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Abstract

Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within
the framework of General Relativity. There are at the present moment two known solutions: The
Alcubierre warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However
the major drawback concerning warp drives is the huge amount of negative energy density able to
sustain the warp bubble.In order to perform an interstellar space travel to a ”nearby” star at 20 light-
years away in a reasonable amount of time a ship must attain a speed of about 200 times faster than
light.However the negative energy density at such a speed is directly proportional to the factor 1048 which
is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!.
With the correct form of the shape function the Natario warp drive can overcome this obstacle at
least in theory.Other drawbacks that affects the warp drive geometry are the collisions with hazardous
interstellar matter(asteroids,comets,interstellar dust etc)that will unavoidably occurs when a ship travels
at superluminal speeds and the problem of the Horizons(causally disconnected portions of spacetime).The
geometrical features of the Natario warp drive are the required ones to overcome these obstacles also at
least in theory.Some years ago in 1999 Chris Van Den Broeck appeared with a very interesting idea.Broeck
proposed a warp bubble with a large internal radius able to accommodate a ship inside while having
a submicroscopic outer radius and a submicroscopic contact external surface in order to better avoid
the collisions against the interstellar matter.The Broeck spacetime distortion have the shape of a bottle
with 200 meters of inner diameter able to accommodate a spaceship inside the bottle but the bottleneck
possesses a very small outer radius with only 10−15 meters 100 billion time smaller than a millimeter
therefore reducing the probabilities of collisions against large objects in interstellar space.In this work we
apply the Broeck idea to the Natario warp drive spacetime but out bottle have 200 kilometers of inner
size 1000 times the size of the original Broeck bottle and we use the original Alcubierre shape function
to generate our version of the Broeck bottle with very low energy density requirements.The Broeck idea
is more than welcome and solves definitively the problem of the collisions against large objects. Any
future development for the Natario warp drive must encompass the Broeck bottle and this approach
must be named as the Natario-Broeck warp drive.

∗spacetimeshortcut@yahoo.com
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1 Introduction:

The warp drive as a solution of the Einstein field equations of General Relativity that allows superluminal
travel appeared first in 1994 due to the work of Alcubierre.([1]) The warp drive as conceived by Alcu-
bierre worked with an expansion of the spacetime behind an object and contraction of the spacetime in
front.The departure point is being moved away from the object and the destination point is being moved
closer to the object.The object do not moves at all1.It remains at the rest inside the so called warp bubble
but an external observer would see the object passing by him at superluminal speeds(pg 8 in [1])(pg 1 in [2]).

Later on in 2001 another warp drive appeared due to the work of Natario.([2]).This do not expands
or contracts spacetime but deals with the spacetime as a ”strain” tensor of Fluid Mechanics(pg 5 in [2]).
Imagine the object being a fish inside an aquarium and the aquarium is floating in the surface of a river but
carried out by the river stream.The warp bubble in this case is the aquarium whose walls do not expand or
contract. An observer in the margin of the river would see the aquarium passing by him at a large speed
but inside the aquarium the fish is at the rest with respect to his local neighborhoods.

However there are 3 major drawbacks that compromises the warp drive physical integrity as a viable
tool for superluminal interstellar travel.

The first drawback is the quest of large negative energy requirements enough to sustain the warp bubble.
In order to travel to a ”nearby” star at 20 light-years at superluminal speeds in a reasonable amount of
time a ship must attain a speed of about 200 times faster than light.However the negative energy density
at such a speed is directly proportional to the factor 1048 which is 1.000.000.000.000.000.000.000.000 times
bigger in magnitude than the mass of the planet Earth!!!(see [7],[8] and [9]).

Another drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar space is
not empty and from a real point of view a ship at superluminal speeds would impact asteroids,comets,interstellar
space dust and photons.(see [5],[7] and [8]).

The last drawback raised against the warp drive is the fact that inside the warp bubble an astronaut can-
not send signals with the speed of the light to control the front of the bubble because an Horizon(causally
disconnected portion of spacetime)is established between the astronaut and the warp bubble.(see [5],[7]
and [8]).

We can demonstrate that the Natario warp drive can ”easily” overcome these obstacles as a valid can-
didate for superluminal interstellar travel(see [7],[8] and [9]).

In this work we cover only the Natario warp drive and we avoid comparisons between the differences
of the models proposed by Alcubierre and Natario since these differences were already deeply covered by
the existing available literature.(see [5],[6] and [7])However we use the Alcubierre shape function to define
its Natario counterpart.

1do not violates Relativity
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Alcubierre([12]) used the so-called 3+1 Arnowitt-Dresner-Misner(ADM) formalism using the approach
of Misner-Thorne-Wheeler(MTW )([11]) to develop his warp drive theory.As a matter of fact the first
equation in his warp drive paper is derived precisely from the original 3 + 1 ADM formalism(see eq 2.2.4
pgs [67(b)],[82(a)] in [12], see also eq 1 pg 3 in [1])2 and we have strong reasons to believe that Natario
which followed the Alcubierre steps also used the original 3 + 1 ADM formalism to develop the Natario
warp drive The Natario warp drive equation that obeys the 3 + 1 ADM formalism is given below:3

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (1)

ds2 = dt2 − [(drs−Xrsdt)2 + (rs2)(dθ −Xθdt)2] (2)

From the works in [5],[7] and [8] we can see that impacts of the warp bubble against the particles of
the Interstellar Medium IM (eg:asteroids,comets,space debris,supernova remnants,clouds of gas etc) are
tremendously hazardous for a spaceship at superluminal velocities. However and according to the cited
works we know that the negative energy density in the case of the Natario warp bubble do not vanish in
the equatorial plane meaning that the repulsive gravitational behavior of the negative energy density in
front of the ship can theoretically deflect the IM particles offering some degree of protection to the ship
and crew members.

Although we are counting on the negative energy density in front of the ship in the case of the Natario
warp drive to offer protection to the ship and the crew members we know that collisions of the warp bubble
walls against IM particles are unavoidable and as large the warp bubble is 4 this means a large bubble
surface exposed to heavy bombardment by the IM particles.

The ideal situation for a warp bubble in a real superluminal interstellar spaceflight would the one in
which the warp bubble possesses a large internal diameter with the size enough to contains a spaceship
inside the bubble but the region of the bubble in contact with the interstellar space and hence with the
IM particles remains very small reducing the probabilities of dangerous collisions.

What we need is a warp bubble with a large internal radius able to accommodate a ship inside while
having a submicroscopic outer radius and a submicroscopic contact external surface in order to better
avoid the collisions against the IM particles.

Some years ago in 1999 Chris Van Den Broeck appeared with this idea. Broeck introduced inside the
Alcubierre warp drive metric in 1999 a new mathematical term B(rs) with very interesting features:B(rs)
creates inside the Alcubierre warp bubble a spacetime distortion with the shape of a bottle.The bottle have
an inner large radius and hence a large diameter with the size enough to contains a spaceship inside the
bottle but the part of the bottle in contact with our Universe and hence with the dangerous IM particles is
the bottle bottleneck wirh a very small microscopic radius and hence a small microscopic surface exposed
to collisions against the IM particles protecting effectively the ship inside the bottle.Although the bottle
can have an arbitrarily large size an external observer in our Universe would only see the microscopic
bottleneck.

2see the Remarks section on our system to quote pages in bibliographic references
3see Appendices A and B for details
4the warp bubble must possesses size enough to contains a spaceship inside
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Broeck created inside an Alcubierre warp bubble with a radius R of 3 × 10−15 meters a bottle with
200 meters of inner diameter and a microscopic bottleneck radius with only 10−15 meters. So although a
spaceship is contained(or hidden) in the inner space of a bottle with 200 meters of diameter the part of
the bottle an external observer in our Universe would see would only be the bottleneck of the bottle with
10−15 meters and 10−15 meters is 1012 times or 100.000.000.000 times or 100 billion times smaller than a
millimeter.(see pg 5 in [10]).

Effectively a surface with 10−15 square millimeters have less probabilities to suffer a collision than a
surface of 100 square meters.And with plenty of room space with 200 meters large enough to accommodate
a spaceship and hidden from our Universe and in consequence being kept isolated from the dangerous IM
particles.The Broeck idea is more than welcome.5

The Broeck bottle provides the ideal scenario for the Natario warp drive and in this work we apply
the Broeck mathematical term B(rs) to the Natario warp drive equation in ADM formalism but using
the original Alcubierre shape function to generate the term B(rs).

Our successful approach allows ourselves to generate a Broeck bottle inside the Natario warp drive with
a bottleneck radius also with 10−15 meters but with 200 kilometers of inner diameter.200 kilometers are
1000 times the size of the original Broeck bottle and provides a room of space large enough to contains
not only a single spaceship but a large number of spaceships and with very low energy density requirements.

This work is organized as follows:

In section 2 we present the definition of the Natario warp drive equation in the original ADM formal-
ism in order to explain in section 12 how the Natario spacetime geometry can receive in its structure the
inclusion of the mathematical term B(rs) that generates the Broeck bottle.

In section 3 we explain how the Alcubierre shape function f(rs) can be used to define the Natario shape
function counterpart N(rs) using also the warp factor WF and we calculate the derivatives of the Natario
shape function in order to obtain in the formulas of the derivatives the terms 1 − f(rs) and f(rs) raised
to powers of the warp factor WF .

In sections 4 to 10 we demonstrate that these terms cancel each other in the derivatives of the Natario
shape function except in the warp bubble radius giving a very low value for the derivatives of the Natario
shape function over the bubble radius and in consequence very low values for the negative energy density.

In section 11 we demonstrate that the negative energy density in the equatorial plane of the Natario
warp bubble do not vanish and due to the gravitational repulsive behavior of the negative energy density
this can provide protection against collisions with the Interstellar Medium IM that unavoidably would
occur in a real superluminal spaceflight.

5see Appendices G,H and I
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Also in section 11 we discuss the Interstellar Medium IM and we arrive at the conclusion that the
negative energy density of the warp bubble walls must be higher in modulus than the positive energy den-
sity of the IM in order to allow the gravitational repulsion of the IM particles by the warp bubble walls
and we introduce an empirical formula to obtain the desirable amount of negative energy density needed
to deflect the IM particles multiplying the modulus of the density of the IM by the Machian coefficient
of the fraction vs

c which means to say the multiples of the light speed c in the spaceship velocity vs.The
negative energy density of the Natario warp drive must exceed this product in modulus.

Collisions between the walls of the warp bubble and the IM particles would certainly occur and although
the negative energy density in front of the Natario warp bubble can theoretically protect the ship we borrow
in section 12 the idea of Chris Van Den Broeck proposed some years ago in 1999 in order to increase the
degree of protection.

Any future development for the Natario warp drive must encompass the more than welcome idea of the
Broeck bottle.As a matter of fact we are so confident in the success of the junction of both ideas that we
propose the name of the new combined solution as the Natario-Broeck warp drive spacetime.

In this work we use the Geometrized System of Units in which c = G = 1 for geometric purposes and the
International System of Units SI or MKS for purposes or energy density calculations.

We also make extensive use of footnotes and Appendices and this may be regarded ad an exhaustive
reading for experienced readers already familiarized with the ideas of Alcubierre Broeck or Natario but
these Appendices and footnotes are mainly destined to students beginners or readers at an introductory
level eager to assimilate these ideas.

Although this work was designed to be an independent self-contained and self-consistent work it may
be regarded as a companion work to our works in [5],[7] and [8]
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2 The equation of the Natario warp drive spacetime metric in the
original 3 + 1 ADM formalism

The equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:6

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (3)

Or by:

ds2 = dt2 − [(drs−Xrsdt)2 + (rs2)(dθ −Xθdt)2] (4)

The equation of the Natario vector nX(pg 2 and 5 in [2]) is given by:

nX = Xrsdrs + Xθrsdθ (5)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2])7

Xrs = 2vsn(rs) cos θ (6)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (7)

The covariant shift vector components Xrs and Xθ are given by:

Xrs = Xrs = 2vsn(rs) cos θ (8)

Xθ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (9)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given above satisfies the Natario requirements for a
warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [2])

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]). In a 1 + 1 spacetime the equatorial plane we get¿:

ds2 = (1−XrsX
rs)dt2 + 2(Xrsdrs)dt− drs2 (10)

6see Appendix A for details
7see also Appendix B for details
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But since Xrs = Xrs the equation can be written as given below:

ds2 = (1−XrsX
rs)dt2 + 2(Xrsdrs)dt− drs2 (11)

ds2 = (1− [Xrs]2)dt2 + 2(Xrsdrs)dt− drs2 (12)

ds2 = dt2 − [(drs−Xrsdt)2] (13)
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3 The Natario warp drive continuous shape function

Introducing here f(rs) as the Alcubierre shape function that defines the Alcubierre warp drive spacetime
we can construct the Natario shape function N(rs) that defines the Natario warp drive spacetime using
its Alcubierre counterpart.Below is presented the equation of the Alcubierre shape function.8.

f(rs) =
1
2
[1− tanh[@(rs−R)] (14)

rs =
√

(x− xs)2 + y2 + z2 (15)

According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0 outside the bubble
while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre warp
drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]). In the Alcubierre shape function xs is the center
of the warp bubble where the ship resides. R is the radius of the warp bubble and @ is the Alcubierre
parameter related to the thickness.According to Alcubierre these can have arbitrary values.We outline here
the fact that according to pg 4 in [1] the parameter @ can have arbitrary values.rs is the path of the
so-called Eulerian observer that starts at the center of the bubble xs = rs = 0 and ends up outside the
warp bubble rs > R.

The square derivative of the Alcubierre shape function is given by:

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (16)

According with Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < N(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp

drive. The Natario warp drive continuous shape function can be defined by:

N(rs) = [
1
2
][1− f(rs)WF ]WF (17)

This shape function gives the result of N(rs) = 0 inside the warp bubble and N(rs) = 1
2 outside

the warp bubble while being 0 < N(rs) < 1
2 in the Natario warped region. Note that the Alcubierre

shape function is being used to define its Natario shape function counterpart.For the Natario shape func-
tion introduced above it is easy to figure out when f(rs) = 1(interior of the Alcubierre bubble) then
N(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the Alcubierre bubble)then
N(rs) = 1

2(exterior of the Natario bubble).

The derivative square of the Natario shape function is :

N ′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (18)

The term WF in the Natario shape function is dimensionless too:it is the warp factor.It is important to
outline that the warp factor WF >> |R| is much greater than the modulus of the bubble radius.Note that
the square derivative of the Alcubierre shape function appears in the expression of the square derivative
of the Natario shape function.

8tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|
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• Numerical plot for the Alcubierre and Natario shape functions with @ = 50000 bubble radius R = 100
meters and warp factor with a value WF = 200

rs f(rs) N(rs) f ′(rs)2 N ′(rs)2

9, 99970000000E + 001 1 0 2, 650396620740E − 251 0
9, 99980000000E + 001 1 0 1, 915169647489E − 164 0
9, 99990000000E + 001 1 0 1, 383896564748E − 077 0
1, 00000000000E + 002 0, 5 0, 5 6, 250000000000E + 008 3, 872591914849E − 103
1, 00001000000E + 002 0 0, 5 1, 383896486082E − 077 0
1, 00002000000E + 002 0 0, 5 1, 915169538624E − 164 0
1, 00003000000E + 002 0 0, 5 2, 650396470082E − 251 0

According with the numerical plot above when @ = 50000 the square derivative of the Alcubierre shape
function is zero9 from the center of the bubble until 99, 996 meters.At 99, 997 meters the square derivative
of the Alcubierre shape function is 2, 65 × 10−251 and starts to increase reaching the maximum value of
6, 25×108 at 100 meters from the center of the bubble precisely in the bubble radius decreasing again to the
minimum value of 2, 65× 10−251 at 100, 003 meters from the center of the bubble.At 100.004 meters from
the center of the bubble the square derivative of the Alcubierre shape function is again zero.Note that with
respect to the distance of 100 meters from the center of the bubble exactly the bubble radius the powers
of the square derivative of the Alcubierre shape function are diametrically symmetrically opposed.We have
the values of 10−77 at 99, 999 meters and at 100, 001 meters.We have the value of 10−164 at 99, 998 meters
and at 100, 002 meters.So the thickness of the warped region is limited or defined by the square derivatives
of the shape function when these are different than zero.In the case of @ = 50000 the warped region starts
at 99, 997 meters and ends up at 100, 003 meters.The thickness of the warped region is then 0, 006 meters.

Note that inside the bubble the Alcubierre shape function possesses the value of 1 and the Natario shape
function possesses the value of 0 and outside the bubble the Alcubierre shape function possesses the value
of 0 and the Natario shape function possesses the value of 1

2 as requested.

Also while the square derivative of the Alcubierre shape function is not zero inside and outside the bubble
however at the neighborhoods of the bubble radius and possesses the maximum value exactly at the bubble
radius the square derivative of the Natario shape function is always zero inside and outside the bubble and
possesses also a maximum value at the bubble radius however this value is extremely small when compared
to its Alcubierre counterpart.

9not exactly zero but possesses extremely low values and we are limited by the floating-point precision of our software
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• Numerical plot for the Alcubierre and Natario shape functions with @ = 75000 bubble radius R = 100
meters and warp factor with a value WF = 200

rs f(rs) N(rs) f ′(rs)2 N ′(rs)2

9, 99980000000E + 001 1 0 5, 963392481410E − 251 0
9, 99990000000E + 001 1 0 1, 158345097767E − 120 0
1, 00000000000E + 002 0, 5 0, 5 1, 406250000000E + 009 8, 713331808411E − 103
1, 00001000000E + 002 0 0, 5 1, 158344999000E − 120 0
1, 00002000000E + 002 0 0, 5 5, 963391972940E − 251 0

According with the numerical plot above when @ = 75000 the square derivative of the Alcubierre shape
function is zero from the center of the bubble until 99, 997 meters.At 99, 998 meters the square derivative
of the Alcubierre shape function is 5, 96 × 10−251 and starts to increase reaching the maximum value of
1, 4×109 at 100 meters from the center of the bubble precisely in the bubble radius decreasing again to the
minimum value of 5, 96× 10−251 at 100, 002 meters from the center of the bubble.At 100.003 meters from
the center of the bubble the square derivative of the Alcubierre shape function is again zero.Note that with
respect to the distance of 100 meters from the center of the bubble exactly the bubble radius the powers
of the square derivative of the Alcubierre shape function are diametrically symmetrically opposed.We have
the values of 10−120 at 99, 999 meters and at 100, 001 meters.So the thickness of the warped region is
limited or defined by the square derivatives of the shape function when these are different than zero.In the
case of @ = 75000 the warped region starts at 99, 998 meters and ends up at 100, 002 meters.The thickness
of the warped region is then 0, 004 meters.

Note that inside the bubble the Alcubierre shape function possesses the value of 1 and the Natario shape
function possesses the value of 0 and outside the bubble the Alcubierre shape function possesses the value
of 0 and the Natario shape function possesses the value of 1

2 as requested.

Also while the square derivative of the Alcubierre shape function is not zero inside and outside the bubble
however at the neighborhoods of the bubble radius and possesses the maximum value exactly at the bubble
radius the square derivative of the Natario shape function is always zero inside and outside the bubble and
possesses also a maximum value at the bubble radius however this value is extremely small when compared
to its Alcubierre counterpart.

The previous plots demonstrate the important role of the thickness parameter @ in the warp bubble
geometry wether in both Alcubierre or Natario warp drive spacetimes.For a bubble of 100 meters radius
R = 100 the regions where 1 > f(rs) > 0(Alcubierre warped region) and 0 < N(rs) < 1

2(Natario warped
region) becomes thicker or thinner as @ becomes higher.In the case of @ = 50000 the warped region starts
at 99, 997 meters and ends up at 100, 003 meters.The thickness of the warped region is then 0, 006 meters
and in the case of @ = 75000 the warped region starts at 99, 998 meters and ends up at 100, 002 meters.The
thickness of the warped region is then 0, 004 meters.

Then the geometric position where both Alcubierre and Natario warped regions begins with respect to
R the bubble radius is rs = R − ε < R and the geometric position where both Alcubierre and Natario
warped regions ends with respect to R the bubble radius is rs = R + ε > R.The thickness of the warp
bubble is then 2× ε.As large as @ becomes as smaller ε becomes too.
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Note from the plots of the previous pages that we really have two warped regions:

• 1)-The geometrized warped region where 1 > f(rs) > 0(Alcubierre warped region) and 0 < N(rs) <
1
2 (Natario warped region).The geometrized warped region lies precisely in the bubble radius.10

• 2)-The energized warped region where the derivative squares of both Alcubierre and Natario shape
functions are not zero.

The parameter @ affects both energized warped regions wether in Alcubierre or Natario cases but is
more visible for the Alcubierre shape function because the warp factor WF in the Natario shape func-
tions squeezes the energized warped region in a region of very small thickness centered in the bubble radius.

The negative energy density for the Natario warp drive is given by(see pg 5 in [2])

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(N ′(rs))2 cos2 θ +

(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(19)

Converting from the Geometrized System of Units to the International System we should expect for
the following expression11:

ρ = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ +

(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
. (20)

Rewriting the Natario negative energy density in cartezian coordinates we should expect for12:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(N ′(rs))2(

x

rs
)2 +

(
N ′(rs) +

rs

2
N ′′(rs)

)2
(

y

rs
)2
]

(21)

Considering as a simplified case the equatorial plane(1 + 1 dimensional spacetime with rs = x − xs
,y = 0 and center of the bubble xs = 0) we have:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(N ′(rs))2

]
(22)

Note that in the above expressions for the negative energy density the warp drive speed vs appears raised
to a power of 2 and it is being multiplied by the square derivative of the shape function. Considering our
Natario warp drive moving with vs = 200 which means to say 200 times light speed in order to make a
round trip from Earth to a nearby star at 20 light-years away in a reasonable amount of time(in months
not in years) we would get in the expression of the negative energy the factor c2 = (3 × 108)2 = 9 × 1016

being divided by 6, 67× 10−11 giving 1, 35× 1027 and this is multiplied by (6× 1010)2 = 36× 1020 coming
from the term vs = 200 giving 1, 35× 1027 × 36× 1020 = 1, 35× 1027 × 3, 6× 1021 = 4, 86× 1048 !!!

A number with 48 zeros!!!The planet Earth have a mass13 of about 6× 1024kg

10In the bubble radius the presented value for the Natario shape function in the numerical plots of the previous pages is
0, 5 but actually is a value between 0 < N(rs) < 1

2
but very close to 0, 5.Again we are limited by the floating-point precision

of our software
11see Appendix D
12see Appendix C
13see Wikipedia:The free Encyclopedia
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This term is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet
Earth!!!or better:The amount of negative energy density needed to sustain a warp bubble at a speed of 200
times faster than light requires the magnitude of the masses of 1.000.000.000.000.000.000.000.000 planet
Earths!!!

Note that if the negative energy density is proportional to 1048 this would render the warp drive im-
possible but fortunately the term 1048 is being multiplied the square derivative of the shape function
and in the Natario case the square derivative of the shape function possesses values of 10−102 or 10−103

completely obliterating the factor 1048 making the warp drive negative energy density more ”affordable”
because 1048× 10−102 = 10−54 Joules

meters3 a very low and affordable negative energy density.So in order to get
a physically feasible Natario warp drive the square derivative of the Natario shape function must obliterate
the factor 1048 and fortunately this is really happening with our chosen shape function .

Now we need to explain how and why the warp factor WF in the Natario shape functions squeezes
the energized warped region in a region of very small thickness centered in the bubble radius.

The Alcubierre shape function and its derivative square are given by:

f(rs) =
1
2
[1− tanh[@(rs−R)] (23)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (24)

The Natario shape function and its derivative square are given by:

N(rs) = [
1
2
][1− f(rs)WF ]WF (25)

N ′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (26)

N ′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][

1
4
[

@2

cosh4[@(rs−R)]
]] (27)

N ′(rs)2 = [
1
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
] (28)

The negative energy density in the 1 + 1 Natario warp drive spacetime is given by:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(N ′(rs))2

]
(29)

Examining now the negative energy density in the 1 + 1 spacetime from the Natario shape function
with warp factors:

N ′(rs)2 = [
1
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
] (30)

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
[
3
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
]
]

(31)
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The dominant term here is the term resulting from the warp factor which is:

[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] (32)

This term is composed by two expressions that complementary neutralizes each other giving values of
zero inside and outside the bubble squeezing the Natario warped region in a thin layer geometrically placed
around the neighborhoods of the bubble radius.

The first expression that neutralizes the square derivative of the Natario shape function inside the bubble
is:

[1− f(rs)WF ]2(WF−1) (33)

And the second expression that neutralizes the square derivative of the Natario shape function outside
the bubble is:

[f(rs)2(WF−1)] (34)

Inside the bubble f(rs) = 1 and [1 − f(rs)WF ]2(WF−1) = 0 resulting in a N ′(rs)2 = 0.This is the reason
why the Natario shape function with warp factors do not have numerical values for the derivatives inside
the bubble.

Outside the bubble f(rs) = 0 and [f(rs)2(WF−1)] = 0 resulting also in a N ′(rs)2 = 0.This is the rea-
son why the Natario shape function with warp factors do not have numerical values for the derivatives
outside the bubble.

Inside the bubble f(rs) = 1 and [f(rs)2(WF−1)] = 1 however [1 − f(rs)WF ]2(WF−1) = 0 and hence the
warp factor product [1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] = 0.

Outside the bubble f(rs) = 0 and [f(rs)2(WF−1)] = 0 however [1 − f(rs)WF ]2(WF−1) = 1 and hence
the warp factor product is also [1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] = 0.

Note that from the statements pointed above when one of the expressions have the value of 1 the other
have the value of 0 and vice-versa.This explains how and why each expression complementary neutralizes
each other in the regions inside and outside the bubble
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In the Alcubierre warped region14 1 > f(rs) > 0.In this region the derivatives of the Natario shape func-
tion do not vanish because if f(rs) < 1 then f(rs)WF << 1 resulting in an [1 − f(rs)WF ]2(WF−1) << 1
but greater than zero.Consider for example a warp factor WF = 200 and an Alcubierre shape func-
tion f(rs) = 1

2 then f(rs)WF = f(rs)200 = 1
2200 .Since 2200 = 1, 6069380442590E + 060 then 1

2200 =
6, 2230152778612E − 061 and 6, 2× 10−61 is very small when compared to 1

2 .

.Also if f(rs) < 1 then [f(rs)2(WF−1)] << 1 too and using the numbers given above then f(rs)398 =
1

2398 .Since 2398 = 6, 4556246952173E + 119 then 1
2398 = 1, 5490367659397E − 120 and 1, 5 × 10−120 is also

very small when compared to 1
2 .

Note that if [1− f(rs)WF ]2(WF−1) << 1 and [f(rs)2(WF−1)] << 1 then their product
[1 − f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] <<<< 1 resulting in a very low derivative square for the Natario
shape function in the Alcubierre warped region and hence in the Natario warped region with both centered
geometrically over the bubble radius.

Note also that inside the Alcubierre warped region 1 > f(rs) > 0 when f(rs) approaches 1 N ′(rs)2

approaches 0 due to the factor [1− f(rs)WF ]2(WF−1) and when f(rs) approaches 0 N ′(rs)2 approaches 0
again due to the factor [f(rs)2(WF−1)] .Both expressions complementary neutralizes each other giving a
very small product and hence a very small square derivative for the Natario shape function.

We will examine the above statement of the expressions that complementary neutralizes each other in
the Natario warp drive 1 + 1 spacetime with details in the section 4.

Now we must analyze the more sophisticated case of the Natario warp drive in a real 3 + 1 spacetime
where the negative energy density in this case is given by the following expressions(pg 5 in [2])15:

• 1)-3 + 1 spacetime expression for the negative energy density with trigonometric terms:

ρ = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ +

(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
. (35)

• 2)-3 + 1 spacetime expression for the negative energy density with cartezian coordinates16:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(N ′(rs))2(

x

rs
)2 +

(
N ′(rs) +

rs

2
N ′′(rs)

)2
(

y

rs
)2
]

(36)

14Remember that the Natario warped region is defined in function of its Alcubierre counterpart
15see Appendix D
16see Appendix C
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Working with the expanded trigonometric 3 + 1 spacetime expression for the negative energy density
we have:

ρ3+1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ

]
− c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(37)

ρ3+1 = ρ1 + ρ2 (38)

ρ1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ

]
(39)

ρ2 = −c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(40)

Comparing the above expressions with the negative energy density in the 1 + 1 spacetime :

ρ1+1 = −c2

G

v2
s

8π

[
3(N ′(rs))2

]
(41)

We can see that the term in ρ1 almost matches the term in the 1 + 1 spacetime except for the trigono-
metric term in cos2 θ and this term produces a very low derivative square for the Natario shape function
of about 10−103 and this will be seen in section 3.So the term ρ2 is the term that really accounts for the
negative energy density in the 3 + 1 spacetime.

The dominant expression in ρ2 is: [(
N ′(rs) +

rs

2
N ′′(rs)

)2
]

(42)

The expansion of the square in the binomial expression gives:[(
N ′(rs) +

rs

2
N ′′(rs)

)2
]

= N ′(rs)2 + 2N ′(rs)
rs

2
N ′′(rs) + N ′′(rs)2 (43)

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
]

= N ′(rs)2 + N ′(rs)rsN ′′(rs) + N ′′(rs)2 (44)

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
]

= N ′(rs)2 + rsN ′(rs)N ′′(rs) + N ′′(rs)2 (45)

Since the derivative of second order of the Natario shape function N ′′(rs) is a lengthly expression with
many algebraic terms then its square N ′′(rs)2 results in an even more complicated expression with even
more algebraic terms.And the product of both the first and second order derivatives N ′(rs)N ′′(rs) also
results in a lengthly expression.Then in order to avoid algebraic complications we must work numerically
with the new dominant term which is:

N ′(rs) +
rs

2
N ′′(rs) (46)

Raising to the square only the final numerically evaluated result.
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The new dominant term in the expression for the negative energy density of the Natario warp drive in
a 3 + 1 spacetime is:

N ′(rs) +
rs

2
N ′′(rs) (47)

The first order derivative of the Natario shape function is given by:

N ′(rs) = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′(rs) (48)

With f ′(rs) being the first order derivative of the Alcubierre shape function

f ′(rs) = −1
2
[

@
cosh2[@(rs−R)]

] (49)

The second order derivative of the Natario shape function is given by the lengthly expression:

N ′′(rs) = [
1
2
]WF 3(WF − 1)[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)]f ′(rs)2 (50)

−[
1
2
]WF 2[1− f(rs)WF ](WF−1)(WF − 1)[f(rs)(WF−2)]f ′(rs)2 (51)

−[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′′(rs) (52)

With f ′′(rs) being the second order derivative of the Alcubierre shape function

f ′′(rs) = [
(@2)sinh[@(rs−R)
cosh3[@(rs−R)]

] (53)

From above we can see that the square of the second order derivative of the Natario shape function
N ′′(rs)2 would result in a very algebraic complicated expression.In order to simplify our study we decom-
pose the second order derivative of the Natario shape function in separated algebraic expressions as shown
below

N ′′(rs) = A + B + C (54)

With the expressions for A B and C given respectively by:

A = [
1
2
]WF 3(WF − 1)[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)]f ′(rs)2 (55)

B = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)(WF − 1)[f(rs)(WF−2)]f ′(rs)2 (56)

C = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′′(rs) (57)
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Then the expressions that really accounts for a numerical evaluation of the new dominant term in the
equation for the negative energy density of the Natario warp drive in a 3 + 1 spacetime which is:

N ′(rs) +
rs

2
N ′′(rs) = N ′(rs) +

rs

2
(A + B + C) (58)

Are the following ones:

N ′(rs) = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′(rs) (59)

A = [
1
2
]WF 3(WF − 1)[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)]f ′(rs)2 (60)

B = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)(WF − 1)[f(rs)(WF−2)]f ′(rs)2 (61)

C = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′′(rs) (62)

Since

N ′′(rs) = A + B + C (63)

With f ′(rs) being the first order derivative of the Alcubierre shape function

f ′(rs) = −1
2
[

@
cosh2[@(rs−R)]

] (64)

And f ′′(rs) being the second order derivative of the Alcubierre shape function

f ′′(rs) = [
(@2)sinh[@(rs−R)
cosh3[@(rs−R)]

] (65)

Note that the most meaningful term f(rs) that occurs in all these expressions raised to powers of the
warp factor WF is the Alcubierre shape function.

f(rs) =
1
2
[1− tanh[@(rs−R)] (66)

And we recall that the Natario shape function defined in function of its Alcubierre counterpart is given
by:

N(rs) = [
1
2
][1− f(rs)WF ]WF (67)
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Evaluating the first order derivative of Natario shape function which is given by:

N ′(rs) = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′(rs) (68)

With f ′(rs) being the first order derivative of the Alcubierre shape function

f ′(rs) = −1
2
[

@
cosh2[@(rs−R)]

] (69)

The dominant term here is the term resulting from the warp factor which is:

[1− f(rs)WF ](WF−1)[f(rs)(WF−1)] (70)

This term is composed by two expressions that complementary neutralizes each other giving values of
zero inside and outside the bubble squeezing the Natario warped region in a thin layer geometrically placed
around the neighborhoods of the bubble radius.

The first expression that neutralizes the derivative of the Natario shape function inside the bubble is:

[1− f(rs)WF ](WF−1) (71)

And the second expression that neutralizes the derivative of the Natario shape function outside the
bubble is:

[f(rs)(WF−1)] (72)

Inside the bubble f(rs) = 1 and [1 − f(rs)WF ](WF−1) = 0 resulting in a N ′(rs) = 0.This is the rea-
son why the Natario shape function with warp factors do not have numerical values for the derivatives
inside the bubble.

Outside the bubble f(rs) = 0 and [f(rs)(WF−1)] = 0 resulting also in a N ′(rs) = 0.This is the reason
why the Natario shape function with warp factors do not have numerical values for the derivatives outside
the bubble.

Inside the bubble f(rs) = 1 and [f(rs)(WF−1)] = 1 however [1 − f(rs)WF ](WF−1) = 0 and hence the
warp factor product [1− f(rs)WF ](WF−1)[f(rs)(WF−1)] = 0.

Outside the bubble f(rs) = 0 and [f(rs)(WF−1)] = 0 however [1 − f(rs)WF ](WF−1) = 1 and hence the
warp factor product is also [1− f(rs)WF ](WF−1)[f(rs)(WF−1)] = 0.

Note that from the statements pointed above when one of the expressions have the value of 1 the other
have the value of 0 and vice-versa.This explains how and why each expression complementary neutralizes
each other in the regions inside and outside the bubble

18



Note that if [1− f(rs)WF ](WF−1) << 1 and [f(rs)(WF−1)] << 1 then their product
[1−f(rs)WF ](WF−1)[f(rs)(WF−1)] <<<< 1 resulting in a very low derivative for the Natario shape function
in the Alcubierre warped region and hence in the Natario warped region with both centered geometrically
over the bubble radius.

We will examine the above statement of the expressions that complementary neutralizes each other in
the first order derivative of Natario shape function with details in the section 5.
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Evaluating now the term A in the second order derivative of the Natario shape function given by:

A = [
1
2
]WF 3(WF − 1)[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)]f ′(rs)2 (73)

With f ′(rs)2 being the derivative square of the Alcubierre shape function which is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (74)

The dominant term here is the term resulting from the warp factor which is:

[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)] (75)

This term is composed by two expressions that complementary neutralizes each other giving values of
zero inside and outside the bubble squeezing the Natario warped region in a thin layer geometrically placed
around the neighborhoods of the bubble radius.

The first expression that neutralizes the term A in the second order derivative of the Natario shape
function inside the bubble is:

[1− f(rs)WF ](WF−2) (76)

And the second expression that neutralizes the term A in the second order derivative of the Natario
shape function outside the bubble is:

[f(rs)2(WF−1)] (77)

Inside the bubble f(rs) = 1 and [1− f(rs)WF ](WF−2) = 0 resulting in a A = 0.

Outside the bubble f(rs) = 0 and [f(rs)2(WF−1)] = 0 resulting also in a A = 0.

Inside the bubble f(rs) = 1 and [f(rs)2(WF−1)] = 1 however [1 − f(rs)WF ](WF−2) = 0 and hence the
warp factor product [1− f(rs)WF ](WF−2)[f(rs)2(WF−1)] = 0.

Outside the bubble f(rs) = 0 and [f(rs)2WF−1)] = 0 however [1 − f(rs)WF ](WF−2) = 1 and hence
the warp factor product is also [1− f(rs)WF ](WF−2)[f(rs)2(WF−1)] = 0.

Note that from the statements pointed above when one of the expressions have the value of 1 the other
have the value of 0 and vice-versa.This explains how and why each expression complementary neutralizes
each other in the regions inside and outside the bubble
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Note that if [1− f(rs)WF ](WF−2) << 1 and [f(rs)2(WF−1)] << 1 then their product
[1−f(rs)WF ](WF−2)[f(rs)2(WF−1)] <<<< 1 resulting in a very low value for the term A in the Alcubierre
warped region and hence in the Natario warped region with both centered geometrically over the bubble
radius.

We will examine the above statement of the expressions that complementary neutralizes each other in
the term A of the second order derivative of Natario shape function with details in the section 6.
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Evaluating now the term B in the second order derivative of the Natario shape function given by:

B = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)(WF − 1)[f(rs)(WF−2)]f ′(rs)2 (78)

With f ′(rs)2 being the derivative square of the Alcubierre shape function which is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (79)

The dominant term here is the term resulting from the warp factor which is:

[1− f(rs)WF ](WF−1)[f(rs)(WF−2)] (80)

This term is composed by two expressions that complementary neutralizes each other giving values of
zero inside and outside the bubble squeezing the Natario warped region in a thin layer geometrically placed
around the neighborhoods of the bubble radius.

The first expression that neutralizes the term B in the second order derivative of the Natario shape
function inside the bubble is:

[1− f(rs)WF ](WF−1) (81)

And the second expression that neutralizes the term B in the second order derivative of the Natario
shape function outside the bubble is:

[f(rs)(WF−2)] (82)

Inside the bubble f(rs) = 1 and [1− f(rs)WF ](WF−1) = 0 resulting in a B = 0.

Outside the bubble f(rs) = 0 and [f(rs)(WF−2)] = 0 resulting also in a B = 0.

Inside the bubble f(rs) = 1 and [f(rs)(WF−2)] = 1 however [1 − f(rs)WF ](WF−1) = 0 and hence the
warp factor product [1− f(rs)WF ](WF−1)[f(rs)(WF−2)] = 0.

Outside the bubble f(rs) = 0 and [f(rs)WF−2)] = 0 however [1 − f(rs)WF ](WF−1) = 1 and hence the
warp factor product is also [1− f(rs)WF ](WF−1)[f(rs)(WF−2)] = 0.

Note that from the statements pointed above when one of the expressions have the value of 1 the other
have the value of 0 and vice-versa.This explains how and why each expression complementary neutralizes
each other in the regions inside and outside the bubble
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Note that if [1− f(rs)WF ](WF−1) << 1 and [f(rs)(WF−2)] << 1 then their product
[1− f(rs)WF ](WF−1)[f(rs)(WF−2)] <<<< 1 resulting in a very low value for the term B in the Alcubierre
warped region and hence in the Natario warped region with both centered geometrically over the bubble
radius.

We will examine the above statement of the expressions that complementary neutralizes each other in
the term B of the second order derivative of Natario shape function with details in the section 7.
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Evaluating now the term C in the second order derivative of the Natario shape function given by:

C = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′′(rs) (83)

With f ′′(rs) being the second order derivative of the Alcubierre shape function

f ′′(rs) = [
(@2)sinh[@(rs−R)
cosh3[@(rs−R)]

] (84)

The dominant term here is the term resulting from the warp factor which is:

[1− f(rs)WF ](WF−1)[f(rs)(WF−1)] (85)

This term is composed by two expressions that complementary neutralizes each other giving values of
zero inside and outside the bubble squeezing the Natario warped region in a thin layer geometrically placed
around the neighborhoods of the bubble radius.

The first expression that neutralizes the term C in the second order derivative of the Natario shape
function inside the bubble is:

[1− f(rs)WF ](WF−1) (86)

And the second expression that neutralizes the term C in the second order derivative of the Natario
shape function outside the bubble is:

[f(rs)(WF−1)] (87)

Inside the bubble f(rs) = 1 and [1− f(rs)WF ](WF−1) = 0 resulting in a C = 0.

Outside the bubble f(rs) = 0 and [f(rs)(WF−1)] = 0 resulting also in a C = 0.

Inside the bubble f(rs) = 1 and [f(rs)(WF−1)] = 1 however [1 − f(rs)WF ](WF−1) = 0 and hence the
warp factor product [1− f(rs)WF ](WF−1)[f(rs)(WF−1)] = 0.

Outside the bubble f(rs) = 0 and [f(rs)(WF−1)] = 0 however [1 − f(rs)WF ](WF−1) = 1 and hence the
warp factor product is also [1− f(rs)WF ](WF−1)[f(rs)(WF−1)] = 0.

Note that from the statements pointed above when one of the expressions have the value of 1 the other
have the value of 0 and vice-versa.This explains how and why each expression complementary neutralizes
each other in the regions inside and outside the bubble
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Note that if [1− f(rs)WF ](WF−1) << 1 and [f(rs)(WF−1)] << 1 then their product
[1− f(rs)WF ](WF−1)[f(rs)(WF−1)] <<<< 1 resulting in a very low value for the term C in the Alcubierre
warped region and hence in the Natario warped region with both centered geometrically over the bubble
radius.

We will examine the above statement of the expressions that complementary neutralizes each other in
the term C of the second order derivative of Natario shape function with details in the section 8.
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4 The expressions that complementary neutralizes each other in a
Natario warp drive 1 + 1 spacetime

The Alcubierre shape function is given by:

f(rs) =
1
2
[1− tanh[@(rs−R)] (88)

And the Natario shape function is given by:

N(rs) = [
1
2
][1− f(rs)WF ]WF (89)

• Numerical plot for the Alcubierre and Natario shape functions with @ = 50000 bubble radius R = 100
meters and warp factor with a value WF = 200

rs f(rs) N(rs)
9, 999940000000E + 01 1, 000000000000E + 00 0, 000000000000E + 00
9, 999950000000E + 01 1, 000000000000E + 00 0, 000000000000E + 00
9, 999960000000E + 01 1, 000000000000E + 00 0, 000000000000E + 00
9, 999970000000E + 01 9, 999999999999E − 01 0, 000000000000E + 00
9, 999980000000E + 01 9, 999999979388E − 01 0, 000000000000E + 00
9, 999990000000E + 01 9, 999546021312E − 01 0, 000000000000E + 00
1, 000000000000E + 02 5, 000000000000E − 01 5, 000000000000E − 01
1, 000001000000E + 02 4, 539786855834E − 05 5, 000000000000E − 01
1, 000002000000E + 02 2, 061153636657E − 09 5, 000000000000E − 01
1, 000003000000E + 02 9, 359180097590E − 14 5, 000000000000E − 01
1, 000004000000E + 02 0, 000000000000E + 00 5, 000000000000E − 01
1, 000005000000E + 02 0, 000000000000E + 00 5, 000000000000E − 01
1, 000006000000E + 02 0, 000000000000E + 00 5, 000000000000E − 01

According with the numerical plot above when @ = 50000 then from 0 to 99, 996 meters from the center
of the bubble we have the region inside the bubble where the Alcubierre shape function f(rs) = 1 and the
Natario shape function N(rs) = 0. At 99, 997 meters from the center of the bubble the Alcubierre shape
function starts to decrease and we enter in the Alcubierre geometrized warped region 1 > f(rs) > 0.The
Alcubierre warped region ends at 100, 003 meters from the center of the bubble.At 100, 004 meters from
the center of the bubble we reaches the region outside the bubble where the Alcubierre shape function

f(rs) = 0 and the Natario shape function N(rs) =
1

2 . The thickness or the width of the Alcubierre
geometrized warped region is then 0, 006 meters.

The geometrized Natario warped region 0 < N(rs) < 1
2 is centered over the radius of the bubble where the

Natario shape function N(rs) possesses a value too much close from 1
2 although smaller than 1

2 .Then we
can see that N(rs) ' 1

2 .17.So we can say that the Natario geometrized warped region starts after 99, 999
meters and ends up before 100, 001 meters.The region inside the bubble for the Natario warp drive goes
from 0 to 99, 999 meters and the region outside the bubble starts at 100, 001 meters. The thickness or the
width of the Natario geometrized warped region is then smaller than 0, 002 meters.

17Remember that we are limited by the floating-point precision of our software
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The derivative square of the Natario shape function is :

N ′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (90)

And the derivative square of the Alcubierre shape function is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (91)

• Numerical plot for the square derivative of the Alcubierre shape function and the complementary
expressions [1 − f(rs)WF ][2(WF−1)] and f(rs)[2(WF−1)] that neutralizes each other with @ = 50000
bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′(rs)2 [1− f(rs)WF ][2(WF−1)] f(rs)[2(WF−1)]

9, 999940000000E + 01 7, 667648086763E − 043 0, 0000000000000E + 000 1, 0000000000000E + 000
9, 999950000000E + 01 3, 720075984818E − 034 0, 0000000000000E + 000 1, 0000000000000E + 000
9, 999960000000E + 01 1, 804851393312E − 025 0, 0000000000000E + 000 1, 0000000000000E + 000
9, 999970000000E + 01 8, 756510795027E − 017 0, 0000000000000E + 000 9, 9999999996275E − 001
9, 999980000000E + 01 4, 248354238773E − 008 0, 0000000000000E + 000 9, 9999917966117E − 001
9, 999990000000E + 01 2, 060779370345E + 001 0, 0000000000000E + 000 9, 8209349938841E − 001
1, 000000000000E + 02 6, 250000000000E + 008 1, 0000000000000E + 000 1, 5490367659397E − 120
1, 000001000000E + 02 2, 060779346918E + 001 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000002000000E + 02 4, 248354190475E − 008 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000003000000E + 02 8, 756510695477E − 017 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000004000000E + 02 1, 804851372793E − 025 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000005000000E + 02 3, 720075942525E − 034 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000006000000E + 02 7, 667647999592E − 043 1, 0000000000000E + 000 0, 0000000000000E + 000

According with the numerical plot above when @ = 50000 at 99, 994 meters from the center of the bubble
the square derivative of the Alcubierre shape function is 7, 66× 10−43 and starts to increase reaching the
maximum value of 6, 25 × 108 at 100 meters from the center of the bubble precisely in the bubble radius
decreasing again to the value of 7, 66 × 10−43 at 100, 006 meters from the center of the bubble.Note that
with respect to the distance of 100 meters from the center of the bubble exactly the bubble radius the pow-
ers of the square derivative of the Alcubierre shape function are diametrically symmetrically opposed.We
have the values of 101 at 99, 999 meters and at 100, 001 meters.We have the value of 10−8 at 99, 998 meters
and at 100, 002 meters.

The expression [1 − f(rs)WF ][2(WF−1)] is zero from the center of the bubble to 99, 999 meters and at
the radius of the bubble and beyond changes its value to 1.So inside the bubble this expression is 0 and
outside the bubble this expression is 1.
The expression f(rs)[2(WF−1)] is 1 from the center of the bubble to 99, 996 meters and at 99, 997 meters
starts to decrease reaching its minimum value of 1, 54× 10−120 precisely in the bubble radius.At 100, 001
meters its value is zero.

Note that when one of these expressions is zero the other is 1 or possesses values very close to 1.Then
one expression neutralizes the other except in the bubble radius but here the value of the product is very
low:1, 54× 10−120.This of course obliterates the factor 1048.
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The derivative square of the Natario shape function is :

N ′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (92)

And the derivative square of the Alcubierre shape function is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (93)

• Numerical plot for the square derivatives of both the Alcubierre and Natario shape functions with
@ = 50000 bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′(rs)2 N ′(rs)2

9, 999940000000E + 01 7, 667648086763E − 043 0, 0000000000000E + 000
9, 999950000000E + 01 3, 720075984818E − 034 0, 0000000000000E + 000
9, 999960000000E + 01 1, 804851393312E − 025 0, 0000000000000E + 000
9, 999970000000E + 01 8, 756510795027E − 017 0, 0000000000000E + 000
9, 999980000000E + 01 4, 248354238773E − 008 0, 0000000000000E + 000
9, 999990000000E + 01 2, 060779370345E + 001 0, 0000000000000E + 000
1, 000000000000E + 02 6, 250000000000E + 008 3, 8725919148493E − 103
1, 000001000000E + 02 2, 060779346918E + 001 0, 0000000000000E + 000
1, 000002000000E + 02 4, 248354190475E − 008 0, 0000000000000E + 000
1, 000003000000E + 02 8, 756510695477E − 017 0, 0000000000000E + 000
1, 000004000000E + 02 1, 804851372793E − 025 0, 0000000000000E + 000
1, 000005000000E + 02 3, 720075942525E − 034 0, 0000000000000E + 000
1, 000006000000E + 02 7, 667647999592E − 043 0, 0000000000000E + 000

From the plots of the previous page we know that the product

[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] (94)

is always zero except in the bubble radius giving a non-null square derivative of the Natario shape
function in the bubble radius but with a very small value.The final value for the square derivative of the
Natario shape function is then 3, 8× 10−103 layered over the bubble radius and this obliterates the factor
1048 in the negative energy density of the Natario warp drive in the 1+1 spacetime rendering it physically
possible.Note also that this value match the value presented in the numerical plot of the previous section
for @ = 50000. We recall the negative energy density in the 1 + 1 Natario warp drive spacetime :

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(N ′(rs))2

]
(95)

c2

G

v2
s

8π
' 1048 (96)

(N ′(rs))2 ' 3, 8× 10−103 (97)

And the product 1048×10−103 = 10−55 Joules
Meters3 resulting in a very low negative energy density even for

speeds of 200 times faster than light.
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5 The expressions that complementary neutralizes each other in the
first order derivative of the shape function for a Natario warp drive
3 + 1 spacetime metric

Its expression is :

N ′(rs) = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′(rs) (98)

With the first order derivative of the Alcubierre shape function being:

f ′(rs) = −1
2
[

@
cosh2[@(rs−R)]

] (99)

• Numerical plot for the derivative of the Alcubierre shape function and the complementary expressions
[1 − f(rs)WF ][(WF−1)] and f(rs)[(WF−1)] that neutralizes each other with @ = 50000 bubble radius
R = 100 meters and warp factor with a value WF = 200

rs f ′(rs) [1− f(rs)WF ][(WF−1)] f(rs)[(WF−1)]

9, 999940000000E + 01 −8, 756510770143E − 022 0, 00000000000E + 000 1, 00000000000E + 000
9, 999950000000E + 01 −1, 928749850244E − 017 0, 00000000000E + 000 1, 00000000000E + 000
9, 999960000000E + 01 −4, 248354261725E − 013 0, 00000000000E + 000 1, 00000000000E + 000
9, 999970000000E + 01 −9, 357622986115E − 009 0, 00000000000E + 000 9, 99999999981E − 001
9, 999980000000E + 01 −2, 061153618432E − 004 0, 00000000000E + 000 9, 99999589830E − 001
9, 999990000000E + 01 −4, 539580784989E + 000 0, 00000000000E + 000 9, 91006306432E − 001
1, 000000000000E + 02 −2, 500000000000E + 004 1, 00000000000E + 000 1, 24460305557E − 060
1, 000001000000E + 02 −4, 539580759187E + 000 1, 00000000000E + 000 0, 00000000000E + 000
1, 000002000000E + 02 −2, 061153606715E − 004 1, 00000000000E + 000 0, 00000000000E + 000
1, 000003000000E + 02 −9, 357622932923E − 009 1, 00000000000E + 000 0, 00000000000E + 000
1, 000004000000E + 02 −4, 248354237576E − 013 1, 00000000000E + 000 0, 00000000000E + 000
1, 000005000000E + 02 −1, 928749839281E − 017 1, 00000000000E + 000 0, 00000000000E + 000
1, 000006000000E + 02 −8, 756510720368E − 022 1, 00000000000E + 000 0, 00000000000E + 000

According with the numerical plot above when @ = 50000 at 99, 994 meters from the center of the bub-
ble the derivative of the Alcubierre shape function is −8, 75 × 10−22 and starts to increase reaching the
maximum value of −2, 5× 104 at 100 meters from the center of the bubble precisely in the bubble radius
decreasing again to the value of −8, 75× 10−22 at 100, 006 meters from the center of the bubble.

The expression [1 − f(rs)WF ][(WF−1)] is zero from the center of the bubble to 99, 999 meters and at
the radius of the bubble and beyond changes its value to 1.So inside the bubble this expression is 0 and
outside the bubble this expression is 1.
The expression f(rs)[(WF−1)] is 1 from the center of the bubble to 99, 996 meters and at 99, 997 meters
starts to decrease reaching its minimum value of 1, 24 × 10−60 precisely in the bubble radius.At 100, 001
meters its value is zero.

Note that when one of these expressions is zero the other is 1 or possesses values very close to 1.Then
one expression neutralizes the other except in the bubble radius but here the value of the product is very
low:1, 24× 10−60.
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The expression for the first order derivative of the Natario shape function is :

N ′(rs) = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′(rs) (100)

With the first order derivative of the Alcubierre shape function being:

f ′(rs) = −1
2
[

@
cosh2[@(rs−R)]

] (101)

• Numerical plot for the first order derivatives of both the Alcubierre and Natario shape functions with
@ = 50000 bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′(rs) N ′(rs)
9, 999940000000E + 01 −8, 756510770143E − 022 0, 00000000000E + 000
9, 999950000000E + 01 −1, 928749850244E − 017 0, 00000000000E + 000
9, 999960000000E + 01 −4, 248354261725E − 013 0, 00000000000E + 000
9, 999970000000E + 01 −9, 357622986115E − 009 0, 00000000000E + 000
9, 999980000000E + 01 −2, 061153618432E − 004 0, 00000000000E + 000
9, 999990000000E + 01 −4, 539580784989E + 000 0, 00000000000E + 000
1, 000000000000E + 02 −2, 500000000000E + 004 3, 11150763893E − 054
1, 000001000000E + 02 −4, 539580759187E + 000 0, 00000000000E + 000
1, 000002000000E + 02 −2, 061153606715E − 004 0, 00000000000E + 000
1, 000003000000E + 02 −9, 357622932923E − 009 0, 00000000000E + 000
1, 000004000000E + 02 −4, 248354237576E − 013 0, 00000000000E + 000
1, 000005000000E + 02 −1, 928749839281E − 017 0, 00000000000E + 000
1, 000006000000E + 02 −8, 756510720368E − 022 0, 00000000000E + 000

From the plots of the previous page we know that the product

[1− f(rs)WF ](WF−1)[f(rs)(WF−1)] (102)

is always zero except in the bubble radius giving a non-null derivative of the Natario shape function
in the bubble radius but with a very small value.The final value for the derivative of the Natario shape
function is then 3, 11× 10−54 layered over the bubble radius
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6 The expressions that complementary neutralizes each other in the
term A of the second order derivative of the shape function for a
Natario warp drive 3 + 1 spacetime metric

A = [
1
2
]WF 3(WF − 1)[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)]f ′(rs)2 (103)

With f ′(rs)2 being the first order derivative square of the Alcubierre shape function which is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (104)

• Numerical plot for the square first order derivative of the Alcubierre shape function and the com-
plementary expressions [1 − f(rs)WF ][(WF−2)] and f(rs)[2(WF−1)] that neutralizes each other with
@ = 50000 bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′(rs)2 [1− f(rs)WF ][(WF−2)] f(rs)[2(WF−1)]

9, 999940000000E + 01 7, 667648086763E − 043 0, 0000000000000E + 000 1, 0000000000000E + 000
9, 999950000000E + 01 3, 720075984818E − 034 0, 0000000000000E + 000 1, 0000000000000E + 000
9, 999960000000E + 01 1, 804851393312E − 025 0, 0000000000000E + 000 1, 0000000000000E + 000
9, 999970000000E + 01 8, 756510795027E − 017 0, 0000000000000E + 000 9, 9999999996275E − 001
9, 999980000000E + 01 4, 248354238773E − 008 0, 0000000000000E + 000 9, 9999917966117E − 001
9, 999990000000E + 01 2, 060779370345E + 001 0, 0000000000000E + 000 9, 8209349938841E − 001
1, 000000000000E + 02 6, 250000000000E + 008 1, 0000000000000E + 000 1, 5490367659397E − 120
1, 000001000000E + 02 2, 060779346918E + 001 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000002000000E + 02 4, 248354190475E − 008 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000003000000E + 02 8, 756510695477E − 017 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000004000000E + 02 1, 804851372793E − 025 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000005000000E + 02 3, 720075942525E − 034 1, 0000000000000E + 000 0, 0000000000000E + 000
1, 000006000000E + 02 7, 667647999592E − 043 1, 0000000000000E + 000 0, 0000000000000E + 000

According with the numerical plot above when @ = 50000 at 99, 994 meters from the center of the bubble
the square derivative of the Alcubierre shape function is 7, 66× 10−43 and starts to increase reaching the
maximum value of 6, 25 × 108 at 100 meters from the center of the bubble precisely in the bubble radius
decreasing again to the value of 7, 66× 10−43 at 100, 006 meters from the center of the bubble.

The expression [1 − f(rs)WF ][(WF−2)] is zero from the center of the bubble to 99, 999 meters and at
the radius of the bubble and beyond changes its value to 1.So inside the bubble this expression is 0 and
outside the bubble this expression is 1.
The expression f(rs)[2(WF−1)] is 1 from the center of the bubble to 99, 996 meters and at 99, 997 meters
starts to decrease reaching its minimum value of 1, 54× 10−120 precisely in the bubble radius.At 100, 001
meters its value is zero.

Note that when one of these expressions is zero the other is 1 or possesses values very close to 1.Then
one expression neutralizes the other except in the bubble radius but here the value of the product is very
low:1, 54× 10−120.
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The term A of the second order derivative of the shape function for a Natario warp drive 3+1 spacetime
metric is given by:

A = [
1
2
]WF 3(WF − 1)[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)]f ′(rs)2 (105)

With f ′(rs)2 being the first order derivative square of the Alcubierre shape function which is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (106)

• Numerical plot for the square first order derivative of the Alcubierre shape function and the term A
of the second order derivative of the Natario shape function with @ = 50000 bubble radius R = 100
meters and warp factor with a value WF = 200

rs f ′(rs)2 A

9, 999940000000E + 01 7, 667648086763E − 043 0, 00000000000E + 000
9, 999950000000E + 01 3, 720075984818E − 034 0, 00000000000E + 000
9, 999960000000E + 01 1, 804851393312E − 025 0, 00000000000E + 000
9, 999970000000E + 01 8, 756510795027E − 017 0, 00000000000E + 000
9, 999980000000E + 01 4, 248354238773E − 008 0, 00000000000E + 000
9, 999990000000E + 01 2, 060779370345E + 001 0, 00000000000E + 000
1, 000000000000E + 02 6, 250000000000E + 008 7, 70645791055E − 103
1, 000001000000E + 02 2, 060779346918E + 001 0, 00000000000E + 000
1, 000002000000E + 02 4, 248354190475E − 008 0, 00000000000E + 000
1, 000003000000E + 02 8, 756510695477E − 017 0, 00000000000E + 000
1, 000004000000E + 02 1, 804851372793E − 025 0, 00000000000E + 000
1, 000005000000E + 02 3, 720075942525E − 034 0, 00000000000E + 000
1, 000006000000E + 02 7, 667647999592E − 043 0, 00000000000E + 000

From the plots of the previous page we know that the product

[1− f(rs)WF ](WF−2)[f(rs)2(WF−1)] (107)

is always zero except in the bubble radius giving a non-null value for the term A of the second order
derivative of the Natario shape function in the bubble radius but with a very small value.The final value
for the term A is then 7, 701× 10−103 layered over the bubble radius
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7 The expressions that complementary neutralizes each other in the
term B of the second order derivative of the shape function for a
Natario warp drive 3 + 1 spacetime metric

B = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)(WF − 1)[f(rs)(WF−2)]f ′(rs)2 (108)

With f ′(rs)2 being the first order derivative square of the Alcubierre shape function which is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (109)

• Numerical plot for the square first order derivative of the Alcubierre shape function and the com-
plementary expressions [1 − f(rs)WF ][(WF−1)] and f(rs)[(WF−2)] that neutralizes each other with
@ = 50000 bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′(rs)2 [1− f(rs)WF ][(WF−1)] f(rs)[(WF−2)]

9, 999940000000E + 01 7, 667648086763E − 043 0, 0000000000000E + 000 1, 000000000000E + 000
9, 999950000000E + 01 3, 720075984818E − 034 0, 0000000000000E + 000 1, 000000000000E + 000
9, 999960000000E + 01 1, 804851393312E − 025 0, 0000000000000E + 000 1, 000000000000E + 000
9, 999970000000E + 01 8, 756510795027E − 017 0, 0000000000000E + 000 9, 999999999815E − 001
9, 999980000000E + 01 4, 248354238773E − 008 0, 0000000000000E + 000 9, 999995918917E − 001
9, 999990000000E + 01 2, 060779370345E + 001 0, 0000000000000E + 000 9, 910512980490E − 001
1, 000000000000E + 02 6, 250000000000E + 008 1, 0000000000000E + 000 2, 489206111144E − 060
1, 000001000000E + 02 2, 060779346918E + 001 1, 0000000000000E + 000 0, 000000000000E + 000
1, 000002000000E + 02 4, 248354190475E − 008 1, 0000000000000E + 000 0, 000000000000E + 000
1, 000003000000E + 02 8, 756510695477E − 017 1, 0000000000000E + 000 0, 000000000000E + 000
1, 000004000000E + 02 1, 804851372793E − 025 1, 0000000000000E + 000 0, 000000000000E + 000
1, 000005000000E + 02 3, 720075942525E − 034 1, 0000000000000E + 000 0, 000000000000E + 000
1, 000006000000E + 02 7, 667647999592E − 043 1, 0000000000000E + 000 0, 000000000000E + 000

According with the numerical plot above when @ = 50000 at 99, 994 meters from the center of the bubble
the square derivative of the Alcubierre shape function is 7, 66× 10−43 and starts to increase reaching the
maximum value of 6, 25 × 108 at 100 meters from the center of the bubble precisely in the bubble radius
decreasing again to the value of 7, 66× 10−43 at 100, 006 meters from the center of the bubble.

The expression [1 − f(rs)WF ][(WF−1)] is zero from the center of the bubble to 99, 999 meters and at
the radius of the bubble and beyond changes its value to 1.So inside the bubble this expression is 0 and
outside the bubble this expression is 1.
The expression f(rs)[(WF−2)] is 1 from the center of the bubble to 99, 996 meters and at 99, 997 meters
starts to decrease reaching its minimum value of 2, 48 × 10−60 precisely in the bubble radius.At 100, 001
meters its value is zero.

Note that when one of these expressions is zero the other is 1 or possesses values very close to 1.Then
one expression neutralizes the other except in the bubble radius but here the value of the product is very
low:2, 48× 10−60.
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The term B of the second order derivative of the shape function for a Natario warp drive 3+1 spacetime
metric is given by:

B = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)(WF − 1)[f(rs)(WF−2)]f ′(rs)2 (110)

With f ′(rs)2 being the first order derivative square of the Alcubierre shape function which is :

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (111)

• Numerical plot for the square first order derivative of the Alcubierre shape function and the term B
of the second order derivative of the Natario shape function with @ = 50000 bubble radius R = 100
meters and warp factor with a value WF = 200

rs f ′(rs)2 B

9, 999940000000E + 01 7, 667648086763E − 043 0, 000000000000E + 000
9, 999950000000E + 01 3, 720075984818E − 034 0, 000000000000E + 000
9, 999960000000E + 01 1, 804851393312E − 025 0, 000000000000E + 000
9, 999970000000E + 01 8, 756510795027E − 017 0, 000000000000E + 000
9, 999980000000E + 01 4, 248354238773E − 008 0, 000000000000E + 000
9, 999990000000E + 01 2, 060779370345E + 001 0, 000000000000E + 000
1, 000000000000E + 02 6, 250000000000E + 008 −6, 191900201472E − 045
1, 000001000000E + 02 2, 060779346918E + 001 0, 000000000000E + 000
1, 000002000000E + 02 4, 248354190475E − 008 0, 000000000000E + 000
1, 000003000000E + 02 8, 756510695477E − 017 0, 000000000000E + 000
1, 000004000000E + 02 1, 804851372793E − 025 0, 000000000000E + 000
1, 000005000000E + 02 3, 720075942525E − 034 0, 000000000000E + 000
1, 000006000000E + 02 7, 667647999592E − 043 0, 000000000000E + 000

From the plots of the previous page we know that the product

[1− f(rs)WF ](WF−1)[f(rs)(WF−2)] (112)

is always zero except in the bubble radius giving a non-null value for the term B of the second order
derivative of the Natario shape function in the bubble radius but with a very small value.The final value
for the term B is then −6, 191× 10−45 layered over the bubble radius
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8 The expressions that complementary neutralizes each other in the
term C of the second order derivative of the shape function for a
Natario warp drive 3 + 1 spacetime metric

C = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′′(rs) (113)

With f ′′(rs) being the second order derivative of the Alcubierre shape function which is:

f ′′(rs) = [
(@2)sinh[@(rs−R)
cosh3[@(rs−R)]

] (114)

• Numerical plot for the second order derivative of the Alcubierre shape function and the complemen-
tary expressions [1−f(rs)WF ][(WF−1)] and f(rs)[(WF−1)] that neutralizes each other with @ = 50000
bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′′(rs) [1− f(rs)WF ][(WF−1)] f(rs)[(WF−1)]

9, 999940000000E + 01 −8, 75651077014E − 017 0, 00000000000E + 000 1, 00000000000E + 000
9, 999950000000E + 01 −1, 92874985024E − 012 0, 00000000000E + 000 1, 00000000000E + 000
9, 999960000000E + 01 −4, 24835426172E − 008 0, 00000000000E + 000 1, 00000000000E + 000
9, 999970000000E + 01 −9, 35762298611E − 004 0, 00000000000E + 000 9, 99999999981E − 001
9, 999980000000E + 01 −2, 06115360993E + 001 0, 00000000000E + 000 9, 99999589830E − 001
9, 999990000000E + 01 −4, 53916861040E + 005 0, 00000000000E + 000 9, 91006306432E − 001
1, 000000000000E + 02 0, 00000000000E + 000 1, 00000000000E + 000 1, 24460305557E − 060
1, 000001000000E + 02 4, 53916858461E + 005 1, 00000000000E + 000 0, 00000000000E + 000
1, 000002000000E + 02 2, 06115359822E + 001 1, 00000000000E + 000 0, 00000000000E + 000
1, 000003000000E + 02 9, 35762293292E − 004 1, 00000000000E + 000 0, 00000000000E + 000
1, 000004000000E + 02 4, 24835423758E − 008 1, 00000000000E + 000 0, 00000000000E + 000
1, 000005000000E + 02 1, 92874983928E − 012 1, 00000000000E + 000 0, 00000000000E + 000
1, 000006000000E + 02 8, 75651072037E − 017 1, 00000000000E + 000 0, 00000000000E + 000

According with the numerical plot above when @ = 50000 at 99, 994 meters from the center of the bubble
the second order derivative of the Alcubierre shape function is −8, 75×10−17 however in the bubble radius
inverts the signal reaching the value of 8, 75 × 10−17 at 100, 006 meters from the center of the bubble.In
the radius of the bubble the value is 0 due to the term sinh[@(rs−R)] = 0 when rs = R.

The expression [1 − f(rs)WF ][(WF−1)] is zero from the center of the bubble to 99, 999 meters and at
the radius of the bubble and beyond changes its value to 1.So inside the bubble this expression is 0 and
outside the bubble this expression is 1.
The expression f(rs)[(WF−1)] is 1 from the center of the bubble to 99, 996 meters and at 99, 997 meters
starts to decrease reaching its minimum value of 1, 24 × 10−60 precisely in the bubble radius.At 100, 001
meters its value is zero.

Note that when one of these expressions is zero the other is 1 or possesses values very close to 1.Then
one expression neutralizes the other except in the bubble radius but here the value of the product is very
low:1, 24× 10−60.
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The term C of the second order derivative of the shape function for a Natario warp drive 3+1 spacetime
metric is given by:

C = −[
1
2
]WF 2[1− f(rs)WF ](WF−1)[f(rs)(WF−1)]f ′′(rs) (115)

With f ′′(rs) being the second order derivative of the Alcubierre shape function which is:

f ′′(rs) = [
(@2)sinh[@(rs−R)
cosh3[@(rs−R)]

] (116)

• Numerical plot for the second order derivative of the Alcubierre shape function and the term C of
the second order derivative of the Natario shape function with @ = 50000 bubble radius R = 100
meters and warp factor with a value WF = 200

rs f ′′(rs) C

9, 999940000000E + 01 −8, 75651077014E − 017 0, 00000000000E + 000
9, 999950000000E + 01 −1, 92874985024E − 012 0, 00000000000E + 000
9, 999960000000E + 01 −4, 24835426172E − 008 0, 00000000000E + 000
9, 999970000000E + 01 −9, 35762298611E − 004 0, 00000000000E + 000
9, 999980000000E + 01 −2, 06115360993E + 001 0, 00000000000E + 000
9, 999990000000E + 01 −4, 53916861040E + 005 0, 00000000000E + 000
1, 000000000000E + 02 0, 00000000000E + 000 0, 00000000000E + 000
1, 000001000000E + 02 4, 53916858461E + 005 0, 00000000000E + 000
1, 000002000000E + 02 2, 06115359822E + 001 0, 00000000000E + 000
1, 000003000000E + 02 9, 35762293292E − 004 0, 00000000000E + 000
1, 000004000000E + 02 4, 24835423758E − 008 0, 00000000000E + 000
1, 000005000000E + 02 1, 92874983928E − 012 0, 00000000000E + 000
1, 000006000000E + 02 8, 75651072037E − 017 0, 00000000000E + 000

From the plots of the previous page we know that the product

[1− f(rs)WF ](WF−1)[f(rs)(WF−1)] (117)

is always zero except in the bubble radius however due to the term sinh[@(rs−R)] = 0 when rs = R
the value of the term C is always 0.
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9 The second order derivative of the shape function for a Natario warp
drive 3 + 1 spacetime metric

• Numerical plot for the second order derivatives of both the Alcubierre and Natario shape functions
with @ = 50000 bubble radius R = 100 meters and warp factor with a value WF = 200

rs f ′′(rs) N ′′(rs)
9, 999940000000E + 01 −8, 75651077014E − 017 0, 00000000000E + 000
9, 999950000000E + 01 −1, 92874985024E − 012 0, 00000000000E + 000
9, 999960000000E + 01 −4, 24835426172E − 008 0, 00000000000E + 000
9, 999970000000E + 01 −9, 35762298611E − 004 0, 00000000000E + 000
9, 999980000000E + 01 −2, 06115360993E + 001 0, 00000000000E + 000
9, 999990000000E + 01 −4, 53916861040E + 005 0, 00000000000E + 000
1, 000000000000E + 02 0, 00000000000E + 000 −6, 1919002015E − 045
1, 000001000000E + 02 4, 53916858461E + 005 0, 00000000000E + 000
1, 000002000000E + 02 2, 06115359822E + 001 0, 00000000000E + 000
1, 000003000000E + 02 9, 35762293292E − 004 0, 00000000000E + 000
1, 000004000000E + 02 4, 24835423758E − 008 0, 00000000000E + 000
1, 000005000000E + 02 1, 92874983928E − 012 0, 00000000000E + 000
1, 000006000000E + 02 8, 75651072037E − 017 0, 00000000000E + 000

In order to avoid the mathematical complexities of a lengthly algebraic expression for the second order
derivative of the shape function for a Natario warp drive 3 + 1 spacetime metric N ′′(rs) we decomposed
in section 2 the expression for N ′′(rs) in 3 algebraic terms A,B and C and we evaluated numerically and
independently each one of the 3 terms that must be added together to provide the final numerical value
for N ′′(rs).

From the previous numerical plots in section 5 we know that the term A is always zero except in the
bubble radius possessing a non-null value of 7, 70645791055×10−103 and from the previous numerical plots
in section 6 we know that the term B is also always zero except in the bubble radius possessing a value of
−6, 191900201472× 10−45 and from the previous numerical plots in section 7 wee know that the term C is
always zero even in the bubble radius .

The final value of N ′′(rs) is also always zero except in the bubble radius.Note that the term B is much
larger than the term A so it is the value of B that accounts for the final value of N ′′(rs) in the bubble
radius which is −6, 1919002015× 10−45
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10 The negative energy density for a Natario warp drive in a 3 + 1
spacetime metric

Reviewing the more sophisticated case of the Natario warp drive in a real 3 + 1 spacetime seen in section
3 where the negative energy density in this case is given by the following expression

ρ3+1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ

]
− c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(118)

In section 2 we decomposed the above expression in two terms ρ1 and ρ2 given respectively by:

ρ3+1 = ρ1 + ρ2 (119)

ρ1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ

]
(120)

ρ2 = −c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(121)

Comparing the above expressions with the negative energy density for a Natario warp drive in the the
1 + 1 spacetime given also in section 2:

ρ1+1 = −c2

G

v2
s

8π

[
3(N ′(rs))2

]
(122)

We can see that the term in ρ1 almost matches the term in the 1 + 1 spacetime except for the trigono-
metric term in cos2 θ and as seen in sections 2 and 3 this term produces a very low derivative square for
the Natario shape function of about 10−103.So the term ρ2 is the term that really accounts for the negative
energy density in the 3 + 1 spacetime.

The dominant expression in the term ρ2 is:[(
N ′(rs) +

rs

2
N ′′(rs)

)2
]

(123)

Since the derivative of second order of the Natario shape function N ′′(rs) is a lengthly expression as
shown in section 2 with many algebraic terms then its square N ′′(rs)2 results in an even more complicated
expression with even more algebraic terms.And the product of both the first and second order derivatives
N ′(rs)N ′′(rs) also results in a lengthly expression.Then in order to avoid algebraic complications we also
decided in section 2 to work numerically with the new dominant term which is:

N ′(rs) +
rs

2
N ′′(rs) (124)

Raising to the square only the final numerically evaluated result.
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• Numerical plot for the terms N ′(rs)+ rs
2 N ′′(rs) and

[(
N ′(rs) + rs

2 N ′′(rs)
)2] with @ = 50000 bubble

radius R = 100 meters and warp factor with a value WF = 200

rs N ′(rs) + [(rs/2)N ′′(rs)] (N ′(rs) + [(rs/2)N ′′(rs)])2

9, 999940000000E + 01 0, 0000000000E + 000 0, 00000000000E + 000
9, 999950000000E + 01 0, 0000000000E + 000 0, 00000000000E + 000
9, 999960000000E + 01 0, 0000000000E + 000 0, 00000000000E + 000
9, 999970000000E + 01 0, 0000000000E + 000 0, 00000000000E + 000
9, 999980000000E + 01 0, 0000000000E + 000 0, 00000000000E + 000
9, 999990000000E + 01 0, 0000000000E + 000 0, 00000000000E + 000
1, 000000000000E + 02 −3, 0959501008E − 043 9, 5849070264E − 086
1, 000001000000E + 02 0, 0000000000E + 000 0, 00000000000E + 000
1, 000002000000E + 02 0, 0000000000E + 000 0, 00000000000E + 000
1, 000003000000E + 02 0, 0000000000E + 000 0, 00000000000E + 000
1, 000004000000E + 02 0, 0000000000E + 000 0, 00000000000E + 000
1, 000005000000E + 02 0, 0000000000E + 000 0, 00000000000E + 000
1, 000006000000E + 02 0, 0000000000E + 000 0, 00000000000E + 000

From the numerical plots in section 4 we know that the derivative of first order of the Natario shape
function N ′(rs) is always zero except in the bubble radius. Its value in the bubble radius is then
3, 11150763893 × 10−54. From the numerical plots in section 7 we know that the derivative of second
order of the Natario shape function N ′′(rs) is also always zero except in the bubble radius. Its value in
the bubble radius is then −6, 1919002015× 10−45.

Then computing the value of the new dominant term in the expression for ρ2 which is [N ′(rs)+( rs
2 )N ′′(rs)]

we expect to find values only in the bubble radius. Note that the value of N ′′(rs) is much bigger in modulus
than the value of N ′(rs) so it N ′′(rs) that accounts for the final value of the new dominant term.

The final value of the new dominant term is then −3, 0959501008 × 10−43 in the bubble radius. and
the final value for the original dominant term in the expression for ρ2 which is [N ′(rs) + ( rs

2 )N ′′(rs)]2 is
then 9, 5849070264× 10−86 only in the bubble radius.

This value also obliterates the factor 1048 from a speed of 200 times faster than light resulting in a very
low negative energy density of 1048 × 10−86 = 10−38.A very low negative energy density of 10−38 Joules

meters3

for the term ρ2 that really accounts for the negative energy density of the Natario warp drive in a 3 + 1
spacetime.

Note that the negative energy density in the term ρ1 have values of 10−55 Joules
meters3 according to sections 3

and 4.

39



11 The average matter density of the Interstellar Medium(IM)

A very serious drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar
space is not empty and from a real point of view a ship at superluminal speeds would impact aster-
oids,comets,interstellar space dust and photons.(see [5],[7] and [8])

In the previous sections we briefly resumed how the negative energy density in the Natario warp drive
spacetime can be greatly lowered from 1048 to 10−55 or 10−38 Joules

meters3

The warp factor WF not only squeezes the negative energy density into a very thin region almost centered
over the radius of the bubble but also reduces the amount of negative energy density needed to sustain a
warp bubble from impossible levels to ”affordable” results.

But all we did was only a mathematical demonstration of how far can we go in the reduction of the
negative energy density levels by manipulating the warp factor WF . Amounts of 10−55 or 10−38 Joules

meters3

although desirable are completely unrealistic considering a live scenario for an interstellar travel.

The reason for the statement pointed above is the existence of the so-called Interstellar Medium18.Interstellar
Medium(IM) is mainly composed by 99 percent of gas and 1 percent of dust.19

For the gas 91 percent are hydrogen atoms 8, 9 percent are helium atoms and 0, 1 percent are elements
heavier than hydrogen or helium.

In dense regions the IM matter is primarily in molecular form and reaches densities of 106 molecules
per cm3 while in diffuse regions the density is low by the order of 10−4 molecules per cm3.Compare this
with a density of 1019 molecules per cm3 for the air at sea level or 1010 molecules per cm3 for a laboratory
vacuum chamber.

This means to say that the IM even in dense regions is 1013 times lighter than the air at sea level or
better 10.000.000.000.000 times(10 trillion times) lighter than the air at sea level or 10.000 times lighter
than the best vacuum chambers.

Working with cubic meters we would have for the IM the numbers of 1012 molecules per m3 in dense
regions and 102 molecules per m3 in diffuse regions.

Since 99 percent of the IM is gas and from the gas 91 percent is hydrogen then we can use only the
hydrogen atom in the following considerations and from the hydrogen atom we can use only the proton
with a mass of about 10−27 kilograms neglecting the electron which have a much lighter mass of 10−31

kilograms.

Then working with mass densities of kilograms per cubic meters we would have for the IM the num-
bers of 10−15 kilograms per m3 in dense regions and 10−25 kilograms per m3 in diffuse regions.

18see Wikipedia the free Encyclopedia
19see Appendices L and M for the composition of the Interstellar Medium IM)
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In terms of energy densities of Joules per cubic meters we would have for the IM the numbers of 10
Joules per m3 in dense regions and 10−9 Joules per m3 in diffuse regions.

By comparison a mass density of 1 kilogram per cubic meter means an energy density of about 1016

Joules per cubic meter.

The negative energy density in the Natario warp drive 3 + 1 spacetime is given by the following ex-
pressions(pg 5 in [2])20:

ρ3+1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ +

(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
. (125)

The equation above can be divided in two expressions as shown below:

ρ3+1 = ρ1 + ρ2 (126)

ρ1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ

]
(127)

ρ2 = −c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(128)

From [5],[7] and [8] we know that if a ship travelling at 200 times light speed collides with even a single
photon in interstellar space the result would be catastrophic to the physical integrity of the ship and crew
members not to mention speeds of 10.000 times faster than light.

Note this as a very important fact:The energy density in the Natario warp drive is being distributed
around all the space involving the ship(above the ship sin θ = 1 and cos θ = 0 while in front of the ship
sin θ = 0 and cos θ = 1).The negative energy in front of the ship must ”deflect” particles or photons in
order to avoid these to reach the ship inside the bubble.21.

• )-Energy directly above the ship(y − axis)

ρ2 = −c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
]

(129)

• )-Energy directly in front of the ship(x− axis)

ρ1 = −c2

G

vs2

8π

[
3(N ′(rs))2

]
(130)

20see Appendices C D and E
21see Appendices E and F
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Applying even sample Newtonian concepts we know that positive masses always attract positive masses
and negative masses always attracts negative masses22 but in interactions between positive and negative
masses one repels the other.23

This repulsive behavior of a negative mass or a negative mass density or a negative energy density useful
to deflect hazardous incoming particles from the IM is a key ingredient to protect the ship integrity and
the crew members in the scenario of a real superluminal interstellar spaceflight.

The positive energy density of the IM is 10 Joules per m3 in dense regions and 10−9 Joules per m3

in diffuse regions.However in the previous sections we arrived at following results of 10−55 or 10−38 Joules
meters3

for the negative energy density of the Natario warp drive spacetime.

From above we can see that the results obtained for the Natario warp drive negative energy density
are much lighter when compared to the IM energy density.A Natario warp drive with such negative energy
density requirements would never be able to deflect incoming particles from the IM because in such warp
drive the negative energy density is less denser or lighter than the energy density of the IM .

But remember again that all we did was only a mathematical demonstration of how far can we go in
the reduction of the negative energy density levels by manipulating the warp factor WF .We used a large
WF .Of course we dont need a WF of such magnitude.A smaller WF can still obliterate values of 1048

while providing a negative energy density denser of heavier than the density of the IM .

A denser of heavier Natario warp drive energy density when compared to the IM density would be able
to deflect the incoming hazardous particles protecting the ship and the crew members.We elaborated an
empirical formula to do so:

The two key ingredients in a superluminal interstellar spaceflight are the following ones:

• 1)-spaceship velocity

• 2)-IM density

As fast is the spaceship velocity or as denser is the IM the problem of impacts against hazardous
particles becomes more and more serious.Considering velocities of about 200 times light speed enough to
reach star systems at 20 light-years away from Earth the ideal amount of negative energy density would
then be given by the empirical formula shown below:

ρ3+1 = −1× (|ρIM | × |
vs

c
|) (131)

In the formula above ρ3+1 is the desired negative energy density in the Natario warp drive |ρIM | is the
modulus of the IM density and finally |vs

c | is the modulus of the Machian coefficient for the multiples of
the light speed in the spaceship velocity.

22the product of two negative masses in the Newton Law of Gravitation is also positive
23a minus sign arises in the product of a positive mass by a negative mass in the Newton Law of Gravitation
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The positive energy density of the IM is 10 Joules per m3 in dense regions and 10−9 Joules per m3 in
diffuse regions.

Applying the empirical formula of the previous page considering a spaceship velocity of 10.000 times
light speed we would get for the desired Natario warp drive negative energy density results the values of
-106 Joules per m3 in dense regions of IM and -10−4 Joules per m3 in diffuse regions of IM .

Note that even in dense regions of the IM the corresponding Natario warp drive negative energy density
in modulus is 1010 times lighter or 10.000.000.000(10 billion) times lighter than the density of 1 kilogram
per cubic meter

From the statements pointed above we can take the following important conclusions:

• 1)-A negative energy density lighter or less denser in modulus when compared to the IM density will
not have strength enough to deflect hazardous incoming IM particles

• 2)-The modulus of the negative energy density in the Natario warp drive in order to have strength
enough to deflect incoming hazardous IM particles must be denser or heavier than the IM density
and must exceed the density of the IM by a safe margin because although we used only hydrogen
atoms in this study the IM is not only hydrogen but also contains space dust debris etc.24 The
multiplication of the IM density by the multiples of the light speed in the spaceship velocity provides
this margin.25

24see Appendices L and M for the composition of the Interstellar Medium IM)
25see Appendix F for a real Natario warp drive in interstellar spaceflight)
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12 The analysis of Chris Van Den Broeck applied to the Natario warp
drive spacetime using the original Alcubierre shape function to gen-
erate the Broeck spacetime distortion

From the previous section we know that the collisions between the outermost layers of the warp bubble
and the IM particles is one of the most serious problems a warp drive spaceship must solve in the first place.

Remember that for a warp bubble with a radius R of 100 meters the total surface area is S = 4πR2

and the front of the bubble exposed to the collisions against the IM particles have a surface area26 of
S = 2πR2.In this case the area exposed to collisions have multiples of 100 square meters approximately
628 square meters considering S = 2πR2 and this is a large surface area27 suited to be heavily bombarded
by the dangerous IM particles.

Of course we are counting on the negative energy in front of the spaceship with repulsive gravitational
behavior to deflect these incoming IM particles but the ideal result would be the reduction of the surface
area of the bubble exposed to collisions.

Our idea is to keep the surface area of the bubble exposed to collisions microscopically small avoiding
the collisions with the IM particles while at the same time expanding the spatial volume inside the bubble
to a size larger enough to contains a spaceship inside.

Some years ago in 1999 Broeck appeared with exactly this idea.(see pg 3 in [10]).Broeck applied to the
Alcubierre original warp drive metric spatial components a new mathematical term B(rs) able to do so as
shown below(see eq 3 pg 3 in [10])28

ds2 = −dt2 + B2(rs)[(dx− vs(t)f(rs)dt)2 + dy2 + dz2]. (132)

changing the signature from (−,+,+,+) to (+,−,−,−) we have:

ds2 = dt2 −B2(rs)[(dx− vs(t)f(rs)dt)2 + dy2 + dz2]. (133)

Broeck created inside the warp bubble of radius R a spatial distortion of radius Rb being Rb micro-
scopically small when seen from outside but inside the sphere generated by this Rb a large internal volume
with the size enough to contains a spaceship can easily be accommodated.(see also pg 19 in [15])29

Applying the Broeck mathematical term B(rs) to the spatial components of the Natario warp drive equa-
tion using the signature (+,−,−,−) we get the following result:30

ds2 = dt2 −B(rs)2[(drs−Xrsdt)2 + (rs2)(dθ −Xθdt)2] (134)

26the front of the bubble is exposed to the IM particles not the rear
27in this case we consider π = 3, 14
28do not confuses this term B(rs) with the term B used by ourselves to differentiate the Natario shape function.
29see Appendix J
30see Appendix K
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The Broeck spacetime distortion generated by the term B(rs) in which the external circle surface area
of the distortion seen by observers in our Universe is microscopically small while at the same time the
internal spherical spatial volume inside the distortion is very large able to contains a man or s spaceship
is well graphically presented aa a bottle(the Broeck bottle).31

According to Broeck this term B(rs) have the following behavior:(see pgs 3 and 4 in [10])32

B(rs) =


1 + α rs < Rb

1 < B(rs) ≤ 1 + α Rb ≤ rs < Rb + ∆b

1 rs ≥ Rb + ∆b

(135)

Considering rs = 0 the center of the warp bubble with radius R and Rb being the microscopically small
outer radius of the Broeck bottle bottleneck circle when seen from outside the bottle but still inside the
warp bubble we can analyze the expression above as follows:

In the region where rs < Rb well inside the Broeck bottle the value of B(rs) is very large generating the
large spherical internal volume of the bottle and is given by B(rs) = 1+α being α arbitrarily large.Broeck
chooses for α the value of 1017(see pg 5 in in [10]).We choose for α the value of 1027 a value 1010 or 10
billion times higher than the original Broeck value.Note that B(rs) inside the bottle possesses always the
same constant value which means to say that inside the bottle the derivatives of B(rs) are always zero.

In the region where Rb ≤ rs < Rb + ∆b well exactly over the Broeck bottle bottleneck external circle
and its neighborhoods the value of B(rs) is given by 1 < B(rs) ≤ 1 + α.This is the region where B(rs)
decreases from B(rs) = 1 + α to B(rs) = 1 but never reaching the value of 1 and ∆b delimitates the
thickness of this region as a thin shell in the neighborhoods of the Broeck bottle bottleneck circle.In this
region the derivatives of B(rs) are not zero generating an energy density given by the following equation
given in Geometrized Units c = G = 1 as follows:(see eq 11 pg 6 in [10])

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

(
1

B4
(∂rB)2 − 2

B3
∂r∂rB − 4

B3
∂rB

1
r

)
. (136)

Finally in the region where rs ≥ Rb + ∆b well outside the Broeck bottle bottleneck circle we recover
the normal space of our Universe where the value of B(rs) is always 1 and hence its derivatives are again
zero.

The region where the spacetime geometry is not flat is the region around the Broeck bottle bottleneck
(The Broeck bottle bottleneck is the transition region between the large inner space inside the Broeck
bottle where B(rs) possesses the value of B(rs) = 1 + α and our Universe where B(rs) always pos-
sesses the value of 1) which means to say the region where Rb ≤ rs < Rb + ∆b with B(rs) possessing the
values of 1 < B(rs) ≤ 1+α but never reaching the value of 1 according to the Broeck criteria shown above.

We are interested in the behavior of 1 ≤ B(rs) ≤ 1 + α decreasing its value from B(rs) = 1 + α to
B(rs) = 1 using analytical functions33.Note that in our redefinition of the Broeck bottle bottleneck B(rs)
reaches the value of 1 even inside the bottleneck.

31see Appendices H and I
32see Appendix G
33continuous and differentiable in every point of the domain
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An elegant way to generate a continuous decrease from B(rs) = 1 + α to B(rs) = 1 can be achieved
if we consider a second version of the original Alcubierre shape function redefined using the Broeck bottle
bottleneck circle radius Rb as follows:34.

fb(rs) =
1
2
[1− tanh[@(rs−Rb)] (137)

Note that in this scenario we have two original Alcubierre shape functions:the first function f(rs) was
defined in section 3 with a bubble radius R of R = 100 meters to generate the Natario shape function
N(rs) and also the Natario warp bubble and the second function fb(rs) defined above generates the Broeck
bottle with a radius Rb being Rb the microscopically small outer radius of the Broeck bottle bottleneck
circle when seen from outside the bottle but still inside the warp bubble.Remember that the following
condition must always be obeyed;Rb << R

Broeck chooses for α the value of 1017(see pg 5 in in [10]).We choose for α the value of 1027 a value
1010 or 10 billion times higher than the original Broeck value.According to Broeck a value of α = 1017 for
a bottle of bottleneck outer radius Rb = 10−15 meters in a warp bubble of radius R = 3×10−15 meters can
accommodate a bottle with 200 meters of inner diameter.Our α = 1027 could perfectly well accommodate
a bottle with 200 kilometers of inner diameter in the same circumstances.

For a while and for simplification of the Broeck idea we consider a warp bubble with radius R = 100
meters but with a bottleneck radius Rb = 10 meters and a large value α = 1027 able to generate a bottle
with an inner diameter of 200 kilometers with a bottleneck of only 10 meters.

According with Alcubierre any function fb(rs) that gives 1 inside the bottle and 0 outside the bottle
while being 1 > fb(rs) > 0 in the bottleneck of the bottle35 is a valid shape function for the Broeck bottle
spacetime distortion.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]).

The analytical behavior of 1 ≤ B(rs) ≤ 1 + α decreasing its value from B(rs) = 1 + α to B(rs) = 1
using analytical functions can easily be achieved if we adopt the following equation for the definition of
B(rs) using the second original Alcubierre shape function fb(rs).

B(rs) = 1 + αfb(rs) (138)

Inside the Broeck bottle fb(rs) = 1 and B(rs) = 1 + α.Outside the Broeck bottle fb(rs) = 0 and
B(rs) = 1.In these regions the derivatives of B(rs) are always 0 because the values of B(rs) are always
constant.36

We must examine the region where the derivatives of B(rs) are not 0 due to the values of a variable
B(rs) as being 1 ≤ B(rs) ≤ 1 + α which means to say the region where 1 > fb(rs) > 0 in the bottleneck
of the Broeck bottle.

34tanh[@(rs + Rb)] = 1,tanh(@Rb) = 1 for very high values of the Alcubierre thickness parameter @ >> |Rb|
35Remember that in this case the second Alcubierre shape function fb(rs) is being used to generate the Broeck bottle not

the warp bubble.The warp bubble is being generated by the Natario shape function N(rs) using the first Alcubierre shape
function f(rs).Note that both f(rs) and fb(rs) have mathematical structures that resembles each other.One structure gives 1
inside the bubble and 0 outside the bubble while the other structure gives 1 inside the bottle and 0 outside the bottle.

36The derivatives of fb(rs) in these regions are too much close of 0 and can be neglected.

46



Considering again the definition of the Broeck bottle in the following equation for B(rs) using the
second Alcubierre shape function fb(rs)

B(rs) = 1 + αfb(rs) (139)

• )-In the following numerical plots37 we use a bottleneck radius Rb = 10 meters a value of α = 1027

and a value of the Alcubierre thickness parameter @ as being always @ = 50000

rs fb(rs) B(rs)
9, 999500000000E + 00 1, 000000000000E + 00 1, 0000000000E + 27
9, 999600000000E + 00 1, 000000000000E + 00 1, 0000000000E + 27
9, 999700000000E + 00 9, 999999999999E − 01 1, 0000000000E + 27
9, 999800000000E + 00 9, 999999979388E − 01 9, 9999999794E + 26
9, 999900000000E + 00 9, 999546021313E − 01 9, 9995460213E + 26
1, 000000000000E + 01 5, 000000000000E − 01 5, 0000000000E + 26
1, 000010000000E + 01 4, 539786871155E − 05 4, 5397868712E + 22
1, 000020000000E + 01 2, 061153636657E − 09 2, 0611536367E + 18
1, 000030000000E + 01 9, 359180097590E − 14 9, 3591800976E + 13
1, 000040000000E + 01 0, 000000000000E + 00 1, 0000000000E + 00
1, 000050000000E + 01 0, 000000000000E + 00 1, 0000000000E + 00

In the numerical plot above we can see the bottleneck of the Broeck bottle.From rs = 0 to rs = 9, 9996
meters well inside the bottle the values of fb(rs) = 1 and B(rs) = 1027 both values always constant.The
bottleneck of the bottle starts up at 9, 9997 meters and ends up at 10, 0003 meters where the value of fb(rs)
is continuously decreasing from 1 to 0 and the value of B(rs) is also continuously decreasing from 1027 to
1.From rs ≥ 10, 0004 meters we can see the region outside the bottle where fb(rs) = 0 and B(rs) = 1 with
both values also always constant

In the region where both fb(rs) and B(rs) decreases the energy density can be given by the following
equation given in Geometrized Units c = G = 1 as follows:(see eq 11 pg 6 in [10]):38

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

(
1

B4
(∂rB)2 − 2

B3
∂r∂rB − 4

B3
∂rB

1
r

)
. (140)

We must examine the behavior of the equation above in the bottleneck of the Broeck bottle to deter-
mine if the idea of a bottle with a large inner diameter of 200 kilometers and with an external bottleneck
of 10 meters remains feasible.

In the equation above a large B(rs) from 1 ≤ B(rs) ≤ 1 + α will generate very small terms 1
B(rs)4

2
B(rs)3

and 4
B(rs)3

therefore obliterating the values of the derivatives of B(rs) resulting in a very low energy
density.

37We are using Microsoft Excel and Oracle Open Office and both automatically rounds the calculations
38Remember that inside and outside the bottle the derivatives of fb(rs) in these regions are too much close of 0 and can be

neglected
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rs f ′b(rs) B′(rs)
9, 999500000000E + 00 −1, 928749847846E − 017 −1, 9287498478E + 10
9, 999600000000E + 00 −4, 248354254933E − 013 −4, 2483542549E + 14
9, 999700000000E + 00 −9, 357622967830E − 009 −9, 3576229678E + 18
9, 999800000000E + 00 −2, 061153613672E − 004 −2, 0611536137E + 23
9, 999900000000E + 00 −4, 539580772895E + 000 −4, 5395807729E + 27
1, 000000000000E + 01 −2, 500000000000E + 004 −2, 5000000000E + 31
1, 000010000000E + 01 −4, 539580774507E + 000 −4, 5395807745E + 27
1, 000020000000E + 01 −2, 061153614404E − 004 −2, 0611536144E + 23
1, 000030000000E + 01 −9, 357622971155E − 009 −9, 3576229712E + 18
1, 000040000000E + 01 −4, 248354256442E − 013 −4, 2483542564E + 14
1, 000050000000E + 01 −1, 928749848531E − 017 −1, 9287498485E + 10

In the numerical plot above we can see the first order derivatives of both fb(rs) and B(rs).From rs = 0
to rs = 9, 9994 meters the values of both can be neglected.At rs = 9, 9995 meters the value of B′(rs) is
B′(rs) = −1, 9287498478× 1010 and the value of f ′b(rs) is f ′b(rs) = −1, 928749847846× 10−17.Both reaches
the maximum value at rs = Rb = 10 meters as being B′(rs) = −2, 5 × 1031 and f ′b(rs) = −2, 5 × 104.
The minimum values are again reached at rs = 10, 0005 meters being B′(rs) = −1, 9287498485× 1010 and
f ′b(rs) = −1, 928749848531× 10−17.For an rs > 10, 0005 meters both values can again be neglected.

rs f ′′b (rs) B′′(rs)
9, 999500000000E + 00 −1, 92874984785E − 012 −1, 92874984785E + 015
9, 999600000000E + 00 −4, 24835425493E − 008 −4, 24835425493E + 019
9, 999700000000E + 00 −9, 35762296783E − 004 −9, 35762296783E + 023
9, 999800000000E + 00 −2, 06115360518E + 001 −2, 06115360518E + 028
9, 999900000000E + 00 −4, 53916859831E + 005 −4, 53916859831E + 032
1, 000000000000E + 01 0, 00000000000E + 000 0, 00000000000E + 000
1, 000010000000E + 01 4, 53916859992E + 005 4, 53916859992E + 032
1, 000020000000E + 01 2, 06115360591E + 001 2, 06115360591E + 028
1, 000030000000E + 01 9, 35762297115E − 004 9, 35762297115E + 023
1, 000040000000E + 01 4, 24835425644E − 008 4, 24835425644E + 019
1, 000050000000E + 01 1, 92874984853E − 012 1, 92874984853E + 015

In the numerical plot above we can see the second order derivatives of both fb(rs) and B(rs).From rs = 0
to rs = 9, 9994 meters the values of both can be neglected.At rs = 9, 9995 meters the value of B′′(rs)
is B′′(rs) = −1, 92874984785 × 1015 and the value of f ′′b (rs) is f ′′b (rs) = −1, 92874984785 × 10−12.Both
reaches the 0 value at rs = Rb = 10 meters.After 10 meters the sign is inverted.The minimum values
with opposite sign are again reached at rs = 10, 0005 meters being B′′(rs) = 1, 92874984853 × 1015 and
f ′′b (rs) = 1, 92874984853× 10−12.For an rs > 10, 0005 meters both values can again be neglected.
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rs f ′b(rs)
2 B′(rs)2

9, 999500000000E + 00 3, 720075975566E − 034 3, 7200759756E + 20
9, 999600000000E + 00 1, 804851387541E − 025 1, 8048513875E + 29
9, 999700000000E + 00 8, 756510760807E − 017 8, 7565107608E + 37
9, 999800000000E + 00 4, 248354219152E − 008 4, 2483542192E + 46
9, 999900000000E + 00 2, 060779359363E + 001 2, 0607793594E + 55
1, 000000000000E + 01 6, 250000000000E + 008 6, 2500000000E + 62
1, 000010000000E + 01 2, 060779360828E + 001 2, 0607793608E + 55
1, 000020000000E + 01 4, 248354222171E − 008 4, 2483542222E + 46
1, 000030000000E + 01 8, 756510767029E − 017 8, 7565107670E + 37
1, 000040000000E + 01 1, 804851388823E − 025 1, 8048513888E + 29
1, 000050000000E + 01 3, 720075978209E − 034 3, 7200759782E + 20

In the numerical plot above we can see the squares of the first order derivatives of both fb(rs) and
B(rs).From rs = 0 to rs = 9, 9994 meters the values of both can be neglected.At rs = 9, 9995 meters the
value of B′(rs)2 is B′(rs)2 = 3, 7200759756× 1020 and the value of f ′b(rs)

2 is f ′b(rs)
2 = 3, 720075975566×

10−34.Both reaches the maximum value at rs = Rb = 10 meters as being B′(rs)2 = 6, 25 × 1062 and
f ′b(rs)

2 = 6, 25 × 108. The minimum values are again reached at rs = 10, 0005 meters being B′(rs)2 =
3, 7200759782 × 1020 and f ′b(rs)

2 = 3, 720075978209 × 10−34.For an rs > 10, 0005 meters both values can
again be neglected.

We defined in this section the second Alcubierre shape function fb(rs) that generates the Broeck bot-
tle as being:

fb(rs) =
1
2
[1− tanh[@(rs−Rb)] (141)

And in section 3 the first Alcubierre shape function f(rs) that generates the Natario shape function
and the Natario warp bubble as being:

f(rs) =
1
2
[1− tanh[@(rs−R)] (142)

Note that in the numerical plot above when rs reaches the bottleneck radius Rb = 10 meters the square
of the first order derivative of fb(rs) becomes equal to f ′b(rs)

2 = 6, 25× 108 and from the numerical plots
in sections 3 and 4 we know that the square derivative of first order of f(rs) is also f ′(rs)2 = 6, 25 × 108

when rs reaches the bubble radius R = 100 meters.This is not a coincidence and depends on the way we
define both Alcubierre shape functions in terms of Rb and R.Having a bottleneck radius Rb = 10 meters
inside a warp bubble radius of R = 100 meters to accommodate a Broeck bottle of 200 kilometers of inner
diameter or having a bottleneck radius Rb = 10−15 meters inside a warp bubble radius of R = 3 × 10−15

meters to accommodate a Broeck bottle of 200 kilometers of inner diameter the derivatives of both fb(rs)
and f(rs) retains the same values when rs reaches the value of Rb or R.But a warp bubble with a radius
of R = 3× 10−15 meters would have a surface area with a magnitude order of about 10−15 square meters
many times smaller than the area of 628 square meters thereby reducing the area exposed to collisions
against the dangerous IM particles effectively protecting the ship and the crew members.
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We already know that the energy density in the Broeck bottle bottleneck is given by the following
equation given in Geometrized Units c = G = 1 as follows:(see eq 11 pg 6 in [10]):

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

(
1

B4
(∂rB)2 − 2

B3
∂r∂rB − 4

B3
∂rB

1
r

)
. (143)

In the equation above a large B(rs) from 1 ≤ B(rs) ≤ 1 + α will generate very small terms 1
B(rs)4

2
B(rs)3

and 4
B(rs)3

therefore obliterating the values of the derivatives of B(rs) resulting in a very low energy
density.Also the term r above is our term rs

rs 1
B4 (∂rB)2 2

B3 ∂r∂rB
4

B3 ∂rB
1
r

9, 999500000000E + 00 3, 7200759756E − 88 −3, 85749969569E − 066 −7, 7153851606E − 72
9, 999600000000E + 00 1, 8048513875E − 79 −8, 49670850987E − 062 −1, 6994096784E − 67
9, 999700000000E + 00 8, 7565107608E − 71 −1, 87152459357E − 057 −3, 7431614820E − 63
9, 999800000000E + 00 4, 2483542192E − 62 −4, 12230721035E − 053 −8, 2447793503E − 59
9, 999900000000E + 00 2, 0607793594E − 53 −9, 07833719662E − 049 −1, 8158504677E − 54
1, 000000000000E + 01 6, 2500000000E − 46 0, 00000000000E + 000 −1, 0000000000E − 50
1, 000010000000E + 01 2, 0607793608E − 53 9, 07833719985E − 049 −1, 8158141517E − 54
1, 000020000000E + 01 4, 2483542222E − 62 4, 12230721181E − 053 −8, 2444495686E − 59
1, 000030000000E + 01 8, 7565107670E − 71 1, 87152459423E − 057 −3, 7429369004E − 63
1, 000040000000E + 01 1, 8048513888E − 79 8, 49670851288E − 062 −1, 6992737316E − 67
1, 000050000000E + 01 3, 7200759782E − 88 3, 85749969706E − 066 −7, 7146136634E − 72

In the numerical plot above the terms 1
B4 (∂rB)2 2

B3 ∂r∂rB and 4
B3 ∂rB

1
r are being shown individually

in the Broeck bottle bottleneck.All the values are too low as expected due to the fractions with powers of
B(rs).The highest values are 6, 25 × 10−46 for the term 1

B4 (∂rB)2 and −1 × 10−50 for the term 4
B3 ∂rB

1
r

over the bottleneck radius Rb = 10 meters when rs = Rb.

Considering a bottleneck radius of Rb = 10−15 meters when rs = Rb the term 1
B4 (∂rB)2 retains the

same value but the term 4
B3 ∂rB

1
r achieves a new value of −1 × 10−34 due to the fraction 1

rs = 1 × 1015

when rs = Rb = 10−15 being multiplied by the term 4
B3 ∂rB increasing of course the value of 4

B3 ∂rB
1
r while

for a bottleneck radius Rb = 10 meters when rs = Rb the fraction 1
rs = 1× 10−1 is being multiplied by the

term 4
B3 ∂rB decreasing of course the value of 4

B3 ∂rB
1
r

Since the energy density equation uses the term − 4
B3 ∂rB

1
r then when rs = Rb = 10 meters the value

of this term is 1× 10−50 and the dominant term in the equation becomes the term 1
B4 (∂rB)2 with a value

of 6, 25 × 10−46 because in this case 1
B4 (∂rB)2 is greater than − 4

B3 ∂rB
1
r but when rs = Rb = 10−15 me-

ters the term 1× 10−34 becomes the dominant term because in this case 1
B4 (∂rB)2 becomes smaller than

− 4
B3 ∂rB

1
r .By changing the values of the bottleneck radius Rb from Rb = 10 meters to Rb = 10−15 meters

we change the dominant terms in the equation from 1
B4 (∂rB)2 to − 4

B3 ∂rB
1
r .

The term 2
B3 ∂r∂rB have very low negative values for rs < 9, 9995 meters(and very low positive values

for rs > 10, 0005 meters).It starts to grow as rs when rs < Rb approaches Rb becoming 0 when rs = Rb

and inverts the signal for rs > Rb
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In order to compute the value of the energy density in the Broeck bottle bottleneck we must evaluate
numerically the following expression:

arg =
(

1
B4

(∂rB)2 − 2
B3

∂r∂rB − 4
B3

∂rB
1
r

)
. (144)

rs arg

9, 999500000000E + 00 3, 85750741108E − 066
9, 999600000000E + 00 8, 49672550396E − 062
9, 999700000000E + 00 1, 87152833673E − 057
9, 999800000000E + 00 4, 12231545938E − 053
9, 999900000000E + 00 9, 07856143306E − 049
1, 000000000000E + 01 6, 25010000000E − 046
1, 000010000000E + 01 −9, 07811296377E − 049
1, 000020000000E + 01 −4, 12229896312E − 053
1, 000030000000E + 01 −1, 87152085129E − 057
1, 000040000000E + 01 −8, 49669152015E − 062
1, 000050000000E + 01 −3, 85749198245E − 066

In the numerical plot above the term arg that allows ourselves to compute the energy density in the
Broeck bottle bottleneck have a set of numerical values plotted around a bottleneck radius Rb = 10
meters.Considering the terms 1

B4 (∂rB)2 2
B3 ∂r∂rB and 4

B3 ∂rB
1
r from the plot of the previous page and

considering the following powers of 10 also from the plot of the previous page as being 10−66 10−62 10−57

10−53 and 10−49 when rs < Rb we can see that the dominant term in the expression for arg is 2
B3 ∂r∂rB be-

cause in this region 1
B4 (∂rB)2 and 4

B3 ∂rB
1
r have smaller values.Remember that in the plots of the previous

page both 2
B3 ∂r∂rB and 4

B3 ∂rB
1
r have negative values when rs < Rb but the expression for arg uses the

terms − 2
B3 ∂r∂rB and − 4

B3 ∂rB
1
r so the negative values for 2

B3 ∂r∂rB and 4
B3 ∂rB

1
r from the numerical plot of

the previous page becomes positive in the expression for arg being the value of − 2
B3 ∂r∂rB the largest of all.

On the other hand when rs > Rb and considering again the powers of 10 as 10−66 10−62 10−57 10−53

and 10−49 also from the plot in the previous page we can see that even in this region the dominant term
for the expression of arg is still 2

B3 ∂r∂rB because in this region 2
B3 ∂r∂rB have positive values in the plot of

the previous page larger than the values of 1
B4 (∂rB)2 and the expression for arg uses the term − 4

B3 ∂rB
1
r

so again the negative values of 4
B3 ∂rB

1
r becomes again positive.Also and again following the plots from the

previous page in the region where rs > Rb the values of the term 2
B3 ∂r∂rB becomes the largest of all and

since the expression for arg. uses the term − 2
B3 ∂r∂rB this is the reason why in the region where rs > Rb

the term arg possesses negative values.

When rs = Rb from the numerical plot of the previous page the term 2
B3 ∂r∂rB is 0 and the dominant term

becomes 1
B4 (∂rB)2 with a value of 6, 25 × 10−46.The term 4

B3 ∂rB
1
r have a value of −1 × 10−50 but the

expression for arg uses the term − 4
B3 ∂rB

1
r so the value becomes − 4

B3 ∂rB
1
r = 1× 10−50 and this value is

added to 6, 25× 10−46 giving the final result of 6, 2501× 10−46 for the numerical plot of arg shown above
as the highest value of the plot.
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Note that from the numerical plots of the two previous pages we have two regions one with positive
energy density rs ≤ Rb and another with negative energy density rs > Rb. This result was of course
expected since Broeck in abs and pg 6 of [10] mentions positive and negative energy densities.

However we used the original Alcubierre shape function to generate our version of the Broeck bottle
while Broeck himself used a different function to generate the original Broeck bottle so our results cannot
be exactly equal to the Broeck ones because the bottles are different.We borrowed the Broeck idea of
the Broeck bottle but we redefined the definition of the Broeck bottle using the original Alcubierre shape
function in order to get better results..

In the top of pg 7 in [10] Broeck reinstates the factor c2

G to get the total amount of energy in SI units and
Broeck arrived in eq 16 at a result of 4, 9 × 1030 kilograms a value in magnitude comparable to the mass
of the Sun39 which of course is impossible to be artificially generated.

Considering the factor c2

G as being 9×1016

6,67×10−11 and working only with the powers of 10 we would get 1016

10−11

giving the final result of 1027 a value 1000 times bigger in magnitude than the mass of the Earth which
is about 1024 kilograms 40 and a factor of 1027 in an energy density equation is of course impossible to be
generated artificially.

Fortunately our results looks better and promising.We know that the energy density equation of the
Broeck bottle is given by the following equation given in Geometrized Units c = G = 1 as follows:(see eq
11 pg 6 in [10]):

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

(
1

B4
(∂rB)2 − 2

B3
∂r∂rB − 4

B3
∂rB

1
r

)
. (145)

Or better:

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

arg (146)

With the arg term being:

arg =
(

1
B4

(∂rB)2 − 2
B3

∂r∂rB − 4
B3

∂rB
1
r

)
. (147)

The equation with the factor c2

G would then be:

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

c2

G
arg (148)

For the sake of simplicity we neglect also the factor 1
8π and work only with powers of 10.The maximum

value of the term arg in the numerical plot of the previous page lies over the bottleneck radius Rb and
have a value of about 10−46 which can of course obliterate the factor 1027 and 10−46× 1027 = 10−19 Joules

meter3

an extremely low value for the energy density in the Broeck bottle bottleneck considering that a density
of one kilogram per cubic meter of space would mean a density of 9× 1016 Joules

meter3 .

39see Wikipedia the Free Encyclopedia
40see Wikipedia the Free Encyclopedia
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Considering also the already mentioned powers of 10 from the last numerical plot 10−66 10−62 10−57

10−53 and 10−49 we can see that each one of these powers can also obliterate the factor 1027 giving even
lower values when compared to 9× 1016 Joules

meter3 .

In pg 553(a) or pg 543(b) in [14] we can see that the conversion factor from Geometrized Units to SI
Units is actually c4

G and not c2

G being c4

G in powers of 10 equal to 1032

10−11 = 1043 and 10−46 × 1043 = 10−3

Joules
meter3 still an extremely low value for the energy density in the Broeck bottle bottleneck.

Remember that we presented these numerical plots for a Broexk bottle bottleneck radius Rb = 10 me-
ters.Considering a bottleneck radius of Rb = 10−15 meters we already know that the dominant term in the
expression for arg becomes − 4

B3 ∂rB
1
r with a maximum value of 1, 00000000001× 10−34 when rs = Rb and

10−34×1043 = 109 Joules
meter3 still an extremely low value for the energy density in the Broeck bottle bottleneck.

We have seen so far that a Broeck bottle with a very small bottleneck outer radius Rb = 10−15 meters with
a parameter α = 1027 can easily accommodate a bottle with a large inner radius of 200 kilometers with an
extremely low energy density needed to sustain the bottle.

Reviewing the case of the Natario warp drive in a real 3 + 1 spacetime seen in section 10 where the
negative energy density in SI Units is given by the following expression

ρ3+1 = −c2

G

vs2

8π

[
3(N ′(rs))2 cos2 θ

]
− c2

G

vs2

8π

[(
N ′(rs) +

rs

2
N ′′(rs)

)2
sin2 θ

]
(149)

For a warp bubble radius R = 100 meters the value of N ′(rs))2 is 3, 8725919148493 × 10−103 as seen
in section 4 giving a negative energy density of 10−103 × 1048 = 10−55 Joules

meter3 for 200 times light speed and
the value of

(
N ′(rs) + rs

2 N ′′(rs)
)2 is 9, 5849070261× 10−86 as seen in section 10 giving a negative energy

density of 10−86 × 1048 = 10−38 Joules
meter3 also for 200 times light speed.

Broeck in pg 5 in [10] used an Alcubierre warp bubble with a radius of R = 3× 10−15 meters and a bottle
bottleneck radius Rb = 10−15 meters.Considering a Natario warp bubble with a radius R = 3 × 10−15

meters the negative energy density still remains layered over the bubble radius R and when rs = R
the value of N ′(rs))2 is still the same value41 of 3, 8725919148493 × 10−103 but the value of the term(
N ′(rs) + rs

2 N ′′(rs)
)2 now becomes 9, 6814219888 × 10−108 because the term rs

2 N ′′(rs) now being multi-
plied by rs = R = 3×10−15 have lower values when compared to the same term multiplied by rs = R = 100
giving a negative energy of 10−108×1048 = 10−60 Joules

meter3 also for 200 times light speed. The scenario of the
Broeck bottle in the case of the Natario warp drive provides two advantages:The first one is the reduction
of the warp bubble radius from 100 meters to 3 × 10−15 meters and in consequence the reduction of the
surface area exposed to collisions against the dangerous IM particles which is extremely useful considering
large objects(eg:asteroids comets supernova remnants or debris,space dust etc).An area of 10−15 square
meters is 1012 times or 100 billion times smaller than an area of a square millimeter thereby reducing the
probabilities of collisions against the dangerous IM particles. The second one is the fact that a submicro-
scopic bubble radius reduces the amount of negative energy needed to sustain the bubble due to the term
rs
2 N ′′(rs).Therefore any future development of the Natario warp drive should include the Broeck bottle.

41Because as we already have seen before the derivatives of the original Alcubierre shape function do not change its values
when we switch from 10 to 10−15 or 100 and the Natario shape function being defined using the Alcubierre shape function
retains the same behavior
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13 Conclusion:

In this work we applied the geometry of the Broeck spacetime distortion(Broeck bottle) to the Natario
warp drive spacetime.

We started this work with the definition of the Natario warp drive equation in the original ADM for-
malism and this equation is needed to be presented in this work in order to explain how the Natario
spacetime geometry can receive in its structure the inclusion of the mathematical term B(rs) that gener-
ates the Broeck bottle.

We used the Alcubierre shape function f(rs) to define the Natario shape function counterpart N(rs)
using also the warp factor WF and we calculated the derivatives of the Natario shape function in order to
obtain in the formulas of the derivatives the terms 1− f(rs) and f(rs) raised to powers of the warp factor
WF .

These terms cancel each other in the derivatives of the Natario shape function except in the warp bubble
radius giving a very low value for the derivatives of the Natario shape function over the bubble radius and
in consequence very low values for the negative energy density.

Also we demonstrated that the negative energy density in the equatorial plane of the Natario warp bub-
ble do not vanish and due to the gravitational repulsive behavior of the negative energy density this can
provide protection against collisions with the Interstellar Medium IM that unavoidably would occur in a
real superluminal spaceflight.

We discussed the Interstellar Medium IM and we arrived at the conclusion that the negative energy
density of the warp bubble walls must be higher in modulus than the positive energy density of the IM in
order to allow the gravitational repulsion of the IM particles by the warp bubble walls and we introduced
the empirical formula to obtain the desirable amount of negative energy density needed to deflect the IM
particles multiplying the modulus of the density of the IM by the Machian coefficient of the fraction vs

c
which means to say the multiples of the light speed c in the spaceship velocity vs.The negative energy
density of the Natario warp drive must exceed this product in modulus.

Collisions between the walls of the warp bubble and the IM particles would certainly occur and although
the negative energy density in front of the Natario warp bubble can theoretically protect the ship we bor-
rowed the idea of Chris Van Den Broeck proposed some years ago in 1999 in order to increase the degree
of protection.

Our idea is to keep the surface area of the bubble exposed to collisions microscopically small avoiding
the collisions with the IM particles while at the same time expanding the spatial volume inside the bubble
to a size larger enough to contains a spaceship inside.

Some years ago in 1999 Broeck appeared with exactly this idea.Broeck applied to the Alcubierre origi-
nal warp drive metric spatial components a new mathematical term B(rs) able to do so.
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This term B(rs) creates inside the Alcubierre or Natario warp bubble a spacetime distortion with the
shape of a bottle in which the large inner space of the bottle volume with a large inner radius that can
contains a spaceship inside the bottle is maintained isolated from the rest of the Universe and the only
contact point between the bottle and the Universe is the bottle bottleneck with a microscopically small
outer radius.Broeck created a bottle with 200 meters.We redefined the Broeck mathematical term B(rs)
using the original Alcubierre shape function in order to create a Broeck bottle with 200 kilometers of inner
diameter maintaining the submicroscopic outer radius of the bottle bottleneck and a low energy density
needed to create the bottle.

A submicroscopic outer radius of the bottle bottleneck being the only part in contact with our Universe
would mean a submicroscopic surface exposed to the collisions against the IM particles thereby reducing
the probabilities of dangerous impacts against large objects (comets asteroids etc) enhancing the protection
level of the spaceship and hence the survivability of the crew members.

Any future development for the Natario warp drive must encompass the more than welcome idea of the
Broeck bottle.

But unfortunately although we can discuss mathematically how to reduce the negative energy density
requirements to sustain a warp drive we dont know how to generate the shape function that distorts the
spacetime geometry creating the warp drive effect.So unfortunately all the discussions about warp drives
are still under the domain of the mathematical conjectures.

However we are confident to affirm that the Natario-Broeck warp drive will survive the passage of the
Century XXI and will arrive to the Future.The Natario-Broeck warp drive as a valid candidate for faster
than light interstellar space travel will arrive to the the Century XXIV on-board the future starships up
there in the middle of the stars helping the human race to give his first steps in the exploration of our Galaxy

Live Long And Prosper
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14 Appendix A:mathematical demonstration of the Natario warp drive
equation for a constant speed vs in the original 3+1 ADM Formalism
according to MTW and Alcubierre

General Relativity describes the gravitational field in a fully covariant way using the geometrical line ele-
ment of a given generic spacetime metric ds2 = gµνdxµdxν where do not exists a clear difference between
space and time.This generical form of the equations using tensor algebra is useful for differential geometry
where we can handle the spacetime metric tensor gµν in a way that keeps both space and time integrated in
the same mathematical entity (the metric tensor) and all the mathematical operations do not distinguish
space from time under the context of tensor algebra handling mathematically space and time exactly in
the same way.

However there are situations in which we need to recover the difference between space and time as for
example the evolution in time of an astrophysical system given its initial conditions.

The 3 + 1 ADM formalism allows ourselves to separate from the generic equation ds2 = gµνdxµdxν of
a given spacetime the 3 dimensions of space and the time dimension.(see pg [64(b)] [79(a)] in [12])

Consider a 3 dimensional hypersurface Σ1 in an initial time t1 that evolves to a hypersurface Σ2 in a
later time t2 and hence evolves again to a hypersurface Σ3 in an even later time t3 according to fig 2.1 pg
[65(b)] [80(a)] in [12].

The hypersurface Σ2 is considered and adjacent hypersurface with respect to the hypersurface Σ1 that
evolved in a differential amount of time dt from the hypersurface Σ1 with respect to the initial time t1.
Then both hypersurfeces Σ1 and Σ2 are the same hypersurface Σ in two different moments of time Σt and
Σt+dt.(see bottom of pg [65(b)] [80(a)] in [12])

The geometry of the spacetime region contained between these hypersurfaces Σt and Σt+dt can be de-
termined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12])
(see also fig 21.2 pg [506(b)] [533(a)] in [11] where dxi + βidt appears to illustrate the equation 21.40
gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) at pg [507(b)] [534(a)] in [11])42

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(dxi + βidt).βi is known as the shift vector.

42we adopt the Alcubierre notation here
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Combining the eqs (21.40),(21.42) and (21.44) pgs [507, 508(b)] [534, 535(a)] in [11]
with the eqs (2.2.5) and (2.2.6) pgs [67(b)] [82(a)] in [12] using the signature (−,+,+,+) we get the original
equations of the 3 + 1 ADM formalism given by the following expressions:

gµν =
(

g00 g0j

gi0 gij

)
=
(
−α2 + βkβ

k βj

βi γij

)
(150)

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (151)

The components of the inverse metric are given by the matrix inverse :

gµν =
(

g00 g0j

gi0 gij

)
=

(
− 1

α2
βj

α2

βi

α2 γij − βiβj

α2

)
(152)

The spacetime metric in 3 + 1 is given by:

ds2 = gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (153)

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi and we have:

ds2 = −α2dt2 + γii(dxi + βidt)2 (154)

(dxi + βidt)2 = (dxi)2 + 2βidxidt + (βidt)2 (155)

γii(dxi + βidt)2 = γii(dxi)2 + 2γiiβ
idxidt + γii(βidt)2 (156)

βi = γiiβ
i (157)

γii(βidt)2 = γiiβ
iβidt2 = βiβ

idt2 (158)

(dxi)2 = dxidxi (159)

γii(dxi + βidt)2 = γiidxidxi + 2βidxidt + βiβ
idt2 (160)

ds2 = −α2dt2 + γiidxidxi + 2βidxidt + βiβ
idt2 (161)

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (162)

Note that the expression above is exactly the eq (2.2.4) pgs [67(b)] [82(a)] in [12].It also appears as eq
1 pg 3 in [1].
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With the original equations of the 3 + 1 ADM formalism given below:

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (163)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβ

i βi

βi γii

)
(164)

gµν =
(

g00 g0i

gi0 gii

)
=

(
− 1

α2
βi

α2

βi

α2 γii − βiβi

α2

)
(165)

and suppressing the lapse function making α = 1 we have:

ds2 = (−1 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (166)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβ

i βi

βi γii

)
(167)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 βi

βi γii − βiβi

)
(168)

changing the signature from (−,+,+,+) to signature (+,−,−,−) we have:

ds2 = −(−1 + βiβ
i)dt2 − 2βidxidt− γiidxidxi (169)

ds2 = (1− βiβ
i)dt2 − 2βidxidt− γiidxidxi (170)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβ
i −βi

−βi −γii

)
(171)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 −βi

−βi −γii + βiβi

)
(172)

Remember that the equations given above corresponds to the generic warp drive metric given below:

ds2 = dt2 − γii(dxi + βidt)2 (173)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (174)

The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system
we must employ the equation that obeys the 3 + 1 ADM formalism:

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (175)
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Comparing all these equations

ds2 = (1− βiβ
i)dt2 − 2βidxidt− γiidxidxi (176)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβ
i −βi

−βi −γii

)
(177)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 −βi

−βi −γii + βiβi

)
(178)

ds2 = dt2 − γii(dxi + βidt)2 (179)

With

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (180)

We can see that βi = −Xi,βi = −Xi and βiβ
i = XiX

i with Xi as being the contravariant form of the
Natario shift vector and Xi being the covariant form of the Natario shift vector.Hence we have:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (181)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiX
i Xi

Xi −γii

)
(182)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 Xi

Xi −γii + XiXi

)
(183)

Looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (184)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (185)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (186)

But remember that dl2 = γiidxidxi = dr2 + r2dθ2 with γrr = 1 and γθθ = r2. Then the covariant shift
vector components Xrs and Xθ with r = rs are given by:

Xi = γiiX
i (187)

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (188)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (189)
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The equations of the Natario warp drive in the 3 + 1 ADM formalism are given by:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (190)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiX
i Xi

Xi −γii

)
(191)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 Xi

Xi −γii + XiXi

)
(192)

The matrix components 2× 2 evaluated separately for rs and θ gives the following results:43

gµν =
(

g00 g0r

gr0 grr

)
=
(

1−XrX
r Xr

Xr −γrr

)
(193)

gµν =
(

g00 g0r

gr0 grr

)
=
(

1 Xr

Xr −γrr + XrXr

)
(194)

gµν =
(

g00 g0θ

gθ0 gθθ

)
=
(

1−XθX
θ Xθ

Xθ −γθθ

)
(195)

gµν =
(

g00 g0θ

gθ0 gθθ

)
=
(

1 Xθ

Xθ −γθθ + XθXθ

)
(196)

Then the equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given
by:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (197)

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrsdt + Xθdθdt)− drs2 − rs2dθ2 (198)

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (199)

43Actually we know that the real matrix is a 3× 3 matrix with dimensions t rs and θ.Our 2× 2 approach is a simplification
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We already know that for the Natario warp drive in a generic coordinates system we must employ the
equation that obeys the 3 + 1 ADM formalism:

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (200)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (201)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (202)

But remember that γrr = 1 and γθθ = r2.Therefore the Natario warp drive equation in the original
ADM formalism can be written as:

ds2 = dt2 − [(drs−Xrsdt)2 + (rs2)(dθ −Xθdt)2] (203)
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15 Appendix B:differential forms,Hodge star and the mathematical
demonstration of the Natario vectors nX = −vsdx and nX = vsdx

for a constant speed vs

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (204)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (205)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (206)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (207)

rdθ ∼ r sin θ(dϕ ∧ dr) (208)

r sin θdϕ ∼ r(dr ∧ dθ) (209)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(pg 8 in [4]):

∗dr = r2 sin θ(dθ ∧ dϕ) (210)

∗rdθ = r sin θ(dϕ ∧ dr) (211)

∗r sin θdϕ = r(dr ∧ dθ) (212)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [2]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(213)

Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (214)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (215)
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Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (216)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (217)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (218)

We know that the following expression holds true(see pg 9 in [3]):

dϕ ∧ dr = −dr ∧ dϕ (219)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (220)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [2]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(221)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(222)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (223)

According to pg 10 in [3] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (224)

Because and according to pg 10 in [3]:

d(α + β) = dα + dβ (225)

d(fα) = df ∧ α + f ∧ dα (226)

d(dx) = d(dy) = d(dz) = 0 (227)
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From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (228)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (229)

And then we derived again the Natario result of pg 5 in [2]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (230)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [2] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (231)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (232)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (233)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (234)

Comparing the above expressions with the Natario definitions of pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (235)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (236)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (237)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (238)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (239)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (240)

Defining the Natario Vector as in pg 5 in [2] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(241)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(242)
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We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [2]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (243)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (244)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (245)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (246)

The term r in all these equations is our term rs and the function f(r) in all these equations is our
Natario shape function n(r) or n(rs) or N(rs)

65



16 Appendix C:The Natario warp drive negative energy density in
Cartezian coordinates

The negative energy density according to Natario is given by(see pg 5 in [2])44:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(247)

In the bottom of pg 4 in [2] Natario defined the x-axis as the polar axis.In the top of page 5 we can see
that x = rs cos(θ) implying in cos(θ) = x

rs and in sin(θ) = y
rs

Rewriting the Natario negative energy density in cartezian coordinates we should expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2
]

(248)

Considering motion in the equatorial plane of the Natario warp bubble (x-axis only) then [y2 + z2] = 0
and rs2 = [(x− xs)2] and making xs = 0 the center of the bubble as the origin of the coordinate frame for
the motion of the Eulerian observer then rs2 = x2 because in the equatorial plane y = z = 0.

Rewriting the Natario negative energy density in cartezian coordinates in the equatorial plane we should
expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2

]
(249)

44n(rs) is the Natario shape function.Equation written in the Geometrized System of Units c = G = 1
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17 Appendix D:Dimensional Reduction from c4

G to c2

G

The Alcubierre expressions for the Negative Energy Density in Geometrized Units c = G = 1 are given
by(pg 4 in [2])(pg 8 in [1]):45:

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (250)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (251)

In this system all physical quantities are identified with geometrical entities such as lengths,areas or
dimensionless factors.Even time is interpreted as the distance travelled by a pulse of light during that
time interval,so even time is given in lengths.Energy,Momentum and Mass also have the dimensions of
lengths.We can multiply a mass in kilograms by the conversion factor G

c2
to obtain the mass equivalent in

meters.On the other hand we can multiply meters by c2

G to obtain kilograms.The Energy Density( Joules
meters3 )in

Geometrized Units have a dimension of 1
length2 and the conversion factor for Energy Density is G

c4
.Again

on the other hand by multiplying 1
length2 by c4

G we retrieve again ( Joules
meters3 ). 46.

This is the reason why in Geometrized Units the Einstein Tensor have the same dimension of the Stress
Energy Momentum Tensor(in this case the Negative Energy Density)and since the Einstein Tensor is
associated to the Curvature of Spacetime both have the dimension of 1

length2 .

G00 = 8πT00 (252)

Passing to normal units and computing the Negative Energy Density we multiply the Einstein Tensor
(dimension 1

length2 ) by the conversion factor c4

G in order to retrieve the normal unit for the Negative Energy
Density ( Joules

meters3 ).

T00 =
c4

8πG
G00 (253)

Examine now the Alcubierre equations:

vs = dxs
dt is dimensionless since time is also in lengths.y2+z2

rs2 is dimensionless since both are given also in
lengths. f(rs) is dimensionless but its derivative df(rs)

drs is not because rs is in meters. So the dimensional
factor in Geometrized Units for the Alcubierre Energy Density comes from the square of the derivative and
is also 1

length2 .Remember that the speed of the Warp Bubble vs is dimensionless in Geometrized Units and

when we multiply directly 1
length2 from the Negative Energy Density in Geometrized Units by c4

G to obtain
the Negative Energy Density in normal units Joules

meters3 the first attempt would be to make the following:

ρ = −c4

G

1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (254)

ρ = −c4

G

1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (255)

45See Geometrized Units in Wikipedia
46See Conversion Factors for Geometrized Units in Wikipedia
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But note that in normal units vs is not dimensionless and the equations above do not lead to the
correct dimensionality of the Negative Energy Density because the equations above in normal units are
being affected by the dimensionality of vs.

In order to make vs dimensionless again,the Negative Energy Density is written as follows:

ρ = −c4

G

1
32π

(
vs

c
)2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (256)

ρ = −c4

G

1
32π

(
vs

c
)2
[
df(rs)
drs

]2

[
y2 + z2

rs2
] (257)

Giving:

ρ = −c2

G

1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (258)

ρ = −c2

G

1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (259)

As already seen.The same results are valid for the Natario Energy Density

Note that from

ρ = −c4

G

1
32π

(
vs

c
)2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (260)

ρ = −c4

G

1
32π

(
vs

c
)2
[
df(rs)
drs

]2

[
y2 + z2

rs2
] (261)

Making c = G = 1 we retrieve again

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (262)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (263)
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Figure 1: Artistic representation of the Natario warp drive .Note in the bottom of the figure the Alcubierre
expansion of the normal volume elements .(Source:Internet)

18 Appendix E:Artistic Presentation of the Natario warp drive

According to the geometry of the Natario warp drive the spacetime contraction in one direction(radial) is
balanced by the spacetime expansion in the remaining direction(perpendicular).(pg 5 in [2]).

The expansion of the normal volume elements in the Natario warp drive is given by the following ex-
pressions(pg 5 in [2]).

Krr =
∂Xr

∂r
= −2vsn

′(r) cos θ (264)

Kθθ =
1
r

∂Xθ

∂θ
+

Xr

r
= vsn

′(r) cos θ; (265)

Kϕϕ =
1

r sin θ

∂Xϕ

∂ϕ
+

Xr

r
+

Xθ cot θ

r
= vsn

′(r) cos θ (266)

θ = Krr + Kθθ + Kϕϕ = 0 (267)

If we expand the radial direction the perpendicular direction contracts to keep the expansion of the
normal volume elements equal to zero.

This figure is a pedagogical example of the graphical presentarion of the Natario warp drive.
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The ”bars” in the figure were included to illustrate how the expansion in one direction can be counter-
balanced by the contraction in the other directions.These ”bars” keeps the expansion of the normal volume
elements in the Natario warp drive equal to zero.

Note also that the graphical presentation of the Alcubierre warp drive expansion of the normal volume
elements according to fig 1 pg 10 in [1] is also included

Note also that the energy density in the Natario warp drive 3 + 1 spacetime being given by the following
expressions(pg 5 in [2]):

ρ = − 1
16π

KijK
ij = − v2

s

8π

[
3(n′(r))2 cos2 θ +

(
n′(r) +

r

2
n′′(r)

)2
sin2 θ

]
. (268)

ρ = − 1
16π

KijK
ij = − v2

s

8π

[
3(

dn(r)
dr

)2 cos2 θ +
(

dn(r)
dr

+
r

2
d2n(r)

dr2

)2

sin2 θ

]
. (269)

Is being distributed around all the space involving the ship(above the ship sin θ = 1 and cos θ = 0
while in front of the ship sin θ = 0 and cos θ = 1).The negative energy in front of the ship ”deflect”
photons or other particles so these will not reach the ship inside the bubble.The illustrated ”bars” are the
obstacles that deflects photons or incoming particles from outside the bubble never allowing these to reach
the interior of the bubble.47

• )-Energy directly above the ship(y − axis)

ρ = − 1
16π

KijK
ij = − v2

s

8π

[(
dn(r)

dr
+

r

2
d2n(r)

dr2

)2

sin2 θ

]
. (270)

• )-Energy directly in front of the ship(x− axis)

ρ = − 1
16π

KijK
ij = − v2

s

8π

[
3(

dn(r)
dr

)2 cos2 θ

]
. (271)

Note also that even in a 1+1 dimensional spacetime the Natario warp drive retains the zero expansion
behavior:

Krr =
∂Xr

∂r
= −2vsn

′(r) cos θ (272)

Kθθ =
Xr

r
= vsn

′(r) cos θ; (273)

Kϕϕ =
Xr

r
= vsn

′(r) cos θ (274)

θ = Krr + Kθθ + Kϕϕ = 0 (275)

In all these equations the term r is our term rs

47See also Appendix F
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Figure 2: Artistic representation of a Natario warp wrive in a real superluminal space travel .Note
the negative energy in front of the ship deflecting incoming hazardous interstellar matter(brown ar-
rows).(Source:Internet)

19 Appendix F:Artistic Presentation of a Natario warp drive in a real
faster than light interstellar spaceflight

Above is being presented the artistic presentation of a Natario warp drive in a real interstellar superluminal
travel.The ”ball” or the spherical shape is the Natario warp bubble with the negative energy surrounding
the ship in all directions and mainly protecting the front of the bubble.48

The brown arrows in the front of the Natario bubble are a graphical presentation of the negative energy
in front of the ship deflecting interstellar dust,neutral gases,hydrogen atoms,interstellar wind photons etc.49

The spaceship is at the rest and in complete safety inside the Natario bubble.

In order to allow to the negative energy density of the Natario warp drive the deflection of incoming
hazardous particles from the Interstellar Medium(IM) the Natario warp drive energy density must be
heavier or denser when compared to the IM density.

48See Appendix E
49see Appendices L and M for the composition of the Interstellar Medium IM)
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Figure 3: Artistic representation of the Broeck ”pocket” or ”bottle” with the Broeck coefficient B(rs)
shown.(Source:Internet)

20 Appendix G:Artistic Presentation of the Broeck ”pocket” or ”bot-
tle”

Broeck proposed the idea to keep the surface area of the bubble microscopically small while at the same
time expanding the spatial volume inside the bubble to a size larger enough to contains a spaceship inside.
(see pg 3 in [10]).The ”ball” in the figure above with a large internal volume is the Broeck bottle and the
circle of the intersection point between the ”ball” and the plane also shown in the figure is the circle of the
small surface area(Broeck bottle bottleneck).Broeck created the term B(rs) in order to accomplish this
task. According to Broeck this term B(rs) have the following behavior:(see pgs 3 and 4 in [10])

B(rs) =


1 + α rs < Rb

1 < B(rs) ≤ 1 + α Rb ≤ rs < Rb + ∆b

1 rs ≥ Rb + ∆b

(276)

In the equation above the small outer radius Rb is the radius of the shown circle of the Broeck bottle bot-
tleneck.This circle intersects the plane above the Broeck bottle and the plane represents our Universe.The
term α according to Broeck have a large value of 1017(pg 5 in [10]).We consider in this work a value of 1027.

Considering the center rs = 0 of the bottleneck circle delimitated by the small outer radius Rb any
point placed at a distance rs < Rb is a point inside the Broeck bottle B(rs) = 1+α being α the term that
generates the large internal volume of the Broeck bottle.
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In the region Rb ≤ rs < Rb + ∆b the value of B(rs) becomes 1 < B(rs) ≤ 1 + α.This region is in the
neighborhoods of the small outer radius Rb and is the region where B(rs) decreases from the large value
of B(rs) = 1 + α approaching the value of B(rs) = 1 but never reaching it.

The term ∆b delimitates the thickness of the region where B(rs) decreases.This region is a thin shell
around the Broeck bottle bottleneck.

Finally in the region where rs ≥ Rb + ∆b far outside the Broeck bottle bottleneck we recover the normal
space of our Universe (the plane above the Broeck bottle) in which B(rs) always possesses the value of
B(rs) = 1.

73



Figure 4: Alternative artistic representation of the Broeck ”pocket” or ”bottle” with a man shown inside
the bottle. (Source:fig 5 pg 19 in [15])

21 Appendix H:Alternative Artistic Presentation of the Broeck ”pocket”
or ”bottle”

The figure shown above represents exactly the point of view we are defending concerning the whole Broeck
idea applied to the Natario warp drive in order to reduce the surface area exposed to collisions against the
IM particles.

A Broeck bottle with a large internal radius r+ large enough to contains a man os a spaceship is be-
ing graphically depicted.

This bottle intersects the bidimensional plane in the circle delimited by the outer radius r− being this
radius microscopically small.This circle is the bottleneck of the Broeck bottle.

The bidimensional plane represents our Universe and all the dangerous IM particles are contained only in
this plane.

Therefore a Broeck bottle a sphere of a large internal radius r+ able to accommodate a man or a spaceship
would be seen by outside observers placed in the bidimensional plane representing our Universe as a circle
with a microscopically small outer radius r− being this circle the bottleneck of the Broeck bottle.(see pg
19 in [15]).

A microscopically small outer radius r− the Rb in our equations delimitates a very small microscopically
surface area therefore reducing the probability of collisions against the dangerous IM particles
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Figure 5: Alternative artistic representation of the Broeck ”pocket” or ”bottle” with both the inner and
outer radius of the bottle shown .(Source:Internet)

22 Appendix I:Alternative Artistic Presentation of the Broeck ”pocket”
or ”bottle”

The figure shown above also represents exactly the point of view we are defending concerning the whole
Broeck idea applied to the Natario warp drive in order to reduce the surface area exposed to collisions
against the IM particles.

The Broeck bottle with a large internal radius(inner radius) r+ large enough to contains a man(the brown
man) inside the bottle is depicted.

The microscopically small outer radius r− delimitates the circle surface(bottleneck of the bottle) of the
intersection points between the Btoeck bottle and out external Universe(the plane above the bottle where
the blue man is placed)

The internal radius(inner radius) r+ is much larger than the microscopically small outer radius r−.

Therefore although the Broeck bottle can possesses a large internal volume delimitated by a large in-
ternal radius(inner radius) r+ able to accommodate the brown man inside the Broeck bottle then the blue
man in the plane representing our Universe would only see a microscopically small surface circle(bottleneck
bottle) delimited by the microscopically small outer radius r− as in pg 19 in [15].

A microscopically small outer radius r− the Rb in our equations delimitates a very small microscopically
circle surface area therefore reducing the probability of collisions against the dangerous IM particles
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Figure 6: Artistic Presentation of the Broeck ”pocket” or ”bottle” inside the Alcubierre warp drive space-
time. (Source:fig 1 pg 4 in [10])

23 Appendix J:Artistic Presentation of the Broeck ”pocket” or ”bot-
tle” inside the Alcubierre warp drive spacetime

Broeck applied to the Alcubierre original warp drive metric spatial components a new mathematical term
B(rs) as shown below(see eq 3 pg 3 in [10]) changing the signature from (−,+,+,+) to (+,−,−,−):

ds2 = dt2 −B2(rs)[(dx− vs(t)f(rs)dt)2 + dy2 + dz2]. (277)

Broeck created inside the warp bubble of radius R a spatial distortion of radius Rb being Rb micro-
scopically small when seen from outside but inside the sphere generated by this Rb a large internal volume
with the size enough to contains a spaceship can easily be accommodated.(see also pg 19 in [15])50

In the figure shown above the term R̃ is our small outer radius Rb and the term ∆̃ is our ∆b.

50see Appendices H and I
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According to Broeck this term B(rs) have the following behavior:(see pgs 3 and 4 in [10])51

B(rs) =


1 + α rs < Rb

1 < B(rs) ≤ 1 + α Rb ≤ rs < Rb + ∆b

1 rs ≥ Rb + ∆b

(278)

• )-Considering the picture shown in the previous page:

Region 1 is the Broeck bottle or ”pocket” with a large inner metric defined by the region where rs < Rb

and B(rs) = 1 + α being α the term that generates the large internal volume of the Broeck bottle.

Region 2 is the region where the bottleneck of the Broeck bottle is placed.This region is the transition region
between the ”blown-up” space to the ”normal” space.This is the region where Rb ≤ rs < Rb + ∆b being
Rb the radius of the Broeck bottle bottleneck.In this region the value of B(rs) becomes 1 < B(rs) ≤ 1 + α
never reaching 1.The term ∆b delimitates the thickness of the region 2 where B(rs) decreases.This region
is a thin shell around the Broeck bottle bottleneck.

Region 3 is the region where rs ≥ Rb + ∆b far outside the Broeck bottle bottleneck we recover the
normal space of our Universe in which B(rs) always possesses the value of B(rs) = 1.We also recover the
original Alcubierre metric.

Region 4 is the Alcubierre warped region where the Alcubierre shape function f(rs) is varying from 1
to 0.(0 < f(rs) ≤ 1).According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0
outside the bubble while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for
the Alcubierre warp drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]). Broeck defined the Alcubierre
shape function as being:(see pg 4 in [10])

f(rs) =


1 rs < R

0 < f(rs) ≤ 1 R ≤ rs < R + ∆
0 rs ≥ R + ∆

(279)

In the equation above R is the radius of the warp bubble and ∆ is the thickness of the Alcubierre warped
region which means to say the thin shell region where 0 < f(rs) ≤ 1. Remember that R >> Rb + ∆b or
R + ∆ >> Rb + ∆b

Regions from 1 to 3 are completely contained inside the Alcubierre warp bubble.Note that in the re-
gions 1 and 3 the value of B(rs) is constant which means to say that the derivatives of B(rs) are zero.Also
in these regions the value of f(rs) is always constant hence the derivatives of f(rs) are also zero.

In the region 2 delimitated by Rb ≤ rs < Rb + ∆b the value of B(rs) is given by 1 < B(rs) ≤ 1 + α
and since B(rs) is varying in this region then the derivatives of B(rs) are different than zero.

In the region 4 delimitated by R ≤ rs < R + ∆ the value of f(rs) is given by 0 < f(rs) ≤ 1 and
since f(rs) is varying in this region then the derivatives of f(rs) are different than zero.

51see Appendix G
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Due to the terms R >> Rb+∆b or R+∆ >> Rb+∆b the regions 2 and 4 do not ”overlap” themselves.In
the region 2 the derivatives of B(rs) are non-zero but the derivatives of f(rs) are zero and in the region 4
the derivatives of B(rs) are zero but the derivatives of f(rs) are non-zero.This is very important the fact
that we can study both regions 2 and 4 completely separated from each other.Otherwise we would need
to compute ”all-the-way-round” the Christoffel symbols Riemann and Ricci tensors and the Ricci scalar
in order to obtain the Einstein tensor and hence the stress-energy-momentum tensor in a long and tedious
process of tensor analysis liable of occurrence of calculation errors.

Or we can use computers with programs like Maple or Mathematica (see pgs [342(b)] or [369(a)] in
[11], pgs [276(b)] or [294(a)] in [13],pgs [454, 457, 560(b)] or [465, 468, 567(a)] in [14]).

Appendix C pgs [551−555(b)] or [559−563(a)] in [14] shows how to calculate everything until the Einstein
tensor from the basic input of the covariant components of the 3+1 spacetime metric using Mathematica.

The energy density for the Broeck region 2 in Geometrized Units c = G = 1 is given by the following
equation:(see eq 11 pg 6 in [10])

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

(
1

B4
(∂rB)2 − 2

B3
∂r∂rB − 4

B3
∂rB

1
r

)
. (280)

In the equation above a large B(rs) from 1 < B(rs) ≤ 1+α where Rb ≤ rs < Rb+∆b will generate very
small terms 1

B(rs)4
2

B(rs)3
and 4

B(rs)3
therefore obliterating the values of the derivatives of B(rs) resulting

in a very low energy density.

The Alcubierre expressions for the negative energy density of the region 4 in Geometrized Units c = G = 1
are given by(pg 4 in [2])(pg 8 in [1]):52:

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (281)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (282)

Note that in the equatorial plane y = z = 0 the negative energy density vanishes leaving the ship and
therefore the region 2 both unprotected against collisions with the dangerous IM particles.(see the works
in [5],[7] and [8])

52See Geometrized Units in Wikipedia
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Figure 7: Artistic Presentation of the Broeck ”pocket” or ”bottle” inside the Natario warp drive space-
time.(Source:Internet)

24 Appendix K:Artistic Presentation of the Broeck ”pocket” or ”bot-
tle” inside the Natario warp drive spacetime

Applying the Broeck mathematical term B(rs) to the spatial components of the Natario warp drive equation
using the signature (+,−,−,−) we get the following result:

ds2 = dt2 −B(rs)2[(drs−Xrsdt)2 + (rs2)(dθ −Xθdt)2] (283)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2])53

Xrs = 2vsn(rs) cos θ (284)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (285)

The term B(rs) according to Broeck creates inside the Natario warp bubble of radius R a spatial dis-
tortion of radius Rb being Rb microscopically small when seen from outside but inside the sphere generated
by this Rb a large internal volume with the size enough to contains a spaceship can easily be accommo-
dated.(see also pg 19 in [15])54

In the figure shown above the term R̃ is our small outer radius Rb and the term ∆̃ is our ∆b.

53see also Appendices A and B for details
54see Appendices H and I
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According to Broeck this term B(rs) have the following behavior:(see pgs 3 and 4 in [10])55

B(rs) =


1 + α rs < Rb

1 < B(rs) ≤ 1 + α Rb ≤ rs < Rb + ∆b

1 rs ≥ Rb + ∆b

(286)

• )-Considering the picture shown in the previous page:

The pink region is the Broeck bottle or ”pocket” with a large inner metric defined by the region where
rs < Rb and B(rs) = 1+α being α the term that generates the large internal volume of the Broeck bottle.

The faded yellow region is the region where the bottleneck of the Broeck bottle is placed.This region
is the transition region between the ”blown-up” space to the ”normal” space.This is the region where
Rb ≤ rs < Rb + ∆b being Rb the radius of the Broeck bottle bottleneck.In this region the value of B(rs)
becomes 1 < B(rs) ≤ 1 + α never reaching 1.The term ∆b delimitates the thickness of the faded yellow
region where B(rs) decreases.This region is a thin shell around the Broeck bottle bottleneck.

The white region is the region where rs ≥ Rb + ∆b far outside the Broeck bottle bottleneck we recover the
normal space of our Universe in which B(rs) always possesses the value of B(rs) = 1.We also recover the
original Natario metric.

The green region is the Natario warped region where the Natario shape function n(rs) is varying from
0 to 1

2 .(0 < n(rs) ≤ 1
2).According with Natario any function n(rs) that gives 0 inside the bubble and 1

2
outside the bubble while being 1

2 > n(rs) > 0 in the Natario warped region is a valid shape function for
the Natario warp drive.(see pg 5 in [2]). We define the Natario shape function as being

n(rs) =


0 rs < R

0 < n(rs) ≤ 1
2 R ≤ rs < R + ∆

1
2 rs ≥ R + ∆

(287)

In the equation above R is the radius of the warp bubble and ∆ is the thickness of the Natario warped
region which means to say the thin shell region where 0 < n(rs) ≤ 1

2 . Remember that R >> Rb + ∆b or
R + ∆ >> Rb + ∆b

The pink,faded yellow and white regions are completely contained inside the Natario warp bubble.Note
that in the pink and white regions the value of B(rs) is constant which means to say that the derivatives
of B(rs) are zero.Also in these regions the value of n(rs) is always constant hence the derivatives of n(rs)
are also zero.

In the faded yellow region delimitated by Rb ≤ rs < Rb+∆b the value of B(rs) is given by 1 < B(rs) ≤ 1+α
and since B(rs) is varying in this region then the derivatives of B(rs) are different than zero.

In the green region delimitated by R ≤ rs < R + ∆ the value of n(rs) is given by 0 < n(rs) ≤ 1
2

and since n(rs) is varying in this region then the derivatives of n(rs) are different than zero.

55see Appendix G
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Due to the terms R >> Rb + ∆b or R + ∆ >> Rb + ∆b the regions faded yellow and green do not
”overlap” themselves.In the faded yellow region the derivatives of B(rs) are non-zero but the derivatives
of n(rs) are zero and in the green region the derivatives of B(rs) are zero but the derivatives of n(rs)
are non-zero.This is very important the fact that we can study both regions faded yellow and green com-
pletely separated from each other.Otherwise we would need to compute ”all-the-way-round” the Christoffel
symbols Riemann and Ricci tensors and the Ricci scalar in order to obtain the Einstein tensor and hence
the stress-energy-momentum tensor in a long and tedious process of tensor analysis liable of occurrence of
calculation errors.

Or we can use computers with programs like Maple or Mathematica (see pgs [342(b)] or [369(a)] in
[11], pgs [276(b)] or [294(a)] in [13],pgs [454, 457, 560(b)] or [465, 468, 567(a)] in [14]).

Appendix C pgs [551−555(b)] or [559−563(a)] in [14] shows how to calculate everything until the Einstein
tensor from the basic input of the covariant components of the 3+1 spacetime metric using Mathematica.

The energy density for the Broeck faded yellow region in Geometrized Units c = G = 1 is given by
the following equation:(see eq 11 pg 6 in [10])

Tµ̂ν̂u
µ̂uν̂ = T 0̂0̂ =

1
8π

(
1

B4
(∂rB)2 − 2

B3
∂r∂rB − 4

B3
∂rB

1
r

)
. (288)

In the equation above a large B(rs) from 1 < B(rs) ≤ 1+α where Rb ≤ rs < Rb+∆b will generate very
small terms 1

B(rs)4
2

B(rs)3
and 4

B(rs)3
therefore obliterating the values of the derivatives of B(rs) resulting

in a very low energy density.

The Natario expressions for the negative energy density of the green region in Geometrized Units c = G = 1
are given by(pg 5 in [2])

ρ = − 1
16π

KijK
ij = − v2

s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

rs

2
n′′(rs)

)2
sin2 θ

]
. (289)

ρ = − 1
16π

KijK
ij = − v2

s

8π

[
3(

dn(rs)
drs

)2 cos2 θ +
(

dn(rs)
drs

+
r

2
d2n(rs)

drs2

)2

sin2 θ

]
. (290)

Note that in the equatorial plane θ = 0 sin(θ) = 0,cos(θ) = 1 the negative energy density do not
vanishes protecting the ship and therefore the faded yellow region against collisions with the dangerous
IM particles.(see the works in [5],[7] and [8])56

56see also Appendices E and F
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Figure 8: Composition of the Interstellar Medium IM(Source:Internet)

25 Appendix L:Composition of the Interstellar Medium IM
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Figure 9: Composition of the Interstellar Medium IM(Source:Internet)

26 Appendix M:Composition of the Interstellar Medium IM
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27 Remarks

References [11],[12],[13] and [14] are standard textbooks used to study General Relativity and these
books are available or in paper editions or in electronic editions all in Adobe PDF Acrobat Reader.

We have the electronic editions of all these books

In order to make easy the reference cross-check of pages or equations specially for the readers of the paper
version of the books we adopt the following convention:when we refer for example the pages [507, 508(b)]
or the pages [534, 535(a)] in [11] the (b) stands for the number of the pages in the paper edition while the
(a) stands for the number of the same pages in the electronic edition displayed in the bottom line of the
Adobe PDF Acrobat Reader

Our numerical plots were made using Microsoft Excel and Oracle Open Office.We can provide all the
files for those interested.
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28 Epilogue

• ”The only way of discovering the limits of the possible is to venture a little way past them into the
impossible.”-Arthur C.Clarke57

• ”The supreme task of the physicist is to arrive at those universal elementary laws from which the
cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition,
resting on sympathetic understanding of experience, can reach them”-Albert Einstein5859

57special thanks to Maria Matreno from Residencia de Estudantes Universitas Lisboa Portugal for providing the Second
Law Of Arthur C.Clarke

58”Ideas And Opinions” Einstein compilation, ISBN 0− 517− 88440− 2, on page 226.”Principles of Research” ([Ideas and
Opinions],pp.224-227), described as ”Address delivered in celebration of Max Planck’s sixtieth birthday (1918) before the
Physical Society in Berlin”

59appears also in the Eric Baird book Relativity in Curved Spacetime ISBN 978− 0− 9557068− 0− 6
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