanodrop-dispensing robot (Cartesian Inc.) [27]. Crystals

grew in a few days by mixing 300 nL protein at 8mg/mL with

100 nL 2.2 M AmSO4, 0.2 M Na+-thiocyanate pH 6.0. Crystals

were cryo-protected with mother-liquor supplemented with 20%

ethylene glycol and flash frozen in liquid nitrogen. Some crystals

were soaked in the cryo-protecting solution that also contained

0.5 M NaI and 0.5 M CsI. Two data sets were collected: a native

data set (l= 0.98011) and I-SAD (l= 1.37760) at Proxima I

beamline (SOLEIL, Gif-sur-Yvette, France) using an ADSC

Q315r detector. Data processing and scaling were done using

XDS, XSCALE [52], and POINTELESS (Table S3.). The

crystals of TssJ belong to space group P3121 with unit-cell

parameters a = b = 78.07 Å, c = 46.95 Å. TssJ structure was solved

by SIRAS with Sharp [53] and initial automatic building was

performed with Buccaneer [54]. Manual model building was

performed with COOT [55]. Refinement was carried out at

1.35 Å using Buster-TNT [56] and anisotropic refinement with

REFMAC [57]. Structure analyzes was assisted by the PISA server

[28] and electrostatic potential calculation was done with APBS

[58].

Accession codes. The atomic coordinates and structure

factors have been deposited at the Protein Data Bank with

accession code 3RX9.

Supporting Information

Figure S1 EAEC TssJ analyzed by MALS/QELS/UV/RI
experiments. The protein mass was measured at 17260 6 800

Da, a value close to that of the theoretical mass of 16,899 Da

(Table S1).

(TIF)

Figure S2 Stereo view of the Fo-Fc electron density map
of TssJ depicted at 1 sigma level around Tyr 65.

(TIF)

Figure S3 Superimposition of the EAEC T6SS TssJ
lipoprotein with the P. aeruginosa T3SS ExsB lipopro-
tein (PDB 2yjl [32]). TssJ and ExsB exhibit a common

TssJ Crystal Structure and Interaction with TssM
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transthyretin fold, but TssJ possesses an extra a-domain and an

extended loop between strands 1 and 2 (indicated by the arrows).

Panels A and B are rotated 90u from each other.

(TIF)

Figure S4 Sequence alignment of enteroaggregative E.
coli TssJ (gi218696620) with the 49 first hits obtained by
blasting the NR database. The secondary structures are depicted

according to the TssJ crystal structure. The red arrow indicates the

position at which the electron density starts in the X-ray structure. Note

that the 33 first sequences do not present any insertion/deletions

compared to the EAEC TssJ protein. The conserved residues are

boxed in red. Other semi-conserved residues are depicted in red and

boxed in blue. Sequence alignment has been performed with Multalin

(http://multalin.toulouse.inra.fr/multalin/) [59] and ESPript [60].

(gi161504599, Salmonella enterica subsp. arizonae; gi288550304, Entero-

bacter cancerogenus; gi262041848, Klebsiella pneumoniae subsp. rhinoscler-

omatis; gi238895309, K. pneumoniae; gi 152970795 K. pneumoniae subsp.

pneumoniae MGH 78578; gi206578921, K. pneumoniae; gi290508950,

Klebsiella sp.; gi238792667, Yersinia intermedia; gi238783371, Y.

bercovieri; gi238798881, Y. mollaretii; gi238790215, Y. frederiksenii;

gi238795915, Y. mollaretii; gi238751672, Y. rohdei; gi226328469,

Proteus penneri; gi212712391, Providencia alcalifaciens; gi261347002,

Providencia rustigianii; gi156932370, Cronobacter sakazakii; gi253991289,

Photorhabdus asymbiotica; gi37528038, Photorhabdus luminescens;

gi161504491, Salmonella enterica subsp. arizonae; gi292898109, Erwinia

amylovora ATCC 49946; gi292489675, Erwinia amylovora CFBP1430;

gi260597748, Cronobacter turicensis; gi156934209, Cronobacter sakazakii;

gi206579068, K. pneumoniae; gi262039776, K. pneumoniae subsp.

rhinoscleromatis; gi194434338, Shigella dysenteriae; gi26249236, E. coli

CFT073; gi194426146, E. coli B171; gi307554802, E. coli ABU 83972;

gi227888372, E. coli 83972; gi317491536, Enterobacteriaceae bacterium;

gi149366543, Y. pestis CA88-4125; gi22126561, Y. pestis KIM10;

gi153947257, Y. pseudotuberculosis IP31758; gi270486848, Y. pestis

KIMD27; gi170024810, Y. pseudotuberculosis YPIII; gi51595841, Y.

pseudotuberculosis IP32953; gi108806780, Y. pestis Antiqua; gi153950286,

Y. pseudotuberculosis IP31758; gi300715009, Erwinia billingiae;

gi157370044, Serratia proteamaculans; gi296102178, Enterobacter cloacae;

gi304398550, Pantoea sp.; gi290509839, Klebsiella sp.; gi238894433, K.

pneumoniae; gi288935813, K. variicola; gi317049653, Pantoea sp.).

(TIF)

Figure S5 Representation of TssJ conserved residues.
TssJ is shown in ribbon representation and rainbow coloring from

blue (N-terminus) to red (C-terminus); the sequence is represented

above. Figure made with Pymol [61].

(TIF)

Figure S6 Surface representation of TssJ. (A) TssJ B-

factors. The surface is colored according to B-factors values, from

blue (low B-factors) to red (high-B-factors). (B) TssJ electrostatic

potential. The surface is colored according to the contact

electrostatic potential calculated with Pymol [61]. Positively

charged areas are shown in blue and negatively charged areas

are in red.

(JPG)

Figure S7 Circular dichroism spectra of TssJ and TssM.
(A) CD spectra of TssM-ekto (black line) and TssM-ekto-Nt (blue

line). (B) Comparison of the Wild-type TssJ (TssJ wt; black line)

compared to the loop depleted mutant (TssJ-DL1-2; red line).

(TIF)

Table S1 Biochemical characteristics of the proteins
and domains reported in this work.

(DOC)

Table S2 Biophysical characteristics of the proteins and
domains reported in this work.

(DOC)

Table S3 Data collection (PROXIMA 1 at SOLEIL) and
refinement statistics.

(DOC)

Acknowledgments

We thank L. Journet, E. Gueguen and Y. Brunet for critical reading of the

manuscript and support, the members of the Sturgis, Bouveret and Lloubès

research groups for discussions and Djamila Clessou-Laporte for

encouragements. We gratefully acknowledge the help of Pierre Legrand

at Proxima 1 for help with data collection and the synchrotron Soleil for

beamtime allocation. We are grateful to Yves-Michel Cully for figure

preparation.

Author Contributions

Conceived and designed the experiments: CC EC. Performed the

experiments: CFR ED MSA SB MOL BD CC EC. Analyzed the data:

MOL CC EC. Contributed reagents/materials/analysis tools: CC EC.

Wrote the paper: CC EC.

References

1. Cascales E (2008) The Type VI secretion toolkit. EMBO Rep 9: 735–741.

2. Schwarz S, Hood RD, Mougous JD (2010) What is Type VI secretion doing in

all those bugs? Trends Microbiol 18: 531–537.

3. Bernard CS, Brunet YR, Gueguen E, Cascales E (2010) Nooks and crannies in

Type VI secretion regulation. J Bacteriol 192: 3850–60.

4. Records AR (2011) The Type VI secretion system: A multipurpose delivery

system with a phage like machinery. Mol Plant Microbe Interact 24: 751–7.

5. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, et al. (2006)

Identification of a conserved bacterial protein secretion system in Vibrio

cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A

103: 1528–33.

6. Ma AT, Mekalanos JJ (2010) In vivo actin cross-linking induced by Vibrio

cholerae Type VI secretion system is associated with intestinal inflammation.

Proc Natl Acad Sci U S A 107: 4365–70.

7. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, et al. (2010) Burkholderia

type VI secretion systems have distinct roles in eukaryotic and bacterial cell

interactions. PLoS Pathog 6: e1001068.

8. Russell AB, Hood RD, Bui NK, Leroux M, Vollmer W, et al. (2011) Type VI

secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–7.

9. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, et al. (2006) A virulence

locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science

312: 1526–1530.

10. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI

secretion system translocates a phage tail spike-like protein into target cells where

it cross-links actin. Proc Natl Acad Sci U S A 104: 15508–15513.

11. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, et al. (2009)

Type VI secretion apparatus and phage tail-associated protein complexes

share a common evolutionary origin. Proc Natl Acad Sci U S A 106:

4154–4159.

12. Pukatzki S, McAuley SB, Miyata ST (2009) The Type VI secretion system:

translocation of effectors and effector-domains. Curr Opin Microbiol 12:

11–17.

13. Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR (2009) The phage

lambda major tail protein structure reveals a common evolution for long-tailed

phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A

106: 4160–4165.

14. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV,

et al. (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature

415: 553–557.

15. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide.

Curr Opin Microbiol 11: 3–8.

16. Shalom G, Shaw JG, Thomas MS (2007) In vivo expression technology identifies

a type VI secretion system locus in Burkholderia pseudomallei that is induced

upon invasion of macrophages. Microbiology 153: 2689–99.

TssJ Crystal Structure and Interaction with TssM

PLoS Pathogens | www.plospathogens.org 10 November 2011 | Volume 7 | Issue 11 | e1002386



17. Bonemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A (2009)

Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for
type VI protein secretion. EMBO J 28: 315–325.

18. Kanamaru S (2009) Structural similarity of tailed phages and pathogenic

bacterial secretion systems. Proc Natl Acad Sci U S A 106: 4067–4068.
19. Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio

cholerae type VI secretion effector requires bacterial endocytosis by host cells.
Cell Host Microbe 5: 234–43.

20. Ma LS, Lin JS, Lai EM (2009) An IcmF family protein, ImpLM, is an integral

inner membrane protein interacting with ImpKL, and its walker a motif is
required for type VI secretion system-mediated Hcp secretion in Agrobacterium

tumefaciens. J Bacteriol 191: 4316–4329.
21. Aschtgen MS, Bernard CS, de Bentzmann S, Lloubes R, Cascales E (2008) SciN

is an outer membrane lipoprotein required for type VI secretion in
enteroaggregative Escherichia coli. J Bacteriol 190: 7523–7531.

22. Aschtgen MS, Gavioli M, Dessen A, Lloubes R, Cascales E (2010) The SciZ

protein anchors the enteroaggregative Escherichia coli Type VI secretion system
to the cell wall. Mol Microbiol 75: 886–899.

23. Aschtgen MS, Thomas MS, Cascales E (2010) Anchoring the type VI secretion
system to the peptidoglycan: TssL, TagL, TagP... what else? Virulence 1:

535–540.

24. Zheng J, Leung KY (2007) Dissection of a type VI secretion system in
Edwardsiella tarda. Mol Microbiol 66: 1192–1206.

25. Vincentelli R, Canaan S, Offant J, Cambillau C, Bignon C (2005) Automated
expression and solubility screening of His-tagged proteins in 96-well format.

Anal Biochem 346: 77–84.
26. Sciara G, Blangy S, Siponen M, Mc Grath S, van Sinderen D, et al. (2008) A

topological model of the baseplate of lactococcal phage Tuc2009. J Biol Chem

283: 2716–2723.
27. Sulzenbacher G, Gruez A, Roig-Zamboni V, Spinelli S, Valencia C, et al. (2002)

A medium-throughput crystallization approach. Acta Crystallogr D Biol Crystal-
logr 58: 2109–2115.

28. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from

crystalline state. J Mol Biol 372: 774–797.
29. Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic

Acids Res 38: W545–549.
30. Eneqvist T, Lundberg E, Karlsson A, Huang S, Santos CR, et al. (2004) High

resolution crystal structures of piscine transthyretin reveal different binding
modes for triiodothyronine and thyroxine. J Biol Chem 279: 26411–26416.

31. Zanotti G, Cendron L, Ramazzina I, Folli C, Percudani R, et al. (2006)

Structure of zebra fish HIUase: insights into evolution of an enzyme to a
hormone transporter. J Mol Biol 363: 1–9.

32. Izore T, Perdu C, Job V, Attree I, Faudry E, et al. (2011) Structural
characterization and membrane localization of ExsB from the Type III secretion

system (T3SS) of Pseudomonas aeruginosa. J Mol Biol 413: 236–246.

33. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, et al. (2006) CASTp:
computed atlas of surface topography of proteins with structural and

topographical mapping of functionally annotated residues. Nucleic Acids Res
34: W116–118.

34. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction
server. Nucleic Acids Res 36: W197–201.

35. Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, et al. (2007)

Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol
Microbiol 64: 1466–85.

36. Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, et al. (2011) The
cluster 1 type VI secretion system is a major virulence determinant in

Burkholderia pseudomallei. Infect Immun 79: 1512–25.
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