The Kontsevich integral for bottom tangles in handlebodies

Abstract : The Kontsevich integral is a powerful link invariant, taking values in spaces of Jacobi diagrams. In this paper, we extend the Kontsevich integral to construct a functor on the category of bottom tangles in handlebodies. This functor gives a universal finite type invariant of bottom tangles, and refines a functorial version of the Le-Murakami-Ohtsuki 3-manifold invariant for Lagrangian cobordisms of surfaces.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01456794
Contributor : Gwénaël Massuyeau <>
Submitted on : Monday, February 6, 2017 - 8:30:13 AM
Last modification on : Friday, June 8, 2018 - 2:50:07 PM

Links full text

Identifiers

  • HAL Id : hal-01456794, version 1
  • ARXIV : 1702.00830

Citation

Kazuo Habiro, Gwenael Massuyeau. The Kontsevich integral for bottom tangles in handlebodies. 2017. ⟨hal-01456794⟩

Share

Metrics

Record views

141