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Kolja Knauer∗ Torsten Ueckerdt†

October 2, 2015

Abstract

We consider the problem of covering an input graph H with graphs from a fixed covering
class G. The classical covering number of H with respect to G is the minimum number
of graphs from G needed to cover the edges of H without covering non-edges of H . We
introduce a unifying notion of three covering parameters with respect to G, two of which
are novel concepts only considered in special cases before: the local and the folded covering
number. Each parameter measures “how far” H is from G in a different way. Whereas
the folded covering number has been investigated thoroughly for some covering classes, e.g.,
interval graphs and planar graphs, the local covering number has received little attention.

We provide new bounds on each covering number with respect to the following covering
classes: linear forests, star forests, caterpillar forests, and interval graphs. The classical
graph parameters that result this way are interval number, track number, linear arboricity,
star arboricity, and caterpillar arboricity. As input graphs we consider graphs of bounded
degeneracy, bounded degree, bounded tree-width or bounded simple tree-width, as well as
outerplanar, planar bipartite, and planar graphs. For several pairs of an input class and
a covering class we determine exactly the maximum ordinary, local, and folded covering
number of an input graph with respect to that covering class.

1 Introduction

Graph covering is one of the most classical topics in graph theory. In 1891, in one of the first
purely graph-theoretical papers, Petersen [47] showed that any 2r-regular graph can be covered
with r sets of vertex disjoint cycles. A survey on covering problems by Beineke [11] appeared in
1969. Graph covering is a lively field with deep ramifications – over the last decades as well as
today [2,3,25,30,31,45]. This is supported through the course of this paper by many references
to recent works of different authors.

In every graph covering problem one is given an input graph H, a covering class G , and
a notion of how to cover H with one or several graphs from G . One is then interested in G-
coverings of H that are in some sense simple, or well structured; the most prevalent measure of
simplicity being the number of graphs from G needed to cover the edges of H.

The main goal of this paper is to introduce the following three parameters, each of which
represents how well H can be covered with respect to G in a different way:

The global covering number, or simply covering number, is the most classical one. It is
the smallest number of graphs from G needed to cover the edges of H without covering non-
edges of H. All kinds of arboricities, e.g. star [4], caterpillar [24], linear [3], pseudo [48], and
ordinary [46] arboricity of a graph are global covering numbers, where the covering class is
the class of star forests, caterpillar forests, linear forests, pseudoforests, and ordinary forests,
respectively. Other global covering numbers are the planar and outerplanar thickness [11, 45]
and the track number [28] of a graph. Here, the covering classes are planar, outerplanar, and
interval graphs, respectively.
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In the local covering number of H with covering class G one also tries to cover the edges of H
with graphs from G but now minimizes the largest number of graphs in the covering containing
a common vertex of H. We are aware of only two local covering numbers in the literature: The
bipartite degree introduced by Fishburn and Hammer [21] is the local covering number where
the covering class is the class of complete bipartite graphs. It was rediscovered by Dong and
Liu [16] as the local biclique cover number, and recently it has been studied in comparison with
its global variant by Pinto [49]. The local clique cover number is another local covering number,
where the covering class is the class of complete graphs. It was studied by Skums, Suzdal, and
Tyshkevich [55] and by Javadi, Maleki, and Omoomi [37].

Finally, the folded covering number underlies a different, but related, concept of covering.
Here, one looks for a graph in G which has H as homomorphic image and one minimizes the
size of the largest preimage of a vertex of H. Equivalently, one splits every vertex of H into a
independent set such that the size of the largest such independent set is minimized, distributing
the incident edges to the new vertices, such that the result is a graph from G . The folded covering
number has been investigated using interval graphs and planar graphs as covering class. In the
former case the folded covering number is known as the interval number [32], in the latter case
as the splitting-number [36].

While some covering numbers, like arboricities, are of mainly theoretical interest, others,
like thickness, interval number, and track number, have wide applications in VLSI design [1],
network design [50], scheduling and resource allocation [9, 13], and bioinformatics [38, 40]. The
three covering numbers presented here not only unify some notions in the literature, they as well
seem interesting in their own right and may provide new approaches to attack classical open
problems.

star forests caterpillar forests interval graphs

g ℓ = f g ℓ f g ℓ f

outer-
planar

3 [29] 3 3 [42] 3 3 2 [42] 2 2 [52]

planar
bipartite

4 (C18) 3 (C18) 4 [23] 3 3 4 3 3 [52]

planar 5 [5, 29] 4 (C18) 4 [23] 4 4 [52] 4 [24] ? 3 [52]

stw ≤ k k+1 k+1 k+1 k+1
k+1
(T17)

k+1
(T16)

k (T14) k (T15)

tw ≤ k k+1 [15, 17] k+1 k+1 k+1 k+1 k+1 k+1 k+1 (T15)

dgn ≤ k 2 k [6] k+1 (C10) 2 k k+1 k+1 2 k (T12) k+1 k+1

Table 1: Overview of results.

In this paper we moreover present new lower and upper bounds for several covering numbers.
In the new results, the covering classes are: interval graphs, star forests, linear forests, and
caterpillar forests. The input classes are: graphs of bounded degeneracy, bounded tree-width or
bounded simple tree-width, as well as outerplanar, planar bipartite, planar, and regular graphs.
Not all pairs of these input classes with these covering classes are given new bounds. We provide
an overview over some of our new results in Table 1. Each row of the table corresponds to an
input class H , each column to a covering class G . Every cell contains the maximum covering
number among all graphs H ∈ H with respect to the covering class G , where the columns labeled
g, ℓ, f stand for the global, local, and folded covering number, respectively. Grey entries follow
by Proposition 4 from other stronger results in the table. Letters T and C stand for Theorem
and Corollary in the present paper, respectively. Indeed all the entries except the ’?’ in Table 1
are exact, with matching upper and lower bounds. Note that besides results we prove as new
theorems as indicated, many values in the table (written in gray) follow from the point of view
offered by our general approach (Proposition 4).

This paper is structured as follows: In order to give a motivating example before the general

2



definition, we start by discussing in Section 2 the linear arboricity and its local and folded
variants. In Section 3 the three covering numbers are formally introduced and some general
properties are established. In Section 4 we introduce the covering classes star forests, caterpillar
forests, and interval graphs, and in Section 5 we present our results claimed in Table 1. In
Section 6 we briefly discuss the computational complexity of some covering numbers, giving
a polynomial-time algorithm for the local star arboricity. Moreover, we discuss by how much
global, local and folded covering numbers can differ.

For the entire paper we assume all graphs to be simple without loops nor multiple edges.
Notions used but not introduced can be found in any standard graph theory book; such as [57].

2 Global, Local, and Folded Linear Arboricity

We give the general definitions of covers and covering numbers in Section 3 below. In this section
we motivate and illustrate these concepts on the basis of one fixed covering class: the class L

of linear forests, which are the disjoint unions of paths. We want to cover an input graph H
by several linear forests L1, . . . , Lk ∈ L. That is, every edge e ∈ E(H) is contained in at least1

one Li and no non-edge of H is contained in any Li. When H is covered by L1, . . . , Lk we write
H =

⋃
i∈[k] Li.

The linear arboricity of H, denoted by la(H), is the minimum k such that H =
⋃

i∈[k]Li

and Li ∈ L for i ∈ [k]. One easily sees that every graph H of maximum degree ∆(H) has

la(H) ≥
⌈
∆(H)

2

⌉
, and every ∆(H)-regular graph H has la(H) ≥

⌈
∆(H)+1

2

⌉
. In 1980, Akiyama et

al. [3] stated the Linear Arboricity Conjecture (LAC). It says that the linear arboricity of any

simple graph H of maximum degree ∆(H) is either
⌈
∆(H)

2

⌉
or

⌈
∆(H)+1

2

⌉
. LAC was confirmed

for planar graphs by Wu and Wu [59, 60] and asymptotically for general graphs by Alon and
Spencer [7]. The general conjecture remains open. The best-known general upper bound for

la(H) is
⌈
3∆(H)+2

5

⌉
, due to Guldan [27].

We define the local linear arboricity of H, denoted by laℓ(H), as the minimum j such that
H =

⋃
i∈[k]Li for some k and every vertex v in H is contained in at most j different Li.

Again, if H has maximum degree ∆(H), then laℓ(H) ≥
⌈
∆(H)

2

⌉
, and if H is ∆(H)-regular, then

laℓ(H) ≥
⌈
∆(H)+1

2

⌉
. Note that laℓ(H) is at most la(H), and hence the following statement must

necessarily hold for LAC to be true.

Conjecture 1. Local Linear Arboricity Conjecture (LLAC): The local linear arboricity of any

simple graph with H maximum degree ∆(H) is either
⌈
∆(H)

2

⌉
or

⌈
∆(H)+1

2

⌉
.

Observation 2. To prove LAC or LLAC it suffices to consider regular graphs of odd degree:
Regularity is obtained by considering a ∆(H)-regular supergraph of H. If ∆(H) is even, say
∆(H) = 2k, one can find a spanning linear forest Lk+1 in H [27], remove it from the graph, and
extend Lk+1 by a cover L1, . . . , Lk in the remaining graph of maximum degree ∆(H)−1 = 2k−1.

If H is regular with odd degree, then LLAC states that H =
⋃

i∈[k]Li with every vertex
being an endpoint of exactly one path. LAC additionally requires that the paths can be colored

with
⌈
∆(H)

2

⌉
colors such that no two paths that share a vertex receive the same color. We will

see in later sections that sometimes the coloring is the crucial and difficult task.
Next we propose a second way to cover the input graph H with linear forests. A walk in H is

a sequence of consecutively incident edges of H of the form {v1v2, v2v3, . . . , vk−1vk} for v1, . . . vk
being vertices of H. As before, a set W1, . . . ,Wk of walks covers H, denoted by H =

⋃
i∈[k]Wi,

if the edge-set E of H is the union of the edge-sets of the walks. We are now interested in how
often a vertex v in H appears in the walks W1, . . . ,Wk in total. The folded linear arboricity

1Since linear forests are closed under taking subgraphs, we can indeed assume that e ∈ Li for exactly one
i ∈ [k].
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of H, denoted by laf (H), is the minimum j such that H =
⋃

i∈[k]Wi and every vertex v in H
appears at most j times in the walks W1, . . . ,Wk. Again if H has maximum degree ∆(H) then

laf (H) ≥
⌈
∆(H)

2

⌉
, and if H is ∆(H)-regular then laf (H) ≥

⌈
∆(H)+1

2

⌉
. Clearly, laf (H) ≤ laℓ(H).

The next theorem follows directly from a short proof of West [56] of a result previously published
by Griggs and West [26] (where it is stated in terms of the interval number i(H)). It is a
weakening of LLAC above.

Theorem 3. If H has maximum degree ∆(H) then laf (H) ∈ {
⌈
∆(H)

2

⌉
,
⌈
∆(H)+1

2

⌉
}.

Proof. Add a vertex x to H and connect it to every vertex in H of odd degree. Each component
of the resulting graph is Eulerian. Consider any Eulerian tour in H ∪ x (or H) and split it into
shorter walks by removing x from it.

3 Covers and Covering Numbers

In this section we formalize the concepts from Section 2 with respect to general covering and
input classes and obtain some general inequalities. The notation we introduce is convenient for
making our generalized approach as transparent as possible. When treating concrete covering
classes, for which covering numbers already have an established notation in the literature later
on in the paper, we will use the latter in order to make results more accessible to readers already
familiar with the parameters.

A homomorphism from a graph G to a graph H is a map ϕ : V (G) → V (H) such that
vw ∈ E(G) implies ϕ(v)ϕ(w) ∈ E(H). We call a homomorphism edge-surjective if for all
v′w′ ∈ E(H) there exists vw ∈ E(G) such that ϕ(v) = v′ and ϕ(w) = w′. For an input
graph H and a covering class G , we define a G-cover of H as an edge-surjective homomorphism
ϕ : G1 ·∪G2 ·∪ · · · ·∪Gk → H, where Gi ∈ G for i ∈ [k] and ·∪ denotes the vertex disjoint union.
The size of a cover is the number of covering graphs in the disjoint union. A cover ϕ is called
injective if ϕ|Gi

, that is, ϕ restricted to Gi, is injective for every i ∈ [k].

Definition 1. For a covering class G and an input graph H define the (global) covering number
c

G
g (H), the local covering number c

G

ℓ (H), and the folded covering number c
G

f (H) as follows:

c
G
g (H) = min {size of ϕ : ϕ is an injective G-cover of H}

c
G

ℓ (H) = min
{
maxv∈V (H) |ϕ

−1(v)| : ϕ is an injective G-cover of H
}

c
G

f (H) = min
{
maxv∈V (H) |ϕ

−1(v)| : ϕ is a G-cover of H having size 1
}

Let us rephrase c
G
g (H), c

G

ℓ (H), and c
G

f (H). The covering number is the minimum number of
graphs in G needed to cover H exactly, where covering exactly means identifying subgraphs in
H that are covering graphs, such that every edge of H is contained in some covering graph. In
the local covering number the number of covering graphs is not restricted; instead the number
of covering graphs at every vertex should be small. We will see later that these two numbers
can differ significantly. The folded covering number is the minimum k such that every vertex v
of H can be split into at most k vertices, distributing the incident edges at v arbitrarily (even
repeatedly) among them, such that the resulting graph belongs to G . The splitting corresponds
to representing the vertex by the set of its preimages under the edge-surjective homomorphism
ϕ.

One is often interested in the maximum or minimum value of a graph parameter on a class
of input graphs. For i ∈ {g, ℓ, f}, a covering class G , and an input graph class H , we define

c
G
i (H ) = sup

{
c

G
i (H) : H ∈ H

}
. We close this section with a list of inequalities, most of which

are elementary applications of Definition 1 and homomorphisms.

Proposition 4. For covering classes G ,G ′, input classes H ,H ′ and any input graph H we have
the following:
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(i) c
G
g (H) ≥ c

G

ℓ (H), and if G is closed under disjoint union, then c
G

ℓ (H) ≥ c
G

f (H).

(ii) If G is closed under merging non-adjacent vertices within connected components (and af-
terwards deleting multiple edges) and restriction to maximal connected components, then
c

G

ℓ (H) ≤ c
G

f (H).

(iii) If H ⊆ H ′, then c
G
i (H ) ≤ c

G
i (H

′) for i ∈ {g, ℓ, f}.

(iv) If HG and HG ′ denote the set of subgraphs of H that are homomorphic images of graphs

in G and G ′, respectively, then HG ⊆ HG ′ implies c
G
i (H) ≥ c

G ′

i (H) for i ∈ {g, ℓ, f}. This
holds in particular when G ⊆ G ′.

(v) If H̄ denotes the set of all subgraphs of H and we have G∩H̄ ⊆ G ′∩H̄, then c
G
i (H) ≥ c

G ′

i (H)
for i ∈ {g, ℓ}.

Proof. The first inequality in (i) follows from the definition, the second one comes by viewing
an injective cover G1 ·∪G2 ·∪ · · · ·∪Gk as a G-cover of size 1.

To see (ii), let ϕ : G→ H be a G-cover of H of size 1 witnessing c
G

f (H). Now for every v ∈ H

and a component G′ of G merge all ϕ−1(v)∩ V (G′) into one vertex (and delete multiple edges).
Since H has no loops, the merging process creates no loops. Doing this for all components of G
yields a new covering graph G̃ ∈ G with homomorphism ϕ̃ being injective on each component.
Clearly, |ϕ̃−1(v)| ≤ |ϕ−1(v)|.

Claims (iii) and (iv) follow immediately from the definition. To see (v) note that it follows
similarly as (iv), because G ∩ H̄ and G ′ ∩ H̄ are the subgraphs of H that arise as images of
injective covers.

Remark 5. Within the scope of this paper we only consider covering classes that are closed
under disjoint union even without explicitly saying so. For example, when considering stars
or complete graphs as covering graphs, we actually mean star forests and disjoint unions of
complete graphs, respectively. If the covering class G is closed under disjoint union, then the
restriction to covers of size 1 in the definition of c

G

f is unnecessary.
It is still interesting to consider covering classes that are not closed under disjoint union.

Hajós’ Conjecture [43] states that the edges of any n-vertex Eulerian graphH may be partitioned
into ⌊n2 ⌋ cycles. Hajós’ Conjecture being widely open, one may consider coverings with cycles.
When C ′ denotes the class of all simple cycles and H is an n-vertex Eulerian graph, Fan [19]
proved cC ′

g (H) ≤ ⌊n−1
2 ⌋.

Example

In order to illustrate the notions introduced above, consider the covering class C of disjoint
unions of cycles. As input graph H we take the Petersen graph. See Figure 1 where we have
from left to right: A global cover with three unions of cycles, a local cover of size five with at
most three cycles at each vertex, and a folded cover with two preimages per vertex. Note that
the local cover does not yield an optimal global cover.

Proposition 6. For the Petersen graph, we have 3 = cC
g (H) = cC

ℓ (H) > cC
f (H) = 2.

Proof. All witnesses for the upper bounds are shown in Figure 1. Clearly, cC
f (H) ≥ 2 since

otherwise H would have to be a disjoint union of cycles. Now suppose, cC
ℓ (H) = 2. Since H is

cubic, at each vertex there is exactly one edge contained in two cycles of the covering. Thus,
these edges form a perfect matching M of H. Moreover, all cycles involved in the cover are
alternating cycles with respect to M . In particular they are all even and of length 6 or 8 (as
this graph is not Hamiltonian there is no 10-cycle). Since M is covered twice and the remaining
edges of H once, the sum of sizes of cycles in the cover is 20, which can be obtained only as
6 + 6 + 8. In particular, a 6-cycle C must be involved. Now M restricted to H\V (C) is still a
perfect matching, but H\V (C) is a claw.
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Figure 1: Coverings of the Petersen graph by disjoint unions of cycles.

4 Covering Classes

In this section we introduce the covering classes and covering numbers corresponding to the
columns of Table 1. We also include some known results and general observations.

4.1 Forests and Pseudoforests

Nash-Williams [46] showed that the minimum number of forests needed to cover the edges of H

is maxS⊆V (H)

⌈
|E[S]|
|S|−1

⌉
, where E[S] denotes the set of edges in the subgraph induced by S.. This

value, denoted by a(H), is now usually called the arboricity of H, see Beineke [11] for an early
appearance of this name. Clearly, a(H) = c

G
g (H), where G is the class of forests.

A pseudoforest is a graph with at most one cycle per component and the pseudoarboricity
p(H) is the minimum number of pseudoforests needed to cover the edges of H. Thus, p(H) =
c

G
g (H), where G is the class of pseudoforests. Results of Picard and Queyranne [48] and Frank
and Gyárfás [22] yield the following lemma.

Lemma 7 ( [22, 48]). The pseudoarboricity p(H) of a graph H equals the minimum over all

orientations of H of the maximum out-degree of H. Furthermore, p(H) = maxS⊆V (H)

⌈
|E[S]|
|S|

⌉
.

Using a(H) = maxS⊆V (H)

⌈
|E[S]|
|S|−1

⌉
, one immediate consequence of Lemma 7 is p(H) ≤

a(H) ≤ p(H) + 1.

Theorem 8. For every graph, the values of global, local, and folded (pseudo)arboricity coincide.

Proof. Take a folded covering ϕ of H with a (pseudo)forest, such that for every v ∈ H we
have |ϕ−1(v)| ≤ c. Since (pseudo)forests are closed under taking induced subgraphs, this in
particular yields a covering for every induced subgraph H[S] such that every vertex is covered
at most c times. Now, focusing on pseudoforests, we know that the subgraph of the covering

graph induced by ϕ−1(S) has at most c|S| edges, and therefore c|S| ≥ |E[S]|, i.e., c ≥
⌈
|E[S]|
|S|

⌉
.

Now by Lemma 7, we have p(H) = maxS⊆V (H)

⌈
|E[S]|
|S|

⌉
yielding the result for folded coverings.

Now, Proposition 4(i) gives the result for the local covering number.

Along the same lines one obtains c ≥
⌈
|E[S]|+1

|S|

⌉
when c is the number of times a vertex is

covered in a forest-cover of H. It is then easy to compute
⌈
|E[S]|+1

|S|

⌉
=

⌈
|E[S]|
|S|−1

⌉
, since |E[S]| ≤

(|S|
2

)
. The result follows as in the case of pseudoarboricity.

4.2 Star Forests

The star arboricity sa(H) of a graph H, introduced by Akiyama and Kano [4], is the minimum
number of star forests (forests without paths of length 3) into which the edge-set of H can be
partitioned. In particular, if S denotes the class of star forests, then sa(H) = cS

g(H). The star
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arboricity has been a frequent subject of research. It is known that outerplanar and planar
graphs have star arboricity at most 3 and 5, respectively; see Hakimi et al. [29]. That this is
best possible was shown by Algor and Alon [5]. Alon et al. [6] showed that sa(H) ≤ 2a(H) is a
tight upper bound.

Since merging non-adjacent vertices in a star and omitting double edges yields again a star,
local and folded star arboricity coincide, by Proposition 4 (ii). Here, we show that in contrast
to the global star arboricity, the local star arboricity, denoted by saℓ(H), fits nicely into the
inequalities relating arboricity and pseudoarboricity from Section 4.1.

Theorem 9. For any graph H, we have p(H) ≤ a(H) ≤ saℓ(H) ≤ p(H) + 1, where any
inequality can be strict. Moreover, saℓ(H) = p(H) if and only if H has an orientation with
maximum out-degree p(H) in which this outdegree occurs only at vertices of degree p(H).

Proof. Every cover of H with respect to stars can be transformed into an orientation of H by
orienting every edge towards the center of the corresponding star. If every vertex is contained in
at most saℓ(H) stars, then the orientation has maximum out-degree at most saℓ(H). Lemma 7
then gives p(H) ≤ saℓ(H).

In the same way, every orientation can be transferred into a cover with respect to stars by
taking at every vertex the star of its incoming edges. If the orientation has maximum out-degree
p(H), then each vertex is contained in no more than p(H) + 1 stars, i.e., saℓ(H) ≤ p(H) + 1.
Moreover, the maximum out-degree is saℓ(H) if and only if for every vertex v lying in saℓ(H)
stars with centers different from v there is no star with center v. Equivalently, saℓ(H) = p(H)
if and only if the maximum out-degree p(H) is attained only at vertices of degree p(H).

If sal(H) = p(H) + 1, then a(H) ≤ sal(H) follows from a(H) ≤ p(H)− 1. When sal(H) =
p(H), there is an orientation with maximum out-degree p(H) attained only at vertices with
degree p(H). Removing these vertices, we obtain a graphH ′ with p(H ′) ≤ p(H)−1, in particular
a(H ′) ≤ p(H). We reinsert the vertices of degree p(H) putting each incident edge into a
different one of the p(H) forests that partition H ′. We obtain a cover of H with p(H) forests,
so a(H) ≤ p(H) = saℓ(H).

Finally, we show that each inequality can be strict: First k = p(H) < a(H) holds for every
2k-regular graph H, due to the number of edges of the covering graphs. Second, we claim that
k = p(H) = saℓ(H) holds for the complete bipartite graph Kk,n with n large enough. Indeed,

p(Kk,n) = maxS⊆V (Kk,n)

⌈
|E[S]|
|S|

⌉
=

⌈
kn
k+n

⌉
= k, and taking all maximal stars with centers in the

smaller class of the bipartition yields saℓ(Kk,n) ≤ k.
It remains to present a graphH with k = a(H) < saℓ(H). We take H to be the k-dimensional

grid of size m. That is, V (H) = [m]k, and there is an edge joining vertices v and w if and only
if they differ in exactly one coordinate and differ there by 1. It is straightforward to compute
that H has (m − 1)mk−1k edges. Observing that H itself is a densest induced subgraph, the
formulas for arboricity and pseudoarboricity give a(H) = p(H) = k for large enough m. Also,
a(H) = saℓ(H) implies p(H) = saℓ(H). Hence, as proved above, H has an orientation with
maximum out-degree k, which furthermore is only attained at vertices of degree k. However,
H has only 2k vertices of degree k. If all other vertices have outdegree at most k − 1, then H
has at most 2kk + (mk − 2k)(k − 1) edges. Choosing m > 2k + k yields a contradiction to the
number of edges of H calculated above.

We will derive from Theorem 9 tight upper bounds for the local star arboricity in Section 5,
as well as a polynomial-time algorithm to compute the local star arboricity in Section 6.

4.3 Other Covering Classes

4.3.1 Caterpillar Forests

A graph parameter related to the star arboricity is the caterpillar arboricity ca(H) of H. A
caterpillar is a tree in which all non-leaf vertices form a path, called the spine. The caterpillar
arboricity is the minimum number of caterpillar forests into which the edge-set of H can be
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partitioned. It has mainly been considered for outerplanar graphs (Kostochka and West [42]),
and for planar graphs (Gonçalves and Ochem [23,24]).

4.3.2 Interval Graphs

The class I of interval graphs has already been considered in many ways and remains present
in today’s literature. Interval graphs have been generalized to intersection graphs of systems
of intervals by several groups of people: Gyárfás and West [28] proposed the I-covering and
introduced the corresponding global covering number called the track number, denoted by t(H),
i.e., t(H) = cIg (H). It has been shown that outerplanar and planar graphs have track number
at most 2 [42] and 4 [24], respectively. Already in 1979, Harary and Trotter [32] introduced the
folded I-covering number, called the interval number, denoted by i(H), i.e., i(H) = cIf (H). It
is known that trees have interval number at most 2 [32]. Also, outerplanar and planar graphs
have interval number at most 2 and 3, respectively, see Scheinermann and West [52]. All these
bounds are tight.

The local track number tℓ(H) := cIℓ (H) is a natural variation of i(H) and t(H), which to our
knowledge has not been considered so far.

5 Results

In this section we present all the new results displayed in Table 1. We proceed input class by
input class.

5.1 Bounded Degeneracy

The degeneracy dgn(H) of a graphH is the minimum of the maximum out-degree over all acyclic
orientations of H. It is a classical measure for the sparsity of H. By Lemma 7 and the definition
we have p(H) ≤ a(H) ≤ dgn(H). Thus, the next corollary follows directly from Theorem 9.

Corollary 10. For every H we have saℓ(H) ≤ dgn(H) + 1.

Let I be the class of interval graphs and Ca be the class of caterpillar forests, i.e., the class of
bipartite interval graphs. Since homomorphisms the image of a homomorphism has chromatic
number at least as large as its preimage, the chromatic number of an interval graph G that has
a bipartite homomorphic image is at most two. Thus, G is a caterpillar forest. Therefore, when
G is bipartite, the set of all homomorphic images of caterpillar forests in G coincides with the
set of all homomorphic images of interval graphs in G. Thus, by Proposition 4 (iv) we have
cIi (H) = cCa

i (H) for i ∈ {g, ℓ, f} for every bipartite graph H. In particular, if H is bipartite
then t(H) = ca(H) and i(H) = caf (H). In the remainder of this section we present graphs
with high (folded) caterpillar arboricity. Since all these graphs are bipartite, we obtain lower
bounds on the track number and interval number of those graphs. Indeed in all constructions
we define a supergraph H of the complete bipartite graph Km,n. The track number and interval

number of Km,n have already been determined: t(Km,n) = ca(Km,n) =
⌈

mn
m+n−1

⌉
[28] and

i(Km,n) = caf (Km,n) =
⌈
mn+1
m+n

⌉
[32].

In order to formulate the following lemma, we need to introduce one more notion. For a cover
ϕ of H by G1 ·∪ . . . ·∪Gk with Gi ∈ G and a subgraph H ′ of H, we define the restriction of ϕ to H ′

as a cover ψ of H ′ by G′
1 ·∪ . . . ·∪G

′
k, where G

′
i comes from Gi by deleting {e ∈ E(Gi) : ϕ(e) /∈ H

′}
and then by removing isolated vertices. The resulting mapping ψ is the restriction of ϕ to
G′

1 ·∪ . . . ·∪G
′
k. If G is closed under taking subgraphs, then ψ is also a G-cover. Note that while

restriction of a function normally means its specification on a subset of the domain, here we are
restricting the image, which turn induces a restriction of the domain.

To increase readability we refer to the classes of size m and n in the bipartition of Km,n by
A and B, respectively.
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Lemma 11. Let H be a graph with an induced Km,n and ϕ be a Ca-cover of H with s =
max{|ϕ−1(a)| : a ∈ A}. If ψ is the restriction of ϕ to the subgraph H ′ of H after removing all
edges in Km,n, then there are at least n− 2sm vertices b ∈ B such that |ψ−1(b)| ≤ |ϕ−1(b)| −m.

Proof. Every a ∈ A is the image of at most s vertices among C1 ·∪ . . . ·∪Ck. Denote by s′ the
number of vertices in ϕ−1(a) that are incident to two spine-edges and by s′′ the number of
vertices in ϕ−1(a) that are leaves. Clearly, s′+s′′ ≤ s. Moreover, at most 2s′+s′′ edges incident
to a are covered by spine-edges or edges whose degree 1 vertex is mapped to a. Therefore, at
least n − 2s edges at a have to be covered under ϕ by a non-spine edge with a vertex b being
the image of a leaf. Thus, for at least n − 2sm vertices b ∈ B this is the case with respect to
every a ∈ A.

Now if e = ab is covered by some edge in Ci with b being a leaf, then in the restriction of ϕ
to H \ e the number of preimages of b is one less than in ϕ. This concludes the proof.

Theorem 12. For k ≥ 1 there is a bipartite graph H such that

2dgn(H) ≤ 2k ≤ ca(H) = t(H).

Proof. To construct H, begin with a copy of Kk,n having |A| = k and |B| = n with n >

(k − 1)
(
2k−1
k−1

)
+ 2k(2k − 1). For each k-subset S of B, add (k − 1)2 + 1 new vertices BS with

neighborhood S. The resulting graph H is bipartite with every vertex in A and BS for any S
having degree k, so dgn(H) = k.

Now consider an injective Ca-cover ϕ of H and its restriction ψ to the subgraph of H after
removing all edges in Kk,n. Assume for the sake of contradiction that the size s of ϕ is at most
2k−1, i.e., max{|ϕ−1(v)| : v ∈ V (H)} = s ≤ 2k−1. Then by Lemma 11, there is a setW ⊂ B of
at least n−2(2k−1)k > (k−1)

(2k−1
k−1

)
vertices such that |ψ−1(b)| ≤ |ϕ−1(b)|−k ≤ s−k ≤ k−1

for every b ∈ W . In other words, every b ∈ W has a preimage under ψ in at most k − 1 of the
2k − 1 caterpillar forests. Since |W | > (k − 1)

(2k−1
k−1

)
, there is a k-set S in W whose preimages

are contained in at most k − 1 caterpillar forests.
This implies that ψ restricted to H[S ∪BS ] is an injective Ca-cover of Kk,(k−1)2+1 of size at

most k − 1, which is impossible since ca(Kk,(k−1)2+1) =
⌈
k(k−1)2+k
k+(k−1)2

⌉
= k, due to [10].

5.2 Bounded (Simple) Tree-width

A k-tree is a graph that can be constructed starting with a (k + 1)-clique and in every step
attaching a new vertex to a k-clique of the already constructed graph. We use the term stacking
for this kind of attaching. The tree-width tw(H) of a graph H is the minimum k such that H is
a partial k-tree, i.e., H is a subgraph of some k-tree [51].

We consider a variation of tree-width, called simple tree-width. A simple k-tree is a k-tree
with the extra requirement that there is a construction sequence in which no two vertices are
stacked onto the same k-clique. Now, the simple tree-width stw(H) of H is the minimum k such
that H is a partial simple k-tree, i.e., H is a subgraph of some simple k-tree.

For a graph H with stw(H) = k or tw(H) = k we fix any (simple) k-tree that is a supergraph
of H and denote it by H̃. Clearly, H inherits a construction sequence from H̃, where some edges
are omitted.

Lemma 13. We have tw(H) ≤ stw(H) ≤ tw(H) + 1 for every graph H.

Proof. The first inequality is clear. For the second inequality we show that every k-tree H is a
subgraph of a simple (k+1)-tree H. Whenever in the construction sequence of H several vertices
{v1, . . . , vn} are stacked onto the same k-clique C we consider C ∪ {v1} as a (k + 1)-clique in
the construction sequence for H. Stacking vi onto C now can be interpreted as stacking vi
onto C ∪ {vi−1} and omitting the edge vi−1vi. In this way we can avoid multiple stackings onto
k-cliques by considering (k + 1)-cliques.
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Simple tree-width endows the notion of tree-width with a more topological flavor. For a
graph H we have the following: stw(H) ≤ 1 if and only if H is a linear forest, stw(H) ≤ 2 if
and only if H is outerplanar, stw(H) ≤ 3 if and only if H is planar and tw(H) ≤ 3 [18].

Simple tree-width also has connections to discrete geometry. In [12] a stacked polytope was
defined to be a polytope that admits a triangulation whose dual graph is a tree. From that paper
one easily deduces that a full-dimensional polytope P ⊂ R

d is stacked if and only if stw(GP ) ≤ d.
Here GP denotes the 1-skeleton of P . See [33,34,41] for more on simple tree-width.

We consider both graphs with bounded tree-width and graphs with bounded simple tree-
width as input classes, since (A) most of the results for outerplanar graphs are implied by the
corresponding result for stw(H) ≤ 2, (B) lower bound results for stw(H) ≤ 3 carry over to planar
graphs, (C) the extremal results for these two input classes differ when the covering class is that
of interval graphs, and (D) when the maximum covering numbers are the same for both classes,
the lower bounds are slightly stronger when witnessed by graphs of low simple tree-width.

Theorem 14. We have tℓ(H) ≤ stw(H) for every graph H.

Proof. If stw(H) = 1, then H is a linear forest and hence an interval graph. If stw(H) = 2, then
H is outerplanar, and it even has track number at most 2 as shown in [42].

So let stw(H) = s ≥ 3. We build an injective cover ϕ : I1 ·∪ · · · ·∪Ik → H with |ϕ−1(v)| ≤ s for
every v ∈ V (H) and Ii ∈ I for i ∈ [k]. We use as I1, . . . , Ik only certain interval graphs, which
we call slugs: A slug is like a caterpillar with a fixed spine, except that the graph Ivi induced by
the leaves at every spine vertex v ∈ Ii is a linear forest. (In a caterpillar Ivi is an independent
set for every spine vertex v.) The end vertices of the spine are called spine-ends and vertices
of degree at most 1 in Ivi are called leaf-ends. See the left of Figure 2 for an example of a slug
Ii with the spine drawn thick, spine-ends in white, and leaf-ends in gray. Note that slugs are
indeed interval graphs.

v

Iv
i

e(C)

e(C)

e(C) x1

e(C) x1

→

→

Figure 2: A slug and its extension.

We define the cover ϕ along a construction sequence of H that is inherited from a simple
s-tree H̃ ⊇ H. At every step let H ′ be the subgraph of H that is already constructed and hence
already covered by ϕ, and let H̃ ′ be the corresponding subgraph of H̃. We call an s-clique C of
H̃ ′ stackable if no vertex has been stacked to C so far. We maintain the following invariants on
ϕ, which allow us to stack a new vertex onto every stackable C.

Invariant. At all times the following is satisfied for the current graph H ′.

1) For every vertex v in H ′ there is a unique slug I(v) with I(v) 6= I(w) for v 6= w, and a
spine vertex s(v) of I(v) in ϕ−1(v).

2) For every stackable s-clique C there is a vertex w1 ∈ C, a slug I(C), and a spine-end or
leaf-end e(C) of I(C) with ϕ(e(C)) = w1, such that:

2a) If e(C) is a spine-end, then I(C) 6= I(v) for all v ∈ V (H ′).

2b) If e(C) is a leaf-end, then I(C) = I(w2) for some vertex w2 ∈ C \ {w1}, and the
vertices e(C) and s(w2) are adjacent in I(C).

2c) Every leaf-end or spine-end v is e(C) for at most two cliques C with equality only if
v has degree 0 or 1 in the slug.
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It is not difficult to satisfy the above invariants for an initial s-clique of H̃. Indeed, this
clique can be build up in a very similar way to the stacking procedure that we describe now:
In the construction sequence of H we are about to stack a vertex w onto a stackable clique
C of the current graph H ′. Let C = {w1, . . . , ws}. Without loss of generality we assume
that ϕ(e(C)) = w1 and that if e(C) is a leaf-end, then I(C) = I(w2). We never change the
preimages of vertices in H under ϕ. In particular, all vertices we add to the existing or new
slugs are mapped by ϕ onto the new vertex w. We will denote these new vertices by x1, . . . , xs
to emphasize that no more than s such vertices are introduced. Note that for every i ∈ [s], the
clique Ci in H̃ defined by Ci = (C \{wi})∪{w} is stackable in H ′∪{w}, and that all remaining
stackable cliques in H ′ ∪ {w} are already stackable cliques in H ′.

For i ∈ {3, . . . , s} we do the following. If wwi ∈ E(H), then we introduce a new leaf xi to
I(wi) at s(wi), and if wwi /∈ E(H) we introduce a new slug consisting only of xi. Either way, we
set e(Ci−1) = xi. Additionally we set e(C1) = xs. Note that 2b) is satisfied since wi, w ∈ Ci−1

and ws, w ∈ C1.
It remains to cover possible edges joining w to {w1, w2}, to find a spine-end or leaf-end e(Cs)

for Cs, and to find a slug I(w) for the new vertex w. In doing so we may still introduce two new
vertices x1 and x2 to our slugs. We distinguish two cases, which are illustrated on the right in
Figure 2.

Case 1: If e(C) is a spine-end of I(C), then we first proceed with w2 similarly as with wi for
i ≥ 3 above. That is, we introduce a new leaf x2 at s(w2) if ww2 ∈ E(H) and a new slug
consisting only of x2 if ww2 /∈ E(H), and we set e(Cs) = x2.

Case 1.1: If ww1 ∈ E(H), then we introduce a new spine vertex x1 to I(C) adjacent
to e(C). This covers the edge ww1, since we assumed that ϕ(e(C)) = w1. We set
I(w) = I(C), which satisfies condition 1) of the invariant since 2a) implies I(C) 6=
I(v) for every vertex v in H ′.

Case 1.2: If ww1 /∈ E(H), then we introduce a new slug I consisting only of x1 and set
I(w) = I.

Case 2: If e(C) is a leaf-end of I(C), then by assumption we have I(C) = I(w2).

Case 2.1: If ww2 ∈ E(H), then we introduce a new leaf x2 to I(C) adjacent to s(w2) and
a new slug I consisting just of a new vertex x1. If additionally ww1 ∈ E(H), then we
also introduce an edge joining x2 and e(C) in I(C). Again, since ϕ(e(C)) = w1 and
ϕ(x2) = w, this covers the edge ww1. Either way, we set e(Cs) = x2 and I(w) = I.

Case 2.2: If ww2 /∈ E(H), then we introduce a new slug I consisting only of a new vertex
x2 and set I(w) = I. When ww1 ∈ E(H) we add a new leaf x1 to s(w1) in I(w1),
and when ww1 /∈ E(H), then we introduce a new slug consisting only of x1. Either
way we set e(Cs) = x1.

It is straightforward to check that we obtain a I-cover of H ′ ∪ {w} and that the invariants
above are satisfied. Note that since H̃ is a simple s-tree, the clique C is no longer stackable and
hence condition 2) of the invariant need not be satisfied in H ′ ∪ {w}. Finally, every stackable
clique in H ′ different from C was not affected by the above procedure, which completes the
proof.

We can prove three lower bounds for covering numbers.

Theorem 15. For k ≥ 1, there is a bipartite graph H such that

stw(H) ≤ tw(H) + 1 ≤ k + 1 ≤ caf (H) = i(H).
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Proof. Construct H from Kk,n with n = 2k2 + 1 by adding a pendant vertex at each vertex
of the larger partite set B. It is easy to see that tw(H) ≤ k, and then Lemma 13 yields
stw(H) ≤ tw(H) + 1.

Consider any Ca-cover ϕ of H with s = max{|ϕ−1(v)| : v ∈ V (H)} and its restriction ψ
to the subgraph H ′ of H obtained by removing all edges of Kk,n. By Lemma 11 there are at
least n − 2sk = 2k(k − s) + 1 vertices b ∈ B such that |ψ−1(b)| ≤ |ϕ−1(b)| − k. Any such b is
incident to an edge in H \ Kk,n, which should be covered by ψ. Thus, |ψ−1(b)| ≥ 1. Hence,
s ≥ |ϕ−1(b)| ≥ k + 1, so caf (H) ≥ k + 1.

Theorem 16. For k ≥ 3, there is a bipartite graph H such that

stw(H) + 1 ≤ k + 1 ≤ ca(H) = t(H).

Proof. The construction of the graph H starts with H0
∼= Kk−1,m1

, where |B| = m1 = 2(2k2 −
2k + 1). Let B = {u1, ..., um1/2} ∪ {v1, ..., vm1/2}. For i ∈ [m1/2], add a copy Ii of K2,5k−5 with

partite sets {ui, vi} and {bi,j1 , ..., b
i,j
k−1 : j ∈ [5]}, calling the smaller set Ai and the larger set Bi.

Next, let m2 = (k− 2)+1. For (i, j) ∈ [m1/2]× [5], add a set Bi,j of m2 new vertices and a copy

Ji,j of Kk−1,m2
with partite sets bi,j1 , ..., b

i,j
k−1 and Bi,j. Note that the smaller part Ai,j in Ji,j is

contained in Bi. See Figure 3 for an illustration.

H : I1

Im1−2

2

Im1

2

Ii =

k − 1

k − 1 k − 1k − 1

m1

5(k − 1)

ui

vi

Ji1 Ji4 Ji5

Figure 3: The graph H and its induced subgraph Ii and Jj .

Assume for the sake of contradiction that ϕ is an injective Ca-cover of H of size at most k.
Consider the restriction ψ of ϕ to the subgraph H ′ = H \E(H0) of H. By Lemma 11 there are
at least m1 − 2k(k − 1) = 2k2 − 2k + 2 > m1

2 vertices in b ∈ B with |ψ−1(b)| ≤ 1. In particular
there is some i′ ∈ [m1

2 ] such that |ψ−1(u′i)|, |ψ
−1(v′i)| ≤ 1. That is, in the covering u′i and v

′
i each

appear in only one caterpillar forest, which we call Cu′
i
containing ui and Cv′

i
containing v′i. Now

consider the restriction φ of ψ to the subgraph H ′′ = H ′ \ E(Ii′) of H ′. Again by Lemma 11
there are at least 5(k − 1)− 4 vertices b ∈ Bi′ with |φ−1(b)| ≤ k− 2. In particular there is some
j′ ∈ [5] such that |φ−1(b)| ≤ k − 2 for all b ∈ Ai′j′ .

In other words, φ restricted to H[Ai′j′ ∪Bi′j′ ] is an injective Ca-cover of Kk−1,(k−2)2+1 of size

at most k − 2, which is impossible, since ca(Kk−1,(k−2)2+1) =
⌈
(k−1)(k−2)2+k−1

k−1+(k−2)2

⌉
= k − 1, due

to [10].
It remains to show that stw(H) ≤ k. In order to describe the construction sequence for a

simple k-tree containing H, we introduce some further vertex labels. Let A0 = {a1, . . . , ak−1}
be the smaller partite set of H0, recall that Bi = Ai1 ∪ . . . ∪Ai5 where Aij = {bij1 , . . . , b

ij
k−1} for
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all i ∈ [m1

2 ], j ∈ [5], and let Bij = {cij1 , . . . , c
ij
m2

} for i ∈ [m1

2 ], j ∈ [5]. We construct a simple
k-tree starting with a (k + 1)-clique on A ∪ {u1, v1} via the following stackings:

A Stack ui onto A ∪ {vi−1} and vi onto A ∪ {ui} ∀i ∈ {2, . . . , m1

2 }

B Stack bi1ℓ onto {a1, . . . , ak−ℓ−1, ui, vi, b
i1
1 , . . . , b

i1
ℓ−1} ∀i ∈ [m1

2 ], ℓ ∈ [k − 1]

C Stack bijℓ onto {ui, vi, b
i(j−1)
1 , . . . , b

i(j−1)
k−ℓ−1, b

ij
1 , . . . , b

ij
ℓ−1}

∀i ∈ [m1

2 ], ℓ ∈ [k − 1], j ≥ 2

D Stack cij1 onto Aij ∪ {ui} and cijℓ onto Aij ∪ {cijℓ−1} ∀i ∈ [m1

2 ], j ∈ [5], ℓ ≥ 2

One can check that after step A. the entire graph H0 is contained in the so-far constructed k-
tree. Step B. deals with the complete bipartite graphs induced on {ui, vi} ∪Ai1 for all i ∈ [m1

2 ],
step C. adds the remaining complete bipartite graphs induced on {ui, vi} ∪ Aij for j ≥ 2, such
that afterwards all Ii are contained. In step D. all edges and vertices necessary for the Jij are
created. Since no k-clique appears twice we conclude that stw(H) ≤ k.

Theorem 17. For k ≥ 2, there is a graph H such that

stw(H) + 1 ≤ k + 1 ≤ caf (H).

Proof. Fix k ≥ 2. We construct H starting with a star with k− 1 leaves ℓ1, . . . , ℓk−1 and center
c1. In the simple partial k-tree containing H this star is a k-clique. For n = 16k2 − 16k + 4
and 2 ≤ i ≤ n stack a new vertex ci to ℓ1, . . . , ℓk−1, ci−1. Now stack vertices s2, . . . , sn to
ℓ1, . . . , ℓk−2, ci−1, ci. Finally introduce a pendant vertex ai as a neighbor of si, for each i. In the
simple partial k-tree containing H, the vertex ai is stacked to the k-clique on ℓ1, . . . , ℓk−2, ci−1, si.
By construction stw(H) ≤ k. See Figure 4 for an illustration.

ℓ1 ℓ2 ℓk−2 ℓk−1

c1 c2
cn−1

cn

s2 sn

a2 anH
′

Figure 4: The graph H and its subgraph H ′.

Assume for the sake of contradiction that caf (H) ≤ k. That is, there is a Ca-cover ϕ of
H with |ϕ−1(v)| ≤ k for all v ∈ V (H). We consider three edge-disjoint complete bipartite
subgraphs H1,H2,H3 of H with partite sets Ai and Bi for Hi defined as follows:

• A1 = ℓ1, . . . , ℓk−1 and B1 = {c2i : 1 ≤ i ≤ n/2}

• A2 = ℓ1, . . . , ℓk−1 and B2 = {c2i−1 : 1 ≤ i ≤ n/2}

• A3 = ℓ1, . . . , ℓk−2 and B3 = {si : 2 ≤ i ≤ n}
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Note that Hi and Hj are edge-disjoint for i 6= j. Denote by ψ the restriction of ϕ to
H \ (E(H1) ∪ E(H2) ∪ E(H3)). We apply Lemma 11 three times, once for each Hi, but the
bounds for restrictions of ϕ to H \E(Hi) clearly also apply to ψ. Thus, we obtain sets Wi ⊂ Bi

(for each i ∈ {1, 2, 3}). For i ∈ {1, 2} we get |Wi| ≥ n/2−2k(k−1) and ψ−1(b) ≤ k− (k−1) = 1
for b ∈ Wi. Furthermore we have |W3| ≥ n − 1 − 2k(k − 2) and ψ−1(b) ≤ k − (k − 2) = 2
for b ∈ W3. From the choice of n it follows that there exist ci, ci+1, ci+2, ci+3 ∈ W1 ∪W2 with
consecutive indices such that si+1, si+2, si+3 ∈ W3. Together with the leaves ai+1, ai+2, ai+3

these vertices induce a 10-vertex graph H ′ highlighted in Figure 4. It is not difficult to check
that there is no Ca-cover ψ of H ′ with |ψ−1(ci+j)| ≤ 1 for j ∈ {0, 1, 2, 3} and |ψ−1(si+j)| ≤ 2 for
j ∈ {1, 2, 3} — a contradiction.

5.3 Planar and Outerplanar Graphs

Determining maximum covering numbers of (bipartite) planar graphs and outerplanar graphs
enjoys a certain popularity, as demonstrated by the variety of citations in Table 1. We add three
easy new results to the list.

Corollary 18. The star arboricity of bipartite planar graphs is at most 4. The local star ar-
boricity of planar graphs and bipartite planar graphs is at most 4 and at most 3, respectively.

Proof. As mentioned in Section 4.2, the arboricity a(H) of every graph H can be expressed as

maxS⊆V (H)

⌈
|E[S]|
|S|−1

⌉
[46]. By Euler’s Formula every planar graph has at most 3V (H) − 6 edges

and every bipartite planar graph has at most 2V (H) − 4 edges and clearly both classes are
closed under taking subgraphs. Together it follows that every planar graph has arboricity at
most 3 and every planar bipartite graph has arboricity at most 2. With this, the statement
about global star arboricity follows since we have sa(H) ≤ 2a(H) by [6]. The statements about
local arboricity follow since we have saℓ(H) ≤ a(H) + 1 by Theorem 9.

The only question mark in Table 1 concerns the local track number of planar graphs. Schein-
erman and West [52] show that the interval number of planar graphs is at most 3, but this is
verified with a cover that is not injective. On the other hand, there are bipartite planar graphs
with track number 4 [24]. However by Corollary 18 and Theorem 14 every bipartite planar graph
and every planar graph of tree-width at most 3 has local track number at most 3. We believe
that there are planar graphs with local track number 4, but the following remains open:

Question 19. What is the maximum local track number of a planar graphs?

6 Separability and Complexity

This section is devoted to different types of questions. First, we investigate how much global,
local, and folded covering numbers can differ with respect to the same covering and input class.
Second, we look at the complexity of computing these parameters.

In Table 1 we provide several pairs of an input class H and a covering class G for which the
global covering number and the local covering number differ, i.e., c

G
g (H ) > c

G

ℓ (H ). Indeed this
difference can be arbitrarily large.

Theorem 20. For the covering class Q of collections of cliques and the input class H of line
graphs, we have cQ

g (H ) = ∞ and cQ
ℓ (H ) ≤ 2.

Proof. By a result of Whitney [58] a graph H is a line graph if and only if cQ
ℓ (H) ≤ 2.

To prove cQ
g (H ) = ∞, we claim that cQ

g (L(Kn)) ∈ Ω(log n), i.e., the covering number of
the line graph of the complete graph on n vertices is unbounded as n goes to infinity. Assume
that L(Kn) is covered by k collections of cliques C1, . . . , Ck. Every clique in L(Kn) corresponds
to either a triangle or a star in Kn. Now, every Ci in L(Kn) corresponds to a vertex disjoint
collection of triangles and stars in Kn. Together these collections cover the edges of Kn. We
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will restrict the covering of L(Kn) to a covering of L(Km) with collections of cliques all of whose
cliques correspond to stars in Km. In the first step delete at most 1

3n vertices of Kn such that in
the restricted cover of the smaller line graph no clique in C1 corresponds to a triangle. Repeating
this for every Ci, we end up with a clique cover of L(Km) with m ≥ (23)

kn that corresponds
to a cover of Km with star forests. Since by [4] the star arboricity of Km is

⌈
m
2

⌉
+ 1, we get

k ≥ m+2
2 > (23)

k−1n, and thus k ∈ Ω(log n).

Remark 21. Milans, Stolee, and West [44] proved a similar result with interval graphs as cover-
ing class, i.e., they showed that the growth rate of t(L(Kn)) is between Ω(log log n/ log log log n)
and O(log log n), while i(H) ≤ 2 for every line graph H.

A case of particular interest to us is the input class of claw-free graphs – a class containing
line graphs. It has been shown that this class has unbounded local clique covering number [37].
We conjecture the following stronger statement:

Conjecture 22. The class of claw-free graphs has unbounded interval number.

What can be said about local and folded covering number? Table 1 suggests that the
separation of the local and the folded covering number is more difficult. Indeed we have c

G

ℓ (H ) =

c
G

f (H ) for every G and H in Table 1, except for the local track number of planar graphs, (c.f.

Question 19). However, proving upper bounds for c
G

ℓ (H ) can be significantly more elaborate

than for c
G

f (H ), even if we suspect that both values are equal; see for example Conjecture 1 and
Theorem 3.

Observing that there is no injective cover of a path by cycles of length at least 3 and that
every path is the homomorphic image of a cycle one gets:

Observation 23. For the covering class C of collections of cycles of length at least 3 and the
input class H of paths, we have cC

ℓ (H ) = ∞ and cC
f (H ) ≤ 2.

Observation 23 may be considered pathological. However, the local and folded covering
number may differ also when c

G

ℓ (H) < ∞. We gave one example for this when considering
coverings of the Petersen graph with disjoint unions of cycles, see Proposition 6. Here is an-

other example: It is known that i(Km,n) =
⌈
mn+1
m+n

⌉
[32] and t(Km,n) =

⌈
mn

m+n−1

⌉
[28]. The

lower bound on t(Km,n) presented in [14] indeed gives tℓ(Km,n) ≥
⌈

mn
m+n−1

⌉
and hence we have

tℓ(Km,n) > i(Km,n) for appropriate numbers m and n, such as n = m2 − 2m+ 2. With Propo-
sition 4 this translates into caℓ(Km,n) > caf (Km,n). Apart from these examples, we have no
general answer to the following question.

Question 24. By how much can folded and local covering number differ?

Another interesting aspect of covering numbers concerns the computational complexity of
determining them. Very informally, one might suspect that the computation of c

G

f (H) is easier

than of c
G

ℓ (H), which in turn is easier than computing c
G
g (H). For example, if M is the class

of all matchings, then cM
g (H) = χ′(H), the edge-chromatic number of H. Hence deciding

cM
g (H) ≤ 3 is NP-complete even for 3-regular graphs [35]. On the other hand cM

ℓ (H) equals the
maximum degree of H and can therefore be determined very efficiently. As a second example,
more elaborate, consider the star arboricity sa(H) and the caterpillar arboricity ca(H). Deciding
sa(H) ≤ k [24,29] and deciding ca(H) ≤ k [24,53] are NP-complete for k = 2, 3. The complexity
for k ≥ 4 is unknown in both cases. To the best of our knowledge, the complexity of determining
the local and folded caterpillar arboricity of a graph is also open. On the other hand, from
Theorem 9 we can derive the following.

Theorem 25. The local star arboricity can be computed in polynomial-time.
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Proof. In [22] a flow algorithm is used that given a graph H and α : V (H) → N decides if an
orientation D of H exists such that the out-degree of v in D is at most α(v) for all v ∈ V (H).
Moreover, if such a D exists the algorithm finds one minimizing the maximum out-degree. Now
by Lemma 7, we may use this algorithm to find p(H) in polynomial-time. Now let α(v) = p(H)
whenever v has degree p(H) and α(v) = p(H)−1 otherwise. We use the algorithm of [22] to check
if an orientation D of H satisfying the out-degree constraints given by α exists. By Theorem 9
we have saℓ(H) = p(H) if and only if there exists such an orientation and saℓ(H) = p(H) + 1
otherwise.

Finally, consider interval graphs as the covering class. Shmoys and West [54] and Jiang [39]
showed that deciding i(H) ≤ k and deciding t(H) ≤ k are NP-complete for every k ≥ 2,
respectively. We claim that the reduction of Jiang also holds for the local track number.

Question 26. Are there a covering and an input class for which the computation of the folded
or local covering number is NP-complete while the global covering number can be computed in
polynomial-time?

7 Concluding remarks

We have presented new ways to cover a graph and given many example covering classes. Also,
we highlighted some conjectures and questions on the way, such as the question whether the
maximum track number of planar graphs is 3 or 4 (Question 19).

One conjecture important to us is LLAC (Conjecture 1), which is a weakening of the linear
arboricity conjecture (LAC). Besides LLAC, there are several more weakenings of LAC that are
still open. For example it is open, whether the caterpillar arboricity of graph H of maximum

degree ∆(H) is always at most
⌈
∆(H)+1

2

⌉
. Yet a weaker, but still open, question asks whether

the track number of H is always at most
⌈
∆(H)+1

2

⌉
. As a positive result, by Theorem 9 one

obtains that for a regular graph H of even degree the local star-arboricity is
⌈
∆(H)+1

2

⌉
, which

in particular settles the question for local caterpillar arboricity and local track number for such
input graphs. On the other hand, Theorem 9 also tells us that in a regular graph H of odd

degree the local star arboricity is larger than
⌈
∆(H)+1

2

⌉
. To the best of our knowledge, it is open

whether the local caterpillar arboricity or local track number of such a graph H is always at

most
⌈
∆(H)+1

2

⌉
.

Apart from the problems already mentioned throughout the paper, it is interesting to consider
the local and folded variants for more graph covering problems from the literature. For example
the covering number with respect to planar and outerplanar graphs is known as the thickness and
outerthickness [11], respectively, and the folded covering number with respect to planar graphs
is called the splitting number [36]. The local covering number in these cases seems unexplored.
Further interesting covering classes include linear forests of bounded length [8], forests of stars
and triangles [20], and chordal graphs.

A concept dual to covering is packing. For an input graph H and a class G of packing graphs,
we define a G-packing of H to be an edge-injective homomorphism ϕ to H from the disjoint
union G1 ·∪G2 ·∪ · · · ·∪Gk with Gi ∈ G for i ∈ [k]. The size of a packing is the number of packing
graphs in the disjoint union. A packing ϕ is injective if ϕ|Gi

, that is, ϕ restricted to Gi, is
injective for every i ∈ [k].

Definition 2. For a packing class G and an input graph H = (V,E) define the (global) packing
number p

G
g (H), the local packing number p

G

ℓ (H), and the folded packing number p
G

f (H) as follows:

p
G
g (H) = max {size of ϕ : ϕ is an injective G-packing of H}

p
G

ℓ (H) = max
{
minv∈V |ϕ−1(v)| : ϕ is an injective G-packing of H

}
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p
G

f (H) = max
{
minv∈V |ϕ−1(v)| : ϕ is a G-packing of H having size 1

}

Let us rephrase p
G
g (H), p

G

ℓ (H), and p
G

f (H): The packing number is the maximum number
of packing graphs that can be packed into the input graph, where packing means identifying
edge-disjoint subgraphs in H that lie in G . The local packing number does not measure the
number of packing graphs in a packing; instead the minimum number of graphs packed at any
one vertex is maximized. The folded packing number is the maximum k such that every vertex v
of H can be split into k vertices, distributing the incident edges at v arbitrarily (not repeatedly)
among them, such that the resulting graph is in G . Two classical packing problems are given
by G being the class of non-planar graphs or non-outerplanar graphs. In this case the global
packing numbers are called coarseness and outercoarseness [11], respectively.
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