Authigenic 10Be/9Be ratios and 10Be-fluxes (230Thxs-normalized) in central Baffin Bay sediments during the last glacial cycle: Paleoenvironmental implications

Quentin Simon, Nicolas Thouveny, Didier Bourlès, Laurence Nuttin, Claude Hillaire-Marcel

To cite this version:

Quentin Simon, Nicolas Thouveny, Didier Bourlès, Laurence Nuttin, Claude Hillaire-Marcel. Authigenic 10Be/9Be ratios and 10Be-fluxes (230Thxs-normalized) in central Baffin Bay sediments during the last glacial cycle: Paleoenvironmental implications. Quaternary Science Reviews, Elsevier, 2016, 10.1016/j.quascirev.2016.03.027 0277-3791. hal-01456980

HAL Id: hal-01456980
https://hal.archives-ouvertes.fr/hal-01456980
Submitted on 6 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Authigenic 10Be/9Be ratios and 10Be-fluxes (230Th$_{xs}$-normalized) in central Baffin Bay sediments during the last glacial cycle: paleoenvironmental implications

Quentin Simon, 1,*, Nicolas Thouveny 1, Didier L. Bourlès 1, Laurence Nuttin 2, Claude Hillaire-Marcel 2, Guillaume St-Onge 2,3

1 Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545 Aix en Provence, France
2 GEOTOP Research Center, H3C3P8 Montréal, Canada
3 Institut des sciences de la mer de Rimouski (ISMER), Canada Research Chair in Marine Geology, Université du Québec à Rimouski

*simon@cerege.fr

Abstract

Authigenic 10Be/9Be ratios and 10Be-fluxes reconstructed using the 230Th$_{xs}$ normalization, proxies of the cosmogenic radionuclide 10Be production rate in the atmosphere, have been measured in a sedimentary core from Baffin Bay (North Atlantic) in order to reconstruct the geomagnetic dipole moment variations during the last ca. 136 ka BP, and for comparison with the relative paleointensity (RPI) record derived from paleomagnetic measurements. Our study revealed that the exchangeable (authigenic) 10Be measured includes a strong climatic component related to the glacial dynamics that characterized the circum Baffin Bay during the last glacial period. Despite normalization applied on the authigenic 10Be concentrations using both the scavenged 9Be and 230Th$_{xs}$ approaches, a strong climatic signal still prevails. Both normalization methods yield equivalent results that are both strongly correlated with sedimentological parameters (grain-size and mineralogy). The lower 10Be/9Be ratio values are associated with coarse-grained carbonate-rich layers while the higher 10Be/9Be ratio values are found with fine-grained felspar-rich sediments. This variability is due to both i) sediment composition control over beryllium-scavenging rates, ii) the glacial history that contributed to modify the 10Be concentration in the oceanic realm and notably boundary scavenging conditions. No pristine geomagnetic field intensity can thus be derived from 10Be measurements in such a high-variability glacio-marine environment. These results also
indicate that the straightforward interpretation of 10Be-concentration variations as a proxy of the Interglacial/Glacial (or major interstadials) cycles in Arctic and sub-Arctic regions must be considered with caution and rather propose to relate 10Be variations to higher-frequency paleoclimatic changes and glacial dynamics.

1. Introduction

The cosmogenic nuclide Beryllium-10 (10Be) is produced in the stratosphere (~65%) and the troposphere (~35%) by spallation reactions when highly energetic galactic cosmic rays interact with nitrogen and oxygen atoms (Lal and Peters, 1967; Dunai and Lifton, 2014). Its production rate is linked to the Sun and Earth magnetic fields variabilities by a non-linear inverse relationship (Elsasser et al., 1956; Lal, 1988; Beer et al., 1990; Masarik and Beer, 2009; Kovaltsov and Usoskin, 2010). After its production in the atmosphere, 10Be is quickly scavenged onto aerosol particles themselves precipitated (or thrown) within ca. 1-3 years into ocean/continent reservoirs by wet or dry deposition processes (Raisbeck et al., 1981; Beer et al., 1990; Baroni et al., 2011). Previous studies have shown that while solar activity inflects the production rate on shorter timescales- 10Be flux measured along ice and marine sediment sequences reflect long term signatures of the geomagnetic dipole moment (Raisbeck et al., 1981, 1985; Yiou et al., 1985; Wagner et al., 2000; Frank et al. 1997; Carcaillet et al., 2003, 2004, Muscheler et al. 2004, 2005). The exchangeable-10Be concentrations (i.e., fraction adsorbed onto settling particles) measured in the sediments, henceforth referred to the authigenic 10Be, are not only reflecting the atmospheric production at the time of their deposition but also depend on the scavenging rates from the overlying water column, to advected 10Be fraction due to oceanic mixing and/or to inherited 10Be fraction scavenged during the terrestrial/glacial/meltwater cycling of the carrier particles. Therefore, normalization of the authigenic 10Be concentration is a first step in order to remove these environmental biases and compare 10Be records with geomagnetic variability.
Two methods of normalization have been used in literature: (1) normalization of the authigenic 10Be cosmogenic nuclide by the authigenic stable 9Be isotope supplied by terrigenous material entering the ocean (i.e., originating from the dissolution of detrital, aeolian, riverine and glacier inputs). This method relies on the similar behavior of both isotopes once homogenized in seawater (Bourlès et al., 1989; Brown et al., 1992). The authigenic 10Be/9Be ratio method reliably corrects for ocean/continent secondary contributions and provides robust results clearly demonstrating an inverse relationship with the geomagnetic field (Henken-Mellies et al., 1990; Robinson et al., 1995; Carcaillet et al., 2003, 2004a, 2004b; Thouveny et al., 2008; Ménabréaz et al., 2011, 2012, 2014; Valet et al., 2014). The second normalization process (2) uses the 230Th-excess method proposed by Bacon (1984) to calculate vertical fluxes of any sedimentary component deposited during the Late Quaternary (see François et al., 2004 for a review) and has been used successfully to calculate 10Be-fluxes in numerous studies (e.g., Franck et al., 1997, 2000; Christl et al., 2007, 2010). All these studies notably demonstrate that during periods characterized by low dipole strength (i.e., corresponding to episodes of collapsed field during reversals or excursions), the atmospheric 10Be production rates were significantly larger than during periods with high dipole strength. Accordingly, the reconstruction of atmospheric 10Be production rate signals from marine sedimentary sequences constitutes a complementary approach, independent from paleomagnetism, to decipher past geomagnetic dipole moment variations. Furthermore, the comparison between the 10Be signals from mid-to-low-latitude sites (Ménabréaz et al., 2012, 2014) as well as with recent simulations using general circulation models (GCMs; Heikkilä et al., 2009, 2013) demonstrate a rapid zonal atmospheric mixing of 10Be before its deposition in geological archives.

In the Arctic Ocean where most dating methods encounter serious limitations, the radioactive decay rates of the 10Be measured in marine sediments have been used to establish a Neogene
chronostratigraphic framework (assuming a near constant supply of ^{10}Be in first approximation) of the ACEX long sedimentary sequence (Frank et al., 2008). Besides, variations in ^{10}Be concentrations in Arctic and sub-Arctic sediments have also been used in order to constrain the stratigraphy of Late Quaternary sedimentary records assuming that variations of ^{10}Be concentrations roughly represent Glacial/Interglacial cycles or major Interstadial periods (Spielhagen et al., 1997, 2004; Sellén et al., 2009; Alexanderson et al., 2014). In this mechanism, the low ^{10}Be concentrations corresponding to glacial periods are caused by a combination of: (1) low inputs of ^{10}Be due to increased sea ice cover and, (2) ^{10}Be dilution related to higher accumulation rates of ice rafted debris (IRD); and vice versa for interglacial (major interstadial) periods.

In this study, we present new authigenic $^{10}\text{Be}/^{9}\text{Be}$ ratios and $^{230}\text{Th}_{\text{xs}}$-normalized ^{10}Be-fluxes from a high-latitude marine record (HU2008-029-016PC) from central Baffin Bay and spanning the last 136 ka. This paper includes a revision of the initial chronostratigraphy of the core (Simon et al., 2012) in order to improve the robustness of the chronology for the bottom-half of the core. A primary aim of the study was to examine if ^{10}Be originating from continental inputs or advected through oceanic circulation and glacial processes could be removed from the total authigenic ^{10}Be concentrations by means of normalization procedures before any geomagnetic interpretations. We compare the two existing normalization methods ($i.e.$, authigenic ^{9}Be and $^{230}\text{Th}_{\text{xs}}$) using a U and Th-series isotope record from the same core (Nuttin and Hillaire-Marcel, 2015) and discuss ^{10}Be-systematics vs. sedimentological parameters, geomagnetic dipole moment variations, ^{10}Be-fluxes from models and marine/ice records, and, finally, we discuss its paleoenvironmental implications.

2. Environmental setting

Baffin Bay is a subpolar oceanic basin (1300 km long and 450 km wide, $\sim 690000 \text{ km}^2$) located in the northwest North Atlantic (Figure 1). The bay is one of the main export routes of
freshwater from Greenland, the canadian Arctic and the Arctic Ocean into the North Atlantic Ocean. Its morphology consists of an elongated abyssal plain (2000–2500 m) surrounded by the continental shelves of Greenland and Baffin Island. During the glacial periods, the northeastern Laurentide Ice Sheet (LIS), the Innuitian Ice Sheet (IIS) and the Greenland Ice Sheet (GIS) formed a nearly continuous and highly dynamic ice belt surrounding Baffin Bay (Figure 1). On the Greenland side, the GIS extended westward over the inner shelf, and as far as the shelf edge off Disko Bugt and the Uummannaq Trough during the Last Glacial Maximum (LGM) (Ó Cofaigh et al., 2012, 2013; Funder et al., 2011). The LIS extended through Baffin Island, probably as far as its fjord mouths and inlets, and possibly over part of the Baffin Island shelf during glacial maxima (Margold et al., 2015). In the northern end of the bay, ice streams in the Smith Sound and Lancaster sounds were particularly large and active (England et al., 2006; Klassen and Fisher, 1988; Li et al., 2011) and probably developed into an ice shelf towards the bay (Alley et al., 2010; Marcott et al., 2011). Numerous studies have demonstrated strong relationships between glacial dynamic, oceanic circulation and sedimentary processes in the bay (Aksu, 1985, 1987; de Vernal et al., 1987; Andrews et al., 1998, 2014; Jennings et al., 2014; Simon et al., 2014; Nuttin and Hillaire-Marcel, 2015). Sedimentation occurs through two main processes: (1) glacial plumes from lateral sources with large volumes of fine-grained feldspar-rich sediments, which were transported to the area by sediment-laden supraglacial and subglacial meltwater or nepheloid layers and (2) Trans-Baffin icebergs drifting from the northern end of the bay with large volumes of coarse-grained carbonated sediments, leading to the deposition of so-called Baffin Bay Detrital Carbonate layers (BBDC; Simon et al., 2014).
3. Material and methods

3.1. Core description

Core HU2008-029-016PC (70°46.14 N/-64°65.77 W; PC16 hereinafter) was raised from a 2063 m water depth, on the abyssal plain from central Baffin Bay. The 741-cm long core was retrieved using a piston corer during the 2008-029 CCGS Hudson cruise (Campbell and de Vernal, 2009). The sediment sequence is mainly composed of a succession of homogeneous dark gray to olive-gray silty clayey units and of very poorly sorted grayish-brown gravelly and sandy carbonate-rich layers (dolomite rich, Figure 2). These two lithofacies reflect the origin, transport and mode of deposition of the lithogenic sediments related to the ice sheet dynamics evoked above. Moreover, the top of the core down to 20 cm is characterized by brown to dark brown silty muds while the interval between 120 and 215 cm is constituted by brownish-black to olive-black clayey muds. These two distinct lithofacies represent sediments deposited respectively during the Holocene and during marine isotope stage (MIS) 2 (see Simon et al., 2012, 2014, in prep. and Simon, 2013 for additional information).

3.2. Paleomagnetic results and chronology

The relative paleointensity (RPI) record previously established by a detailed paleomagnetic analysis (Simon et al., 2012) reinforced and completed preliminary paleomagnetic results obtained on a shorter core from the same site (Thouveny 1988). The RPI proxy (Figure 2) is based on the normalization of the Natural Remanent Magnetization (NRM) with the Anhysteretic Remanent Magnetization (ARM) over the 25-35 mT AF demagnetization interval (NRM$_{25-35mT}$/ARM$_{25-35mT}$). With the exception of few problematic layers, the ARM normalizer activates the same magnetic assemblages than the NRM, and the RPI proxy presents no correlation with lithological proxies. Moreover, the derived RPI record was favorably correlated with RPI reference curves and stacks in order to establish the initial chronology of the core (Simon et al., 2012). These reference records included mainly the
North Atlantic relative paleointensity stack NAPIS-75 (Laj et al., 2000) and the Labrador Sea core MD95-2024 (Stoner et al., 2000). Two large inclination variations coeval with paleointensity lows allowing the recognition of two major geomagnetic excursions, i.e., the Laschamp and Norwegian-Greenland-Sea excursions, and three-radiocarbon ages further supported the age model (see Simon et al., 2012 for details). This initial chronology is considered robust for the MIS 2-3-4 periods with a high correlation between PC16 and the NAPIS-75 stack (r=0.82 between 22-75 ka, Figure 2) and remains unchanged in this study. For the lower part of the core, large chronological uncertainties (correlation coefficients with reference records <0.51) required revision in order to improve its resolution and to compare 10Be production rate variations with references. Therefore, the chronology of core PC16 was updated by tuning the PC16 RPI curve with the ODP 1063 RPI record (Channel et al., 2012) using 13 tie points (r=0.70 between 75-136 ka, Figure 2). The age model for ODP Site 1063 was constructed by tandem correlation of oxygen isotope and RPI data to calibrated reference templates using the Match protocol (Lisiecki and Lisiecki, 2002), improving its reliability. The revised age model offers a significantly improved statistical robustness and places the PC16 core bottom (741 cm) in the MIS 6 interval representing a 20 ka age shift from the Simon et al. (2012) age model. Using this refined age model, the average sedimentation rate for the sedimentary sequence is 5.4 cm/ka and presents large variability mainly related to glacial/deglacial history. The mean sedimentation rates during the Holocene (0-10.6 ka), Deglacial-peak (10.7-12 ka) and last Glacial (12.1-136.7 ka) periods are 1.9 cm/ka, 25.8 cm/ka and 5.5 cm/ka, respectively (Figure 8).

3.3. Sample preparation

Based on the paleomagnetic record and on U and Th-series isotope records, 76 subsamples of ~1 g (dry sediment) were collected along core PC16 and processed for the Be isotope analysis at the CEREGE National Cosmogenic Nuclides Laboratory (France) according to the
chemical procedure set-up by Bourlès et al. (1989) and summarized in Carcaillet et al. (2003, 2004a, 2004b) and Ménabréaz et al. (2011, 2012, 2014). The method is detailed here since the separation procedure has been modified prior to the AMS measurements. ^{10}Be and its stable isotope ^{9}Be were co-extracted from the authigenic phase of the sediments using 20 ml.g$^{-1}$ sediment of 0.04 M hydroxylamine (NH$_2$OH-HCl) in a 25% acetic acid leaching solution at 95 ± 5°C for 7 hrs. A 2 ml aliquot of the resulting leaching solution was sampled for the measurement of the natural ^{9}Be concentration. The remaining solution was spiked with 300 μl of a 9.8039.10$^{-4}$ g.g$^{-1}$ ^{9}Be-carrier before the chemical extraction in order to accurately determine ^{10}Be sample concentrations from the measured $^{10}\text{Be}/^{9}\text{Be}$ ratios. The Be-purification was realized by chromatography in two stages. Before each separation stages, the samples were evaporated and then dissolved in ultra-pure HCl. Be oxy-hydroxides were precipitated at pH 8.5 from the solution by adding NH$_3$. The precipitate was separated by centrifugation, dissolved in ultra-pure HCl and then loaded onto an exchange column. The iron (Fe) and manganese (Mn) were separated using a Dowex® 1x8 (100–200 mesh) anion-exchange resin. The resin was first rinsed with 20 ml MilliQ water and conditioned with 20 ml 10.2 M HCl. The sample was then loaded onto the column and the Be fraction was collected immediately using 20 ml 10.2 M HCl for elution. The next purification step was carried out on a Dowex® 50x8 (100–200 mesh) cation-exchange resin in order to separate the Bore (B) and Aluminum (Al). The resin was rinsed with 30 ml MilliQ water and then conditioned with 30 ml 1 M HCl. After sample loading onto the column, the B and Be were eluted successively within the first 40 ml and next 120 ml of 1 M HCl eluent while the Al remained trapped within the column. After the two separation stages, Be oxy-hydroxides were precipitated at pH 8.5 from the final solution by adding NH$_3$. The precipitate was separated by centrifugation, rinsed by re-suspension using pH 8.5 buffered MilliQ water and centrifuged again. The purified Be oxy-hydroxides were solubilized in HNO$_3$ and the resulting solution was transferred into a quartz
crucible where it was gently evaporated to dryness at 200°C. Finally, the Be oxy-hydroxides
deposit was oxidized and converted to BeO by heating at 800°C for 1 hr. The BeO was then
mixed with Nb powder and pressed into a cleaned Ti cathode-holder in order to condition the
samples for AMS measurements. In addition to sample processing, several routine blanks and
2 replicates were measured in order to assess both cleanliness and reproducibility during the
chemical extraction.

3.4. Measurements

The natural authigenic 9Be concentrations were measured using a graphite-furnace Atomic
Absorption Spectrophotometer (AAS) with a double beam correction (Thermo Scientific ICE
3400®). The standard-addition method and the addition of a constant volume of MgNO₃
solution (matrix modifier) were used to eliminate the matrix effects during the absorption and
to allow measurements near the detection limit. 9Be sample concentrations (Table 1) were
determined from repeated absorbance measurements (4 times) performed on each of the four
100 μl aliquots of the sample solution, three of them being spiked with increasing amount of a
Sharlau 9Be-carrier diluted to a known concentration (0.27 - 0.34 $\times 10^{-8}$ g·g$^{-1}$) using HNO₃
0.2%. The standard deviation of repeated absorbance measurements for each sample must be
less than 3% to be accepted. After correcting for sample dilution, the authigenic 9Be sample
concentrations along core PC16 vary around $1.99 \pm 0.83 \times 10^{-7}$ g·g$^{-1}$. The associated
uncertainties (2σ) varying from 0.4 to 3.2% (average value: 1.5%) are based on the
reproducibility of measurements and the least-square fitting between measured absorbance at
each stages of the standard-addition method ($r^2 > 0.9995$).

The natural authigenic 10Be concentration measurements were performed at the French AMS
national facility ASTER (CEREGE). 10Be sample concentrations are calculated from the
measured spiked 10Be/9Be ratios normalized to the NIST 4325 Standard Reference Material
(2.79±0.03 x 10^{-11}; Nishiizumi et al., 2007), and are decay-corrected using the \(^{10}\text{Be}\) half-life (T\(_{1/2}\)) of 1.387 ± 0.012 Ma (Chmeleff et al., 2010; Korschinek et al., 2010):

\[
\text{Authigenic} \left[\frac{^{10}\text{Be}}{^{9}\text{Be}} \right]_{\text{decay-corrected}} = \left(\frac{^{10}\text{Be}}{^{9}\text{Be}} \right)_M \times \left(\frac{^{9}\text{Be}}{^{9}\text{Be}} \right)_{\text{spike}} \times \text{m}_{\text{spike}} \times \frac{N_A}{M^{9}\text{Be}} \times e^{\left(\frac{\ln(2)}{T_{1/2}} \right) t} \]

(1)

where: \((^{10}\text{Be}/^{9}\text{Be})_M\) is the measured Be ratio; \text{m}_{\text{spike}} and \([^{9}\text{Be}]_{\text{spike}}\) are respectively the mass and the concentration of the added spike; \(N_A\) is the Avogadro constant (6.02214.10\(^{23}\) mol\(^{-1}\)); \(M^{9}\text{Be}\) is the beryllium Molar Mass (9.0121822 g.mol\(^{-1}\)) and \(t\) is the time. The \(^9\text{Be}\) concentrations measured at the AAS are transformed in atoms as follow:

\[
\text{Authigenic} \left[{^{9}\text{Be}} \right]_{\text{AAS}} = \left[{^{9}\text{Be}} \right]_{\text{AAS}} \times \text{m}_{\text{sample}} \times \frac{N_A}{M^{9}\text{Be}}
\]

(2)

where: \([^{9}\text{Be}]_{\text{AAS}}\) is the concentration of natural authigenic \(^9\text{Be}\) measured at the AAS and \(\text{m}_{\text{sample}} = \text{m}_{\text{sample}} \times \left(\frac{\text{m}_{\text{leached}} - \text{m}_{\text{aliquot}}}{\text{m}_{\text{leached}}} \right)\) is the weight of sediment remaining after aliquot sampling.

The uncertainties (2\(\sigma\)) in the measured \(^{10}\text{Be}/^{9}\text{Be}\) ratios and in the calculated \(^{10}\text{Be}\) concentrations result from statistical and instrumental error propagation (Arnold et al., 2010) and vary from 1.3 to 3.7% (average value: 2.2%).

The authigenic natural \(^{10}\text{Be}/^{9}\text{Be}\) ratios are derived using equations (1) and (2):

\[
\text{Authigenic} \left(\frac{^{10}\text{Be}}{^{9}\text{Be}} \right) = \frac{\left[^{10}\text{Be}\right]_{\text{decay-corrected}}}{\left[^{9}\text{Be}\right]_{\text{AAS}}} \]

(3)

The measured and calculated ratios and their uncertainties are presented in Table 1. The uncertainties (2\(\sigma\)) of the calculated authigenic \(^{10}\text{Be}/^{9}\text{Be}\) ratios are derived from the propagation of both uncertainties and vary between 2.9 and 9% (average value: 5.5%).

Chemistry blank ratios range from 5.3 \times 10^{-15} to 1.5 \times 10^{-14}, which is at least 3 orders of magnitude lower than the sample \(^{10}\text{Be}/^{9}\text{Be}\) ratios.
3.5. Measurements of $^{230}\text{Th}_{xs}$ in Baffin Bay sediments

In this study, we benefit from recent U and Th-series isotope results from PC16 in order to calculate ^{10}Be-fluxes ($^{230}\text{Th}_{xs}$-normalized). The measurements and calculation used for determining $^{230}\text{Th}_{xs}$ are detailed in Nuttin and Hillaire-Marcel (2015). The estimated initial $^{230}\text{Th}_{xs}$ activities, recalculated in respect to the revised chronology, are extremely variable ranging from 0.118 ± 0.081 to 5.293 ± 0.212 dpm.g$^{-1}$ (1.145 dpm.g$^{-1}$ on average with a standard deviation of 0.977). Except for few samples, large surplus of $^{230}\text{Th}_{xs}$ above the production from dissolved-U decay in the overlying water column points toward a sediment-focusing environment related to ice margin dynamics during the last glacial period. The preserved, decay-corrected, $^{230}\text{Th}_{xs}$-normalized ^{10}Be deposition rates (referred to ^{10}Be-fluxes hereinafter) are calculated as follow:

$$\text{Flux}[^{10}\text{Be}] = \frac{[^{10}\text{Be}]_{\text{decay,corrected}}}{A^{\text{Th}_{230}}_{0} \cdot Z} \times \beta_{230}$$ \hspace{1cm} (4)$$

where: $[^{10}\text{Be}]_{\text{decay,corrected}}$ is the ^{10}Be concentration at the time of deposition in atoms per gram of sediment; Z is the water depth (2063 m); β_{230} is the ^{230}Th production rate from the seawater ^{234}U decays throughout the water column ($2.67.10^{-2}$ dpm.m$^{-3}$.y$^{-1}$; François et al., 2004) and $A^{\text{Th}_{230}}_{0}$ is the scavenged $^{230}\text{Th}_{xs}$ concentration at the time of deposition.

The uncertainties (2σ) of the calculated ^{10}Be-fluxes are derived from the propagation of both uncertainties and vary between 1.6 and 25.1% (average value: 5.0%). Note that solely 2 samples have uncertainties above 10% representing probable measurement outliers. The water depth was considered constant in first approximation for the calculation. The Th analyses have been performed after total digestion of 1 g of sediment, while Be isotopes were extracted from 1 g of sediment after partial leaching (in order to avoid the extraction of matricial Be; Bourlès et al., 1989). Given the difference of these two approaches, the ^{10}Be-fluxes calculated here thus represent minimal values. This should be considered when comparing our results...
against reference values, but it does not prevent any qualitative interpretations. A constant leaching efficiency of ~60 % (Bourlès et al., 1989) has been verified based on the results from Ménabréaz et al. (2011) and Ménabréaz (2012) and can be used for calibration.

4. Results and discussion

Sample concentrations, ratios and fluxes are listed in Table 1 and presented vs. depth along the core photos, CT-Scan images and description in Figures 3 and 5. Sample ratios and fluxes are presented vs. age in Figures 7 and 8. Note that all results and statistical averages are reported hereafter with a ±2σ uncertainty.

4.1. Authigenic 10Be and 9Be concentrations

The authigenic 10Be (decay-corrected) concentrations vary from 0.051±0.002 to 6.403±0.085 x 108 at.g$^{-1}$ (mean: 1.64 x 108 at.g$^{-1}$; σ=1.74). Such broad variability (> 2 orders of magnitude) is unusual in marine records where 10Be concentrations usually vary by factors of 2 or 3. Comparable large amplitude variation was only found in few polar cores from the Lomonosov Ridge (central Arctic), Fram Strait and the Ross Sea (Antarctica) where 10Be concentration ranging from 0.2 to 19.5 x 108 at.g$^{-1}$ (Eisenhauer et al., 1994; Spielhagen et al., 1997, 2004; Aldahan et al., 1997; Sjunneskog et al., 2007) were interpreted as paleoclimatic signals with high (resp. low) 10Be concentrations during Interglacial or major Interstadial (resp. Glacial) periods. Given the temporal resolution of core PC16, we can argue that in Baffin Bay the 10Be concentration varies on shorter time scales and is not directly related to Glacial/Interglacial cycles contrary to the mechanism proposed for the Arctic Ocean. The mean 10Be concentrations in Baffin Bay are slightly lower than values from the central Arctic and Arctic/Nordic Seas of 3-4 x 108 at.g$^{-1}$ and 6.7 x 108 at.g$^{-1}$, respectively (Frank et al., 2008; Eisenhauer et al., 1994; Aldahan et al., 1997), as well as with values from lower latitude sites such as the Portuguese margin and the Golf of Papua: ~4.4 x 108 at.g$^{-1}$ and ~5.6 x 108 at.g$^{-1}$,
respectively (Carcaillet et al., 2004b; Ménabréaz et al., 2011, 2014). A strict interpretation of the 10Be concentration in term of atmospheric fluxes between distinct sites must be avoided because of environmental parameters. However, the overall low 10Be concentration from Baffin Bay compared to low-latitude and Arctic sites suggests relatively reduced 10Be inputs to the coring site (especially within the very low 10Be concentration interval at 232-275 cm depth).

The authigenic 9Be concentrations vary from 0.621±0.004 to 3.269±0.065 x 10^{16} at.g$^{-1}$ (mean: 1.33 10^{16} at.g$^{-1}$; σ=0.56). The variability of 9Be concentration is about 25 times lower than the 10Be variation. Still, this range of variation (~5 times) is larger than the variability observed in lower-latitude marine cores (~2 times), advocating for important 9Be transport and deposition changes along core PC16. The mean 9Be concentration values from PC16 are lower than those from the Portuguese margin and the Golf of Papua, 2-4 x 10^{16} at.g$^{-1}$, but slightly higher than values from the central Arctic (0.6-1 x 10^{16} at.g$^{-1}$) and from ODP983 site (~0.25 x 10^{16} at.g$^{-1}$; Knudsen et al., 2008). Notwithstanding specific interpretations related to each sites, this comparison reveals the strong association between 9Be concentration and terrigenous inputs (e.g., Bourlès et al., 1989; Brown et al., 1992). We can argue that the central and deepest part of Baffin Bay is a sediment-focusing area that received slightly more 9Be inputs than deep open ocean basins because of its proximity to continental margins and the reduced size and shape of the bay. This is in accordance with the U-Th results from PC16 (Nuttin and Hillaire-Marcel, 2015).

The fluctuations of 10Be and 9Be concentrations present a high correlation coefficient (r=0.88, Table 2), suggesting that sources of 10Be and 9Be into the bay (Figure 3) are both located on the boarding continents and that the atmospheric 10Be component directly precipitated over the bay likely represents minor amounts compared to these large inputs of continental origin.
4.2. Authigenic $^{10}\text{Be}/^{9}\text{Be}$ ratios

The authigenic $^{10}\text{Be}/^{9}\text{Be}$ ratios ranging from 0.043 ± 0.003 to $2.624\pm0.123\times10^{-8}$ (mean: 1.01×10^{-8}; $\sigma=0.86$) disclose a variability over almost 2 orders of magnitude very similar to those of ^{10}Be and ^{9}Be concentrations. The fact that authigenic $^{10}\text{Be}/^{9}\text{Be}$ ratio values are broadly coherent with $^{10}\text{Be}/^{9}\text{Be}$ ratio values ranging from 0.36 to 1.54×10^{-8} measured in Arctic rivers (Franck et al., 2009) supports the continental origin of the dissolved beryllium in Baffin Bay. Measurements from the Baffin Bay watersheds are however required to further discuss this issue. The authigenic $^{10}\text{Be}/^{9}\text{Be}$ ratio population can be divided in two groups: values (1) lower than 10^{-8} and (2) higher than 10^{-8} (Table 1, Figures 3, 5 and 6). The first group has ^{10}Be concentrations and $^{10}\text{Be}/^{9}\text{Be}$ ratios similar to those found within poorly sorted diamicton layers of the Ross Ice Shelf (Sjunneskig et al., 2007) and of Arctic sediments of the last 350 kyr (e.g., Aldahan et al., 1997). They are thus coherent with other records from Polar Regions. The second group presents higher values in range with the lower limits of authigenic $^{10}\text{Be}/^{9}\text{Be}$ ratios from mid-to-low-latitude cores with similar sedimentation rates (Carcailllet et al., 2004b; Ménabréaz et al., 2014). This nearly bi-modal distribution of the authigenic beryllium concentrations and ratios presents a strong affinity with lithofacies changes (Figures 3 and 5).

4.3. Beryllium and sedimentological features

From the authigenic Be result variations presented above, questions arise about the nature of the forcing parameters. In order to understand the links with lithofacies changes, core PC16 offers a unique opportunity because of the numerous multi-proxy results available. The detailed sedimentological features of core PC16 have been largely presented and discussed elsewhere (see Simon et al., 2012, 2014, in prep.; Simon, 2013; Nuttin and Hillaire-Marcel, 2015 for details) and are beyond the scope of this paper. Sediment compositional variability in core PC16 is a combination of changes in sediment delivery, transport and provenance...
directly related to ice margin dynamics (Simon et al., 2014). This variability is illustrated here by grain-size (bulk and magnetic), density (CT number), XRF Ca/Fe and XRD Carbonate percents along with the images and CT-Scans of core PC16 (Figures 3 and 8) and summarized by a principal component analysis (PCA; Table S1, Figure 4) that disentangle the main compositional (mineralogy and grain-size) changes. The first principal component (PC1) accounts for 61% of the total variance and has positive loadings with proxies of coarse detrital carbonate layers such as dolomite and calcite (XRD), XRF Ca, density and >63 µm %; and negative loadings with proxies related to finer sediments, feldspars (XRD) and XRF Fe and Ti (Figures 3 and 4; Table 2). It highlights the two main sedimentation features from Baffin Bay: i.e., coarse-grained carbonate-rich sediments transported by icebergs and sea ice originating from the northern end of the bay against fine-feldspar rich sediments originating from Greenland and Baffin Island (Simon et al., 2014). Table 2 presents the correlation coefficients between Be isotopes and the sedimentological parameters. As suggested from Figures 3 and 7, the high correlation coefficients between PC1 and Be isotopes and ratios (>0.8) express a strong association with sedimentological parameters. The authigenic beryllium values (10Be, 9Be and 10Be/9Be ratios) generally present significant increases at levels corresponding to fine grained feldspar-rich intervals associated with increases of clay minerals (30-50%; Simon et al., 2014) while coarse carbonate-rich sediments (30-40% dolomite and 10-15% calcite) are characterized by lower Be values (Figure 3). This pattern is consistent with the scavenging efficiency of dissolved Be that depends on the composition and size of the particles available in the water column. The authigenic beryllium (10Be, 9Be and 10Be/9Be ratios) and thorium-excess (230Thex) distribution are strongly grain size dependent, with significant positive correlations with very fine to fine silts (2-8 µm) while clays (0-2 µm) and medium to very coarse silts (8-63 µm) does not present any significant correlations (Table 2). The high correlation of authigenic Be isotopes
with the 2-8 μm fraction rather than with the clay-sized material is intriguing because we
expected larger association with the smaller particles (because of their higher specific surface
area available). We tentatively explain these results by the cohesive behavior of the clay-sized
material that tends to form aggregate. These aggregates would have faster sinking rates and
lower specific surface area available for the adsorption of dissolve Be explaining higher
scavenging rates associated with very fine to fine silts. To the opposite, the authigenic Be
concentrations and ratios are significantly anti-correlated with the coarser intervals (>63 μm,
Figure 3) related to iceberg transported sediments (i.e., BBDC). Despite an overall similar
behavior of both isotopes in respect to sedimentary parameters, the authigenic 10Be
conscentrations and authigenic 10Be/9Be ratios are usually slightly more correlated with
sedimentological parameters than 9Be isotopes. We interpret this difference by distinct
sources and transport processes between both isotopes. The continental inherited-10Be (i.e.,
atmospheric 10Be deposited onto ice-sheets) are derived from the melting and calving of ice
sheets and are released in the water column during the ice melting, while the 9Be isotopes are
mainly coming from the mechanical erosion of bedrocks at the basal interface of ice streams.
It is likely that a fraction of the dissolved 9Be isotopes was scavenged rapidly on the
continental margins within the buoyant turbid meltwater plumes or nepheloid layers (i.e., re-
suspension of fine sediment particles by bottom currents) due to higher particles
concentration (Bacon and Rutgers van der Loeff, 1989) while the 10Be transported within
icebergs or sea ice was exported farther from the sources. A fraction of 9Be would thus be
immobilized in glacial/river estuaries (Kusakabe et al., 1991) and removed from the water
column within the less saline meltwater plumes on the inner-shelf (Frank et al., 2009; Ó
Cofaigh et al., 2013) rather than being transported to the centre of the bay. Therefore, despite
complex relationships between granulomery and mineralogy of these sediments, we can claim
that the authigenic 10Be signatures in Baffin Bay reveal local marine and glacial influences from the surrounding continents instead of reflecting a global 10Be-production signal.

4.4. 10Be-fluxes (230Th$_{ex}$-normalized)

The preserved vertical 10Be deposition rates (10Be-fluxes) varies from 0.717±0.046 to 25.388±0.973 x 108 at.cm$^{-2}$.ka$^{-1}$ with a mean value of 6.94 x 108 at.cm$^{-2}$.ka$^{-1}$ and a standard deviation of 7.037 expressing a large variability (Table 1, Figure 5). When increased by a factor of 40%, to encompass the methodological bias induced by the partial leaching of Be isotopes vs. the total digestion of Th (see section 3.5), the 10Be-fluxes are oscillating between 1.004±0.065 to 35.544±1.362 x 108 at.cm$^{-2}$.ka$^{-1}$ with an average of 9.72 x 108 at.cm$^{-2}$.ka$^{-1}$ (Table 3). The Holocene average 10Be-flux is estimated at 7.6±0.2 x 108 at.cm$^{-2}$.ka$^{-1}$ (10.7±0.2 x 108 at.cm$^{-2}$.ka$^{-1}$ value corrected), while during the glacial period the fluxes oscillated around 14.3±0.5 (20.1±0.7) and 2.0±0.2 (2.8±0.2) x 108 at.cm$^{-2}$.ka$^{-1}$ within the carbonate-free and carbonate-rich layers, respectively (carbonate layers are highlighted by white banding in Figures 3 and 5). The Holocene 10Be-fluxes are similar with the actual 10Be production of 12.1±0.3 x 108 at.cm$^{-2}$.ka$^{-1}$ (Monaghan et al., 1986). During the glacial period, results of 10Be-fluxes ranging from 0.7 to 25.4 x 108 at.cm$^{-2}$.ka$^{-1}$ are coherent with the bulk 10Be-fluxes calculated in the Arctic and Fram Strait that range from 2 x 108 to 33 x 108 at.cm$^{-2}$.ka$^{-1}$ (Eisenhauer et al.; 1994; Aldahan et al., 1997). Despite an obvious sedimentological relationship in core PC16, and at the exception of few intervals, the 10Be-fluxes are compatible with the modeled 10Be-production range: ~3 to 27 x 108 at.cm$^{-2}$.ka$^{-1}$, with the 10Be-fluxes from ice and marine records which range from ~1.2 to 70 x 108 at.cm$^{-2}$.ka$^{-1}$, and with the globally integrated and long-term averaged 10Be-fluxes into marine sediments varying between 9 to 28 x 108 at.cm$^{-2}$.ka$^{-1}$ (see Table 3 for details and references). The lowest 10Be-fluxes that characterized the BBDC layers are also rather similar to those found within the Ice Summit record of GISP2: 2 to 6 x 108 at.cm$^{-2}$.ka$^{-1}$ (Muscheler et al., 2004). It is
puzzling to obtain 10Be-fluxes similar to ice core records in core PC16 given the strong
lithogenic imprint. This similarity might be explained by a smoothing of the 10Be cosmogenic
nuclide signal related to the long-lasting deposition/drift onto the regional ice-sheets and by
the thick sea ice and/or ice-shelf cover during glacial periods. The relatively low 10Be-fluxes
calculated in Baffin Bay would thus likely represent a 10Be production signal buffered by the
glacial factors controlling the 10Be inputs and transport within the water column. Furthermore,
these low 10Be-fluxes from Baffin Bay are also coherent with the low depositions of 10Be in
Greenland and in the Arctic Ocean (Eisenhauer et al., 1994; Spielhagen et al., 1997) likely
due to atmospheric circulation patterns and the distribution of precipitation in the northern
hemisphere (Heikkila et al., 2013; Frank et al., 2009).

4.5. Testing the 10Be/9Be ratios and 230Th$_{xs}$-normalized 10Be fluxes methods
The two existing normalization methods were independently used in former studies, but only
two studies applied the two methods on the same sedimentary core. The first study by
Knudsen et al. (2008) obtained large uncertainties about 230Th$_{xs}$ values precluding their use
for reliable normalization. The second study by Ménabréaz et al. (2011) demonstrated close
agreement of the results obtained by the two methods based on a small number of samples. In
PC16, the 10Be-flux variability calculated using the 230Th$_{xs}$ method is similar to that of the
authigenic 10Be/9Be ratios measured at the same depths (Figure 5). The high correlation
coefficient (r=0.81) and coherence between the two signals provide strong evidence that the
two normalization processes yield equivalent results in a very contrasted environment where
large compositional variations prevailed (Figures 5 and 6, Table 2). It somehow demonstrates
that normalizing authigenic 10Be concentrations by authigenic 9Be concentrations permits an
accurate correction for the total particle flux variation. Both normalization processes present
large variations directly related to lithofacies changes (Figure 3). The normalizers (i.e., 230Th$_{xs}$
and 9Be) are highly correlated (Table 2) which might seem surprising given the distinct
affinities (depending on particle composition) and the different scavenging residence times of both elements in the open ocean (10-50 years for Th against 500-1000 years for Be, Chase et al., 2002). The large domination of glaciomarine lithogenic particles presenting strong surface reactivity with both nuclides probably explained the first assertion (Roy-Barman et al., 2005, 2009). Our results also suggest quicker adsorption rates and thus shorter scavenging residence time for dissolved Be within the Baffin Bay water column probably related to the high concentration of lithogenic particles. This is coherent with previous results from the Arctic, North Atlantic basin and circum-Antarctica where lower scavenging residence time for Be isotopes of about 80-200 years associated with high particles concentration and oceanic mixing have been proposed (von Blanckenburg et al., 1996, 1999; von Blanckenburg and Bouchez, 2014; Frank et al., 2009). An oceanic circulation/mixing influence over the authigenic Be signal into Baffin Bay during the glacial period is also supported by higher correlation coefficients between both normalization methods when considering the rare episodes of Arctic Waters overflow through the Davis Strait (illustrated by blue dots in Figures 5 and 6). These episodes have been demonstrated within core PC16 by the occurrence of short periods of 230Th$_{xs}$ export (230Th$_{xs}$-losses, Nuttin and Hillaire-Marcel, 2015).

4.6. Comparison with relative paleointensity

In core PC16, the comparison of 10Be-proxies with the RPI record does not demonstrate any clear relationship (Figure 7). No systematic increases of authigenic 10Be/9Be ratios and 10Be-fluxes are observed during the large RPI lows corresponding to the Laschamp, Norwegian-Greenland Sea and post-Blake/Blake events (Figure 7). The authigenic 10Be/9Be ratios and 10Be-fluxes do not present any significant correlation coefficients with the RPI record (Figure 7, Table 2). This absence of correlation with the RPI record clearly supports the dominance of the environmental imprints –as discussed above- on the 10Be deposition in Baffin Bay. The high correlation (r=0.83) between the RPI normalizers (such as the ARM) and the authigenic
Be/9Be ratios also indicates a strong environmental imprint related to specific grain-size ranges that insure maximum Be adsorption rates (namely the very fine to fine silt range is highly correlated with the ARM: $r=0.7$). The strong correlation of the 10Be-proxies with environmental parameters suggests a local signature related with the succession of events driven by paleoclimatic controls precluding any interpretation of the 10Be-proxies in term of geomagnetic variability. On the opposite, our findings provide strong evidence supporting the use of the cosmogenic nuclide 10Be as a stratigraphic marker in the Arctic and sub-Arctic regions as suggested by several authors (Eisenhauer et al., 1994; Spielhagen et al., 1997; Aldahan et al., 1997; Frank et al., 2008).

5. Paleoenvironmental implications

The quasi bi-modal distribution of Be results in core PC16 corresponding with the main Baffin Bay sedimentary features (Figure 3) and the temporal resolution of Be variations suggest glacial dynamics as the main forcing parameter to explain Be inputs and transport changes. The most striking features of this glacial dynamic around Baffin Bay is the variability of the GIS limits over the Greenland continental shelf and the ice streaming events from the LIS and IIS together with sea ice/ice-shelf cover variability (Figure 9). The origin, timing and limits of these large glacial variations are still very poorly constrained. However, recent studies have demonstrated that ice-sheets advanced well onto the continental margins all over the bay and as far as the shelf edges during the LGM (Li et al., 2011; Ó Cofaigh et al., 2012, 2013; Hogan et al., 2012; Dowdeswell et al., 2013; Simon et al., 2014: Margold et al., 2015).

The cumulative inventory of measured 230Th$_{xs}$ in core PC16 (see Nuttin and Hillaire-Marcel, 2015 for details), recalculated in respect to the revised age model, clearly exhibits maximal sediment fluxes corresponding to minimum relative sea level (RSL) during the LGM (Figure 8). High Be concentrations (Figures 7 and 8) and ca. 100% sediments originating from
Greenland (Simon et al., 2014) also characterized this period. The other periods of high authigenic Be concentrations are also associated with finer sediments originating mainly from Greenland (Figure 8). This facies is related to the resuspension of fine lithogenic sediments (glacial flour) associated to nepheloid layers during period of intense ice margin advances, to outflow of dense winter water from the continental shelves, or to meltwater sediment-laden plumes during period of ice margin retreats. Both scenarios imply ice margins/ice streams extending over the Greenland continental shelf. Together with the inherent higher scavenging efficiency of smaller particles, the increase in particle concentration due to the proximal ice margin likely contributed to the increase of the Be-scavenging rates in central Baffin Bay (Figure 9). We can also assume that a fraction of the Be transported onto ice floes sediments might be transferred into the water column by wave wash-off or turning of floes during these glacial maxima. Two 10Be concentration values of 2.2±0.1 and 2.8±0.1 x 10**8** at.g**−1** measured in clay samples from Arctic ice floes (Eisenhauer et al., 1994) and corresponding to the higher 10Be concentration values from PC16 support this assumption, although samples from Baffin Bay are requested to further discuss this assertion.

On the other hand, the low authigenic Be concentrations and ratios within the BBDC layers support a Be dilution in these IRD layers (Figure 2). Such a dilution is possibly associated to (1) increases of terrigenous sediment inputs, (2) changes of sediment composition/grain-size affecting the scavenging efficiency of dissolved beryllium, (3) reduced net Be inputs into the centre of the bay and/or (4) higher exports of Be by extensive sea ice/iceberg drift episodes. The absence of significant increases in sedimentation rates (Figure 8) and/or 230Th$_{ex}$ changes (Nuttin and Hillaire-Marcel, 2015) during these intervals favor the last three hypotheses. However one cannot totally exclude that short episodes of increased inputs of terrigenous sediments could remain uncaptured by the age model resolution. During the BBDC intervals, the limited amount of sediment originating from Greenland supports a distant Greenland ice
margin limit while coarse sediments originating from Baffin Island are explained by high calving rates from Laurentide ice streams (Simon et al., 2014). According to this model, the BBDC intervals occur during periods of retreated ice limits over the inner continental shelves (Figure 9). The cause of ice margin instabilities around Baffin Bay is still not well understood but may be related to higher summer insolation and/or to the advection of warm Atlantic Water. Indeed the phasing between magnetic grain size in core PC16 (SIRM/k_{LF} ratios in Figure 8, Simon et al., 2012, 2014) and the insolation variation supports a climatic control on ice margin dynamics and iceberg drifting in the bay. The advection of an intermediate warm water mass in Baffin Bay probably contributed also to destabilize the ice margins (Holland et al., 2008; Jennings et al., 2014) increasing meltwater delivery along the Baffin Bay shelves and slopes. It resulted in increased stratification of the water column and therefore to longer residence times of Be within the deep water masses (von Blanckenburg and O’Nions, 1999). Such an oceanic pattern would reduce the Be adsorption and deposition rates explaining possibly part of the low ^{10}\text{Be} concentration within the BBDC intervals. Moreover, and despite complex interactions of eustatic and isostatic parameters over the relative sea level (RSL) around Baffin Bay, we can reasonably assess that the sea level rose over continental shelves during ice margin retreat periods (Long et al., 2008; Simpson et al., 2009; Funder et al., 2011). Throughout these periods of marine transgression, oceanic circulation and boundary scavenging (changes in nature and intensity, Lao et al. 1992) may have become significant processes involving large transfer of dissolved Be from the centre of the bay toward the margins (Roy-Barman et al., 2009). The low authigenic ^{10}\text{Be}/^{9}\text{Be} ratios and ^{10}\text{Be}-fluxes during the BBDC intervals within core PC16 might thus be partly explained by high boundary scavenging rates over the large Greenland continental shelf together with important iceberg/sea ice drifts due to very active Laurentide ice streams. For instance, the very low authigenic ^{10}\text{Be}/^{9}\text{Be} ratios found during the late MIS-3 (ca. 40-28.5 ka BP) is explained by
retreated GIS limits and numerous ice streaming episodes from the LIS and IIS possibly related to the Dansgaard-Oeschger events between the large glacial surges of Heinrich-events 3 and 4 (Figure 8; Simon et al., 2014).

Even though interpretations resulting from the authigenic Be signature in Baffin Bay can be discussed and are likely the results of several processes, we can reasonably proposed that the glacial dynamic of regional ice sheets (i.e., GIS, IIS and LIS) is the main internal driving mechanism in term of ^{10}Be inputs and delivery into the bay. Moreover, ice-sheets topography changes related to such glacial dynamic also imply a reorganization of the atmospheric circulation (e.g., Steffensen et al., 2008) modifying the stratosphere/troposphere exchanges, the wet/dry deposition ratio and the dust inputs into the ocean (Werner et al., 2002). Periods of ice-sheet growth (resp. decay) characterized by higher (resp. lower) wet deposition would then favor higher (resp. lower) ^{10}Be deposition rates within the bay. Although our results are coherent with these views, atmospheric modeling of ^{10}Be deposition considering regional ice-sheet topography changes are needed to verify and quantify these assumptions.

6. Conclusions

The authigenic ^{10}Be cosmogenic nuclide and ^{9}Be stable isotope data were measured along a 7.41 m sedimentary core of the sub-arctic basin Baffin Bay in order to reconstruct the geomagnetic dipole moment variations using the $^{10}\text{Be}/^{9}\text{Be}$ ratios and ^{10}Be-fluxes ($^{230}\text{Th}_{xs}$-normalized). The results of the two normalizations are coherent and reveal that environmental processes such as glacial dynamics and oceanic variability directly control the variations of the authigenic ^{10}Be and ^{9}Be concentrations in Baffin Bay sediments. The contribution of the atmospheric ^{10}Be cosmogenic nuclide production modulated by the geomagnetic field intensity remains hidden behind this environmental signal. Accordingly, in such conditions ^{10}Be production proxies do not allow to characterize the geomagnetic features such as dipole lows linked to excursions or reversals. Beryllium isotopes are preferentially adsorbed on fine
silicate particles associated with sediment plumes originating from lateral ice margin advances. On the contrary they have little affinity with coarse-grained and carbonate-rich sediments (i.e., BBDC) associated with iceberg and sea-ice transport originated from the North-Eastern Laurentide Ice Sheet and Innuitian Ice Sheet ice streaming events. During these BBDC episodes, glacial margin retreats together with marine transgression over the Greenland continental shelf likely contributed to increase boundary scavenging involving large transfers of dissolved beryllium from the centre of the bay toward the margins. Our findings provide strong evidences that support the use of cosmogenic nuclide 10Be as a stratigraphic marker in the Arctic and sub-Arctic regions. Yet, our results caution a straightforward use of 10Be-concentrations as a proxy of Interglacial/Glacial cycles or major Interstadial periods (as suggested by several authors), and rather propose to relate the 10Be variations to higher-frequency paleoclimatic changes and glacial dynamics. Therefore, studying the cosmogenic 10Be and stable 9Be isotopes in combination with ancillary sedimentological parameters in arctic and sub-arctic marine sediments provide valuable climatic information, but is must be acknowledged that the cost/information ratio is probably too large to systematically use atmospheric 10Be cosmogenic nuclides and 9Be isotopes as paleoclimatic proxies.

Acknowledgements

We acknowledge Valery Guillou (CEREGE) for his help during chemical sample preparation and 9Be measurements at the AAS. M. Arnold, G. Aumaître and K. Keddadouche are thanked for their valuable assistance during the measurements performed at the ASTER AMS national facility (CEREGE, Aix en Provence). This equipment is supported by the INSU/CNRS, the IRD and the CEAEA and by the ANR through the program “EQUIPEX Investissement d’Avenir”. This study is a contribution of the project MAGORB ANR 09 BLAN 0053 (CEREGE, IPGP, LSCE). G. St-Onge and C. Hillaire-Marcel acknowledge financial support
from the Natural Science and Engineering Council of Canada (NSERC). CEREGE belongs to
Observatoire des Sciences de l’Univers OSU-Institut Pythéas.

References

Campbell D.C., de Vernal A., 2009. CCGS Hudson Expedition 2008029: Marine geology and paleoceanography of Baffin Bay and adjacent areas, Nain, NL to Halifax, NS, August 28- September 23. Geological Survey of Canada, Open File 5989, 1 DVD.

Raisbeck, G.M., Yiou, F., Jouzel, J., Petit, J.R., Bard, E., Barkov, N.I., 1992. \(^{10}\)Be deposition at Vostok, Antarctica, during the last 50000 years and its relationship to possible cosmogenic production variations during this period. In: Bard, E., Broecker, W.S.
(Eds.), The Last Deglaciation: Absolute and Radiocarbon Chronologies, Series I. Glob. Environmental Change 2, pp. 127–139.

10Be and geomagnetic field strength records in central North Atlantic sediments during
the last 80 ka. Earth and Planetary Science Letters 136 (3): 551-557,
doi:10.1016/0012-821X(95)00202-N.

Roy-Barman, M., Jeandel, C., Souhaut, M., Rutgers van der Loeff, M., Voege, I., Leblond,
in the NE Atlantic ocean (POMME Experiment). Earth and Planetary Science Letters
240 (3): 681-693.

Roy-Barman, M., 2009. Modelling the effect of boundary scavenging on Thorium and

Simon, Q., St-Onge, G., Hillaire-Marcel, C., 2012. Late Quaternary chronostratigraphic
framework of deep Baffin Bay glaciomarine sediments from high-resolution paleo-
geomagnetic data. Geochemistry, Geophysics, Geosystems 13 (1-24): Q0AO03,

western Greenland and southern Inuitian ice stream dynamics during the last glacial

Simon Q. 2013. Propriétés magnétiques, minéralogiques et sédimentologique des sédiments
profond de la baie de Baffin: chronologie et dynamique des glaciers ouest
groenlandais, inuitiens et laurentidiens au cours de la dernière glaciation. PhD

Simon Q, Hillaire-Marcel C, St-Onge G. (in prep). Detrital carbonate events in Baffin Bay
during the last climatic cycle: Their timing vs. the Greenland Dansgaard-Oeschger
cycles and North Atlantic Heinrich events.

model of the Greenland Ice Sheet from the Last Glacial Maximum to present-day
using field observations of relative sea level and ice extent. Quaternary Science

Sjøneskog, C., Scherer, R., Aldahan, A., Possnert, G., 2007. 10Be in glacial marine sediment
of the Ross Sea, Antarctica, a potential tracer of depositional environment and
sediment chronology. Nuclear Instruments and Methods in Physics Research Section

Spielhagen, R.F., Bonani, G., Eisenhauer, A., Frank, M., Frederichs, T., Kassens, H., Kubik,
P.W., Mangini, A., Nøgaard Pedersen, N., Nowaczyk, N.R., Schäper, S., Stein, R.,
Thiede, J., Tiedemann, R., Washner, M., 1997. Arctic Ocean evidence for late
Quaternary initiation of northern Eurasian ice sheets. Geology 25 (9): 783-786.

Table 1. AMS measurements, authigenic 10Be and 9Be concentrations, authigenic 10Be/9Be ratios and calculated 10Be-fluxes of core HU2008-029-016PC samples.

Table 2. Correlation coefficients of Be isotopes (concentration, ratio and fluxes) and sedimentological parameters.

Table 3. 10Be-production/flux in litterature (in atoms.cm^-2.kyr^-1)

Figure 1. General bathymetry, simplified oceanic circulation, sketch of the Paleozoic outcrops (MacLean, 1985) and paleo-Ice-Sheets (including LGM unknown maximum ice margin extents) of the Baffin Bay region. The location of HU2008-029-016PC sampling site is indicate by a red dots. Red arrows illustrate Atlantic “warm” waters, whereas the blue arrows represent colder Arctic waters. The simplified representations of the Greenland (green), Innuitian (blue) and Laurentide ice sheet (red) limits and major ice stream locations during the LGM (colored areas) are adapted from Funder et al. (2011), Dyke (2004) and England et al. (2006).

Figure 2. Relative paleointensity (NRM/ARM25-35mT) tuned on RPI record of ODP Site 1063 (Channell et al., 2012) and chronostratigraphy of PC16. The RPI tie-points used in this study are represented by green dots while the red diamonds and yellow triangle are radiocarbon ages and calcite tie-points respectively (Simon et al., 2012). The incertitude in the age model is represented by shaded area.

Figure 3. Beryllium isotopes results vs. high-resolution physical, geochemical and mineralogical results from core PC16. Log: general simplified stratigraphy of the core; CT: CAT-Scan image of the core; HRI: high-resolution digital image; CT Number (density proxy); XRD carbonates (dolomite and calcite) cumulative percents; log(Ca/Fe): μXRF element ratio for calcium and iron measured with the ITRAX® core scanner. Grain size (%) for clay, silt fractions and coarse fractions measured at 4 cm intervals by laser diffraction. Authigenic 10Be, 9Be and 10Be/9Be ratios are display in log scale. Distinct lithological facies
are highlighted with color banding. Red: uppermost brownish gray silty mud unit (Uppermost Brownish, “UB”); light green: olive-black silty to clayey mud unit (Olive Clay, “OC”); white: carbonate-rich yellowish-brown to dark-brown very poorly sorted gravelly sandy mud detrital layers (DC); dark green: olive gray to dark gray poorly sorted silty to sandy mud low carbonate detrital layers (LDC) (see text for details).

Figure 4. Principal component analysis (PCA) of the mineralogical and grain-size dataset.

The loading scores for PC1 vs. PC2 explain, respectively, 61 and 11.5% of the total variance. PCA analysis illustrates the two sedimentary modes in Baffin Bay.

Figure 5. Authigenic 10Be/9Be ratios and 10Be-fluxes on depth. The 10Be-fluxes are compared to references: (1) global-average 10Be-production values from models, see Table 3 for values and references (the blue star is the mean value from Masarik and Beer, 2009); (2) global values measured and averaged by Monaghan *et al.*, 1986; (3) 10Be-flux in GRIP/GISP2 ice core (Muscheler *et al.*, 2005); (4) 10Be-flux in marine records representing the so-called “allowed range” from Christl *et al.*, 2007, 2010; (5) 10Be-flux range in deep sea sedimentary cores from the Arctic Ocean and the Norwegian Sea (Eisenhauer *et al.*, 1994). Red (resp. blue) dots represent measured 230Th$_{xs}$ vertical flux higher (resp. lower) than theoretical 230Th$_{xs}$ vertical flux.

Figure 6. Authigenic 10Be/9Be ratios vs. 10Be-fluxes (230Th$_{xs}$-normalized). Blue dots represent measured 230Th$_{xs}$-flux samples lower than theoretical flux and illustrate episodes of Arctic Waters outflow through Davis Strait (Nuttin and Hillaire-Marcel, 2015).

Figure 7. Authigenic 10Be/9Be ratios, 10Be-fluxes (230Th$_{xs}$-normalized), PC 1 and RPI vs. age. RPI (Channell *et al.*, 2012) and 10Be-fluxes (Christl *et al.*, 2010) from ODP Site 1063 are presented along with 10Be-fluxes reference ranges from distinct archives and models (see Figure 5 and Table 3 for references). Marine isotopic stages 1 to 6 are represented by color boxes along the age axis. BBDC-layers are represented by a vertical grey banding and numbered according to Simon *et al.* (in prep.).

Figure 8. Paleoclimatic interpretations of authigenic 10Be/9Be ratio variations. The NGRIP δ^{18}O ice core record (red curves) and synthetic Greenland record (GLT-syn, blue curve) are from www.icecores.dk and Barker *et al.* (2011). Marine isotope stages 1 to 6 are represented with color boxes. BBDC-layers (defined by high XRD carbonates cumulative percents) are represented by the grey vertical bars and numbered according to Simon *et al.* (in prep.). The North Atlantic Heinrich events (Hemming, 2004) are indicated for comparison. The July insolation is calculated at 70°N (from Laskar *et al.*, 2004). Eustatic relative sea level (RSL) is from Grant *et al.* (2012). SIRM/k$_{LF}$ is a magnetic grain size proxy (Simon *et al.*, 2012, in
The cumulative inventory ratio compares the 230Th$_{xs}$ accumulation fluxes with the theoretical vertical production in the overlying water column. Values below 1 during the Holocene indicate 230Th$_{xs}$-losses while values above 1 during the glacial period suggest a sediment-focusing environment (Nuttin and Hillaire-Marcel, 2015).

Figure 9. Simplified Baffin Bay paleogeography during the last glacial cycle. (a) Trans-Baffin drift characterized by IRD sediments originating from the northern ice streams, and by meltwater sediment-laden plumes from Baffin Island ice streams. (b) Extended ice margins characterized by Greenland and Baffin Island glacial flour sediments corresponding to a permanently ice-covered bay, and by extended ice margin limits over continental shelves.
<table>
<thead>
<tr>
<th>Depth in core (cm)</th>
<th>AMS measurements, authigenic ^{10}Be and ^{9}Be concentration, authigenic $^{14}Be/^{9}Be$ ratios and calculated ^{10}Be fluxes of core HUJ08D-029-104PC samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>(^{9}\text{Be} \text{ (at./g)})</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SAR 170714B (cm/kyr)</td>
<td>n.s.</td>
</tr>
<tr>
<td>XRD- Quartz (%)</td>
<td>0.51</td>
</tr>
<tr>
<td>XRD- K-Feldspar (%)</td>
<td>0.55</td>
</tr>
<tr>
<td>XRD- Plagioclase (%)</td>
<td>0.54</td>
</tr>
<tr>
<td>XRD- Calcite (%)</td>
<td>-0.62</td>
</tr>
<tr>
<td>XRD- Dolomite (%)</td>
<td>-0.51</td>
</tr>
<tr>
<td>XRF- Ca/Fe</td>
<td>-0.73</td>
</tr>
<tr>
<td>XRF- K/Ti</td>
<td>-0.66</td>
</tr>
<tr>
<td>XRF- Ti/Ca</td>
<td>0.71</td>
</tr>
<tr>
<td>XRF- Ca</td>
<td>-0.71</td>
</tr>
<tr>
<td>XRF- Fe</td>
<td>0.69</td>
</tr>
<tr>
<td>GS- 0-2 μm (%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>GS- 2-4 μm (%)</td>
<td>0.73</td>
</tr>
<tr>
<td>GS- 4-8 μm (%)</td>
<td>0.79</td>
</tr>
<tr>
<td>GS- 8-63 μm (%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>GS- >63 μm (%)</td>
<td>-0.70</td>
</tr>
<tr>
<td>Density (g.cm(^{-3}))</td>
<td>-0.77</td>
</tr>
<tr>
<td>(^{9}\text{Be} \text{ (at)})</td>
<td>1.00</td>
</tr>
<tr>
<td>(^{10}\text{Be} \text{ (at)})</td>
<td>0.88</td>
</tr>
<tr>
<td>Ratio (^{10}\text{Be} /^{9}\text{Be})</td>
<td>0.71</td>
</tr>
<tr>
<td>((\text{Th}_{xs})^{0} \text{ (dpm.g}^{-1}))</td>
<td>0.72</td>
</tr>
<tr>
<td>Flux-(^{10}\text{Be} \text{ sed.} \text{ (atoms.cm}^{-2}\text{.kyr}^{-1}))</td>
<td>0.60</td>
</tr>
<tr>
<td>PC1 Sedimentological parameter</td>
<td>-0.81</td>
</tr>
<tr>
<td>PC2 Sedimentological parameter</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s. are not significants (\(P < 0.001\))
Table 3

| 10Be-production/flux in litterature (in atoms.cm^{-2}.kyr^{-1}) |
|---|---|---|
| Range (x 10^8) | Mean values (x 10^8) | Notes |
| 5.7 - 10 | Global average 10Be-production (model) | Webber et al., 2007; Masarik and Beer, 1999, 2005; Kvaltsov and Uosokin, 2010 |
| 6.6 | 60-90% 10Be-production (model) | Masarik and Beer, 2009 |
| 5.2 - 26.4 | Global average 10Be-production (analytical) | Monaghan et al., 1986 (from precipitation measurements during the year 1980) |
| 11 - 17 | Long term averaged glob. av. 10Be-prod. (analytical) | Webber and Higbie, 2003; Webber et al., 2007 |
| 6.0 | Global average 10Be-production (model) | Lai and Peters, 1967 |
| 9.5 | Global average 10Be-production (analytical) | Lal, 1988 |

10Be-flux in ice-core records

<table>
<thead>
<tr>
<th>Range (x 10^6)</th>
<th>Mean values (x 10^6)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 - 8.6</td>
<td>Greenland Summit (GRIP/GISP2)</td>
<td>Muscheler et al., 2005; Finkel and Nishizumi, 1999</td>
</tr>
<tr>
<td>3.3</td>
<td>Dye 3 (Greenland)</td>
<td>Beer et al., 1991</td>
</tr>
<tr>
<td>1.5 - 12.8</td>
<td>Renland Ice Core over 1931-1987 (Greenland)</td>
<td>Aldahan et al., 1998</td>
</tr>
<tr>
<td>1.4 - 10</td>
<td>Dronning Maud Land ice core over 1932-1988 (Antarctic)</td>
<td>Auer et al., 2009</td>
</tr>
<tr>
<td>4.0±0.3</td>
<td>EPICA DML (Neumayer surface snow, Antarctica)</td>
<td>Auer et al., 2009</td>
</tr>
<tr>
<td>1.9±0.1</td>
<td>EPICA DML (Kohnen deep ice core, Antarctica)</td>
<td>Cauquoin et al., 2014</td>
</tr>
<tr>
<td>1.4±0.2</td>
<td>Dome C (surface firn and firn core 0-12 m; Antarctica)</td>
<td>Cauquoin et al., 2014</td>
</tr>
<tr>
<td>1.2 - 2.5</td>
<td>Epica DC between 320-340 kyr</td>
<td>Cauquoin et al., 2014</td>
</tr>
<tr>
<td>0.6 - 3.3</td>
<td>Epica DC between 200-800 kyr</td>
<td>Cauquoin et al., 2014</td>
</tr>
<tr>
<td>2.5</td>
<td>Vostok, South Pole (Antarctic)</td>
<td>Raible and Yiou, 1985</td>
</tr>
<tr>
<td>1.4</td>
<td>Taylor Dome (Antarctic)</td>
<td>Steig et al., 1996</td>
</tr>
<tr>
<td>1.7 and 1.8</td>
<td>Concordia and Vostok over the last 60 years (Antarctic)</td>
<td>Baroni et al., 2011</td>
</tr>
<tr>
<td>4.8±1.6</td>
<td>Law Dome snow pit over the year 2001 (Antarctic)</td>
<td>Pedro et al., 2006</td>
</tr>
<tr>
<td>2.0 - 4.5</td>
<td>Dome Fuji ice core over 700-1900 yr CE (Antarctica)</td>
<td>Horuchi et al., 2008</td>
</tr>
<tr>
<td>2.2 (2.3)</td>
<td>GRIP snow pit (Greenland)</td>
<td>Heikkilä et al., 2008</td>
</tr>
<tr>
<td>2.8</td>
<td>ECHAM5-HAM general circulation model 10Be deposition</td>
<td>This study</td>
</tr>
</tbody>
</table>

10Be-flux in marine records

<table>
<thead>
<tr>
<th>Range (x 10^6)</th>
<th>Mean values (x 10^6)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 - 31.1</td>
<td>ODP1063 (Bermuda Rise): 0-250 kyr BP</td>
<td>Christl et al., 2007, 2010</td>
</tr>
<tr>
<td>7.8 - 37.1</td>
<td>ODP983 (North Atlantic): 0-250 kyr BP</td>
<td>Christl et al., 2007, 2010</td>
</tr>
<tr>
<td>9 - 28</td>
<td>Globally intergrated / long-term averaged 10Be-fluxes</td>
<td>Knudsen et al., 2008</td>
</tr>
<tr>
<td>5 - 27</td>
<td>ODP 925 (Ceara Rise): 0-7 Ma</td>
<td>Murayama et al., 1997</td>
</tr>
<tr>
<td>5 - 60</td>
<td>Globally stacked deep-sea sediments: 0-200 kyr BP</td>
<td>Frank et al., 1997</td>
</tr>
<tr>
<td>6 - 7</td>
<td>ACEX average 10Be-flux for the past 12.3 Ma (Arctic)</td>
<td>Frank et al., 2008</td>
</tr>
<tr>
<td>31.9 - 65.9</td>
<td>Portuguese Margin (20-45 kyr BP)</td>
<td>Ménesbréaz et al., 2011</td>
</tr>
<tr>
<td>2 - 23</td>
<td>Four Arctic Ocean cores (F=C x S x D)</td>
<td>Eisenhauer et al., 1994; Aldahan et al., 1997</td>
</tr>
</tbody>
</table>

10Be-flux in PC16 (Baffin Bay marine sediments)

<table>
<thead>
<tr>
<th>Range (x 10^6)</th>
<th>Mean values (x 10^6)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 - 25.4 (1 - 35.5)</td>
<td>6.9 (9.7)</td>
<td>This study</td>
</tr>
<tr>
<td>fluxes by facies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5 - 8.6 (9.1 - 12)</td>
<td>7.6 (10.7)</td>
<td>Facies UB (Holocene)</td>
</tr>
<tr>
<td>0.7 - 6.3 (1 - 8.8)</td>
<td>2 (2.8)</td>
<td>Facies BBDC (coarse carbonate-rich sediments)</td>
</tr>
<tr>
<td>4.2 - 25.4 (5.8 - 35.5)</td>
<td>14.5 (20.2)</td>
<td>Facies LDC (fine feldspar-rich sediments)</td>
</tr>
<tr>
<td>9.2 - 24.7 (12.8 - 34.6)</td>
<td>14.1 (19.8)</td>
<td>Facies OC (very fine feldspar-rich sediments)</td>
</tr>
</tbody>
</table>

Correction to encompass the underestimation of the flux due to methodological bias, see text for details
Norweg.-Green. Sea Excursion

 Blake events?

$0.7 \leq r \leq 0.82$

Post-Blake?

Relative Intensity

ODP Site 1063

(Chanel et al., 2012)

PC16 tuned on ODP Site 1063

Laschamp Excursion

Norweg.-Green. Sea Excursion

MIS 1

MIS 2

MIS 3

MIS 4

MIS 5a

MIS 5b

MIS 5c

MIS 5d

MIS 5e

MIS 6

Age (ka BP)

r = 0.7

r = 0.7

PC16 Age Model

AM170714B

14C dates

RPI tie-points

Calcite% tie-points

BBDC #
Fine sediments associated with extended ice margins

Coarse particles transported by IRD and sea-ice

PC1 (61.04%)

PC2 (11.49%)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

2-4 μm

4-8 μm

0-2 μm (clay)

2-4 μm

4-8 μm

> 63 μm

8-63 μm

Dolomite

Calcite

K-Feldspar

Plagioclase

Quartz

Density

SAR

BBDC

log(Fe)

log(Ti/Ca)

log(K/Ti)

log(Ca/Fe)

Density

BBDC

K-Feldspar

Plagioclase

Quartz

Calcite

Dolomite

SAR
10Be-fluxes 230Thxs-normalized (10^8 atoms.cm$^{-2}$kyr$^{-1}$)

- **Export and/or low scav. eff.**
- **Focusing and/or high scav. eff.**
- **Dilution & boundary scavenging**

- **230Thxs vertical flux < theoretical => export; r = 0.90**
- **230Thxs vertical flux > theoretical => focusing; r = 0.86**
- **Total; r = 0.81**

- **Authigenic 10Be/9Be ratios (10^{-8})**
 - $r = 0.81$
 - $r = 0.90$
 - $r = 0.86$