. Proof, First notice that since G does not contain infinite isometric rays and all cells of G are Cartesian products of cycles and edges, all cells of G are finite. Since Z ? (G) is an intersection of convex subgraphs, Z ? (G) is convex. Since every cell X of G is a Cartesian product of edges and even cycles, any proper halfspace of X is maximal by inclusion, hence F (X) = ?

Z. Therefore, Since H is convex, H is hypercellular Since there are no infinite isometric rays, Z(H) = H if and only if for every edge ab of H the halfspaces W (a, b) and W (b, a) are maximal, which is equivalent to the condition that for every edge ab the carrier N (E ab ) is the whole graph H. Let X be the intersection of all maximal cells of H; consequently, X is a cell of H. As in the proof of Theorem 2, if there exist two disjoint maximal cells of H, then for every edge f on a shortest path between them, the carrier N (E f ) is not the whole graph H. Hence the maximal cells of H pairwise intersect. Since they are finite and gated, by the Helly property for gated sets, X is nonempty. If X = H, by Claim 10, there exists an edge of H whose carrier does not include all maximal cells, a contradiction, Hence H = X, i.e., H is a finite cell. Consequently, Z ? (G) is a finite cell of G. We continue with the proof of assertion (i) of Theorem F

. Proof, Every automorphism ? of G maps maximal halfspaces to maximal halfspaces By Lemma 21, Z ? (G) is a finite cell

M. Albenque and K. Knauer, Convexity in partial cubes: The hull number, Discrete Mathematics, vol.339, issue.2, pp.866-876, 2016.
DOI : 10.1016/j.disc.2015.10.032

URL : https://hal.archives-ouvertes.fr/hal-01185337

H. Bandelt, Characterizing median graphs, manuscript, 1982.

H. Bandelt, Retracts of hypercubes, Journal of Graph Theory, vol.5, issue.4, pp.501-510, 1984.
DOI : 10.1002/jgt.3190080407

H. Bandelt, Graphs with intrinsic s3 convexities, Journal of Graph Theory, vol.48, issue.2, pp.215-338, 1989.
DOI : 10.1002/jgt.3190130208

H. Bandelt and V. Chepoi, Cellular Bipartite Graphs, European Journal of Combinatorics, vol.17, issue.2-3, pp.121-134, 1996.
DOI : 10.1006/eujc.1996.0011

URL : http://doi.org/10.1006/eujc.1996.0011

H. Bandelt and V. Chepoi, The algebra of metric betweenness I: Subdirect representation and retraction, European Journal of Combinatorics, vol.28, issue.6, pp.1640-1661, 2007.
DOI : 10.1016/j.ejc.2006.07.003

H. Bandelt and V. Chepoi, Metric graph theory and geometry: a survey, Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemp. Math, pp.453-502, 2008.
DOI : 10.1090/conm/453/08795

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.2429

H. Bandelt, V. Chepoi, A. Dress, and J. Koolen, Combinatorics of lopsided sets, European Journal of Combinatorics, vol.27, issue.5, pp.669-689, 2006.
DOI : 10.1016/j.ejc.2005.03.001

H. Bandelt, V. Chepoi, and K. Knauer, COMs: complexes of oriented matroids
URL : https://hal.archives-ouvertes.fr/hal-01457780

H. Bandelt and J. Hedlíková, Median algebras, Discrete Mathematics, vol.45, issue.1, pp.1-30, 1983.
DOI : 10.1016/0012-365X(83)90173-5

URL : http://doi.org/10.1016/0012-365x(83)90173-5

H. Bandelt and M. Van, Superextensions and the depth of median graphs, Journal of Combinatorial Theory, Series A, vol.57, issue.2, pp.187-202, 1991.
DOI : 10.1016/0097-3165(91)90044-H

A. Berman and A. Kotzig, Cross-cloning and antipodal graphs, Discrete Mathematics, vol.69, issue.2, pp.107-114, 1988.
DOI : 10.1016/0012-365X(88)90010-6

URL : http://doi.org/10.1016/0012-365x(88)90010-6

B. Bre?-sar, J. Chalopin, V. Chepoi, T. Gologranc, and D. Osajda, Bucolic complexes, Advances in Mathematics, vol.243, pp.127-167, 2013.
DOI : 10.1016/j.aim.2013.04.009

A. Björner, P. H. Edelman, and G. M. Ziegler, Hyperplane arrangements with a lattice of regions, Discrete & Computational Geometry, vol.7, issue.3, pp.263-288, 1990.
DOI : 10.1007/BF02187790

M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, 1999.
DOI : 10.1007/978-3-662-12494-9

J. Chalopin, V. Chepoi, H. Hirai, and D. Osajda, Weakly modular graphs and nonpositive curvature, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01199930

J. Chalopin, V. Chepoi, H. Hirai, and D. Osajda, Helly graphs and Helly groups (in preparation)

V. Chepoi, d-Convex sets in graphs, Dissertation, 1986.

V. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernetics, vol.33, issue.No. 3, pp.6-10, 1988.
DOI : 10.1007/BF01069520

V. Chepoi, Classifying graphs by metric triangles, Metody Diskretnogo Analiza, pp.75-93, 1989.

V. Chepoi, Separation of two convex sets in convexity structures, Journal of Geometry, vol.210, issue.6, pp.30-51, 1994.
DOI : 10.1007/BF01222661

V. Chepoi, Graphs of Some CAT(0) Complexes, Advances in Applied Mathematics, vol.24, issue.2, pp.125-179, 2000.
DOI : 10.1006/aama.1999.0677

M. Deza and M. Laurent, Distance?preserving subgraphs of hypercubes, J. Combin. Th. Ser. B, pp.14-263, 1973.

J. Doignon, J. R. Reay, and G. Sierksma, A Tverberg-type generalization of the Helly number of a convexity space, Journal of Geometry, vol.41, issue.1, pp.117-125, 1981.
DOI : 10.1007/BF01917580

A. W. Dress and R. Scharlau, Gated sets in metric spaces, Aequationes Mathematicae, vol.32, issue.108, pp.112-120, 1987.
DOI : 10.1007/BF01840131

M. Gromov, Hyperbolic Groups, Essays in Group theory, pp.75-263, 1987.
DOI : 10.1007/978-1-4613-9586-7_3

W. Imrich and S. Klav?ar, Product Graphs: Structure and Recognition, 2000.

W. Imrich and S. Klav?ar, Two-ended regular median graphs, Discrete Mathematics, vol.311, issue.15, pp.1418-1422, 2011.
DOI : 10.1016/j.disc.2010.05.002

URL : http://doi.org/10.1016/j.disc.2010.05.002

J. R. Isbell, Median algebra, Transactions of the American Mathematical Society, vol.260, issue.2, pp.319-362, 1980.
DOI : 10.1090/S0002-9947-1980-0574784-8

F. Haglund and F. Paulin, Simplicité de groupes d'automorphismes d'espacesàespaces`espacesà courbure négative, The Epstein birthday schrift, Geom. Topol. Monogr, vol.1, pp.181-248, 1998.

K. Handa, Topes of oriented matroids and related structures, Publications of the Research Institute for Mathematical Sciences, vol.29, issue.2, pp.235-266, 1993.
DOI : 10.2977/prims/1195167272

S. Klav?ar and S. V. Shpectorov, Convex excess in partial cubes, Journal of Graph Theory, vol.43, issue.4, pp.356-369, 2012.
DOI : 10.1002/jgt.20589

J. Lawrence, Lopsided sets and orthant-intersection by convex sets, Pacific Journal of Mathematics, vol.104, issue.1, pp.155-173, 1983.
DOI : 10.2140/pjm.1983.104.155

N. Polat, Netlike partial cubes I. General properties, Discrete Mathematics, vol.307, issue.22, pp.2704-2722, 2007.
DOI : 10.1016/j.disc.2007.01.018

N. Polat, Netlike partial cubes II. Retracts and netlike subgraphs, Discrete Mathematics, vol.309, issue.8, pp.1986-1998, 2009.
DOI : 10.1016/j.disc.2008.04.008

N. Polat, Netlike partial cubes III. The median cycle property, Discrete Mathematics, vol.309, issue.8, pp.2119-2133, 2009.
DOI : 10.1016/j.disc.2008.04.033

N. Polat, Netlike partial cubes, IV: Fixed finite subgraph theorems, European Journal of Combinatorics, vol.30, issue.5, pp.1194-1204, 2009.
DOI : 10.1016/j.ejc.2008.09.012

URL : http://doi.org/10.1016/j.ejc.2008.09.012

C. Tardif, On compact median graphs, Journal of Graph Theory, vol.23, issue.4, pp.325-336, 1996.
DOI : 10.1002/(SICI)1097-0118(199612)23:4<325::AID-JGT1>3.0.CO;2-T

M. Van, Matching binary convexities, Topology Appl, pp.207-235, 1983.

M. Van, Theory of Convex Structures, 1993.