ECM - École Centrale de Marseille : UMR7279 (Pôle de l'étoile - Technopole de Château-Gombert - 38 rue Frédéric Joliot-Curie - 13013 Marseille - France)
Abstract : We prove that any triangulation of a surface different from the sphere and the projective plane admits an orientation without sinks such that every vertex has outdegree divisible by three. This confirms a conjecture of Barát and Thomassen and is a step towards a generalization of Schnyder woods to higher genus surfaces.