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Shape derivatives of the probability to find a fixed number
of electrons chemically characterized by a wave function

Jérémy Dalphin*

Abstract

In Quantum Chemistry, researchers are interested in finding new ways to describe well the
electronic structures of molecules and their interactions. The model of Maximal Probability
Domains (MPDs) is a developing method based on probabilities that allows such a geometrical
and spatial characterization of the electronic structures of chemical systems.

In this article, we consider quantum systems of n electrons chemically characterized by
general wave functions. For any integer k > 1, we derive a formula for the k-th-order shape
derivative of the functional p, : Q — p, (Q), with p, () the probability to find exactly a fixed
number v of electrons in a given spatial region Q C R®, where eractly means that the n — v
remaining ones are located in the complement R*\Q.

This explicit formula is computable by Quantum Monte-Carlo methods and it holds true
with respect to the W' *°-perturbations of a measurable domain for H"*-regular wave functions.
Then, by restricting our analysis to the first- and second-order shape derivatives, we can make
our statement more precise with respect to the regularity of the domain, and recover the usual
structure expected from shape derivatives.

The main ingredient of the proof consists in generalizing at any higher order the well-known
expressions for the first- and second-order shape derivatives of a volume integral. Although we
only need to assume that the domain is measurable to get the shape differentiability of a volume
integral at any order, we also prove that the C''-regularity is enough to provide a notion of
partial derivative with respect to the domain at any order (shape gradient, Hessian,...).

Keywords : shape optimization, shape derivatives, volume integral, maximal probability do-
mains, geometry of wave functions, quantum chemistry.

AMS classification : 49K40, 49M15, 49M05, 81Q99, 92E99, 81V99, 51M04, 51M16.

1 Introduction

On the one hand, the traditional chemical intuition i.e. the way chemists understand how molecules
interact together has been deeply influenced by a localized vision of electrons around the cores.
Indeed, it yields to fruitful concepts [23, 29, 38] firmly rooted to the models because it can simply
explain many different experimental manifestations. On the other hand, Quantum Mechanics
[21, 32, 41] allows the electrons to be delocalized over the whole space. Indeed, a chemical system
of n electrons is completely characterized by its wave function, a priori defined everywhere.

Hence, there is a loss of chemical informations that Quantum Chemistry tries to recover in
several manuners. Interpretative methods (valence bond theory, molecular orbitals) work in the
Fock space when the correlation between electrons is small, while topological approaches try to
partition directly the physical space into regions with a chemical meaning [2, 3, 15, 31, 35, 39].

One way to reconnect the usual expectations of chemists with the results of accurate quantum
mechanical calculations consists in removing the problematical high-dimensionality of the wave
function by averaging it correctly over the positions of electrons [11, 19, 30]. More precisely,
computing the probability p,(2) to find exactly a fixed number v of electrons in a given spatial
region 2 C R3, where ezactly means that the n — v remaining ones are located in the complement
part R3\(, one can try to solve the following shape optimization problem:

sup py (2). (1)
QCR3
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Suggested by Savin in [34], the model of Maximal Probability Domains (MPDs) i.e. searching
for the local/global maximizers and the critical points of (1) is a developing method based on
probabilities that allows a geometrical and spatial characterization of the electronic structures of
molecules and their interactions. Indeed, it has shown to provide vivid images of cores and valence
regions of atoms |7, 34], lone and bonding pairs [26], and domains in which can move the electrons
in a simple molecule [20, 24, 25], a liquid [1], a crystal [9, 10], or in an inorganic compound [§].

Therefore, MPDs may become a rigorous entry point to recover standard chemical concepts
from the quantum informations of the systems gathered in the wave functions. For example, the
domains that locally maximize the probability to find exactly two electrons can be directly related
to the Lewis’ concept of electron pair [23] and it provides a visual representation of this chemical
interaction in the physical three-dimensional space.

The mathematical existence and regularity of maximizers for (1) are difficult and open problems,
even for simple analytic wave functions such as a two-electron molecule. Indeed, the direct method
from Calculus of Variations does not apply here. Roughly speaking, there is a lack of continuity
and compactness due to the poor control we have on the perimeter of a minimizing sequence. The
boundary can oscillate severely, reveal some cracks and cusps, or simply become unbounded.

From a numerical point of view, it is still an on-going effort to develop algorithms and programs
that are able to efficiently optimize the domains solving (1). The gradient and Newton methods
heavily rely on the concept of shape derivatives [7, 25], where mesh adaptation techniques seem
necessary to ensure a certain confidence in the numerical MPDs obtained. We also mention [36, 37]
where a Quantum Monte-Carlo approach is used to obtain some MPDs.

The goal of this article is to properly derive formulas for the shape derivatives of the functional
Py Q= p,(Q) with general wave functions. To our knowledge, such a theoretical study has not
been carried out in its generality, although some expressions were obtained at the Hartree-Fock
level [7, 25]. In particular, the first- and second-order shape derivatives are fundamental in the
numerical implementation but also to gain theoretical informations about the nature of MPDs.

In this paper, our first main contribution is to study the (Fréchet) differentiability properties
of the map p, o : 6 — p,[(I +6)()] associated with the shape functional p, : Q — p, () for
general wave functions W. Under the H*-regularity of ¥, we get that p, q is of class C* around the
origin for any integer k£ > 0 and for any measurable subset 2 of R®. The results with their precise
references in the text are sum up in Table 1, where B%! refers to the set of Lipschitz contractions.

QCR? U [ 6:R®— R® | Regularity of p, o : 0~ p, [(I+6)(Q)] | Proof
Measurable | L? The map p, : Q — p,(Q) is well defined. | Definition 2.2
Measurable | L? | CO1 pu.q is well defined on B! Lemma 2.6
Measurable L7 | whe pu,q is of class C% on BOT A WToo, Lemma 2.6
Measurable | HT [ Wb pu,q is of class CTon BOT A WThoo, Corollary 2.9
Lipschitz HY [ Whee p, has a well-defined shape gradient. Theorem 2.8
Measurable | H? | Wh™ pu.q is of class C2 on BOI N W, Corollary 2.11
Lipschitz H? | whenCt | p,qisof class C? on B! n Wi nCt | Corollary 2.11
CUll.domain | H? | WH* N CT | p, has a well-defined shape Hessian. Theorem 2.10

Measurable \ HF \ W koo

pu.o is of class C* on BOL N W1, | Theorem 2.7 |

Table 1: Summary of the regularity results concerning the functional p,.q : 6 — p,[(I + 0)(2)].

The main achievement of Theorem 2.7 is to get an explicit formula (21) for the k-th-order shape
derivative of p, i.e. the k-th-order (Fréchet) differential of p, o at the origin for any integer k > 1.
The counterpart of this general result is the poor structure we get for the shape derivatives of p,.
Hence, by restricting our analysis to the low-order ones, our second main contribution consists in
recovering the shape gradient and Hessian form that are expected from more regular domains [28]
[22, Section 5.9] [6].

In Theorem 2.8, we show that if the domain has a Lipschitz boundary, then the functional
Py 2 Q= p,(Q) of Definition 2.2 has a first-order shape derivative of the following form:

Opy,
aa 082

¥ € Wh (RS R%),  Dopa(0) = (x) On (x) dA (x) , (2)



where the integration on the boundary 052 is done with respect to the two-dimensional Hausdorff
measure referred to as A(e), where (o), := ((e) | ng) is the normal component of a vector field,
with ng(x) the unit vector normal to the boundary 99 at the point x and pointing outwards €2,
and where the following map is well defined by (26):

Op,
o

It depends on the domain 2 but not on the perturbation 6. Hence, by analogy with the finite-
dimensional case, it is called the shape gradient of p,, .

: 00 — R.

Similarly, in Theorem 2.10, we prove that if the domain has a C**'-boundary, then the functional
Py Q= p,(Q) of Definition 2.2 has a second-order shape derivative of the following form:

(%) O (x) i (x) dA (x)

~ - 9%p,
v(6,0) e (Wlmmcl)z, Dap,.a(0,0) :/ p2

+ / Ko (%) 0 (x) 0 (y) dA (x) dA(y)  (3)
o0 JoN

Opy,

0 (x) Z[0, 6] (x) dA (x) .

We mention that in (3) the perturbations 6 and  must be continuously differentiable since the
expression of Z involves the derivatives of 6 and 6 whose values are computed on the boundary.
The first term of (3) can be interpreted as the Hessian part of the second-order shape derivative.
Indeed, the following map is well defined by (35):

*p,
002

: 00 — R.

It depends on Q but not on the perturbations (6, é). By analogy with the finite-dimensional case,
it is called the shape Hessian of p,. However, the second term in (3) also plays an important role.
It has the form of a kernel and the following map is well defined by (34):

Kq : 09 x 00 — R.

Again, the kernel Kq depends on €2 but not on the perturbations 6 and 6. Finally, note that the

last term in (3) depends on the shape gradient. In particular, if Q is a critical shape for p, i.e. if

Dop,.a =0, then %%’ = 0 and this term is equal to zero. It also depends on the vector field:

Z[6,0] :=1lq {989,969} + <V89 (On) | 9~a&z> + <V89(én) | 969>7 (4)
where (®)sq := (o) — (8)nng refers to the tangential component of a vector field, and in particular
Voaa(e) := V(e) — (V(e) | ng)ng is the tangential component of the gradient operator, where
IIg(e,e) := —(Dgang(e) | (e)) is the second fundamental form associated to the C1:1-surface 952,

which is a symmetric bilinear form on the tangent space, with Dy (e) := D(e) — D(e)ng[ng|?
denoting the tangential component of the differential operator on vector fields. In particular, if the
perturbations § and @ are normal to the boundary 9 i.e. if Opq = 0sq = 0, then Z[0,0] = 0 and
the last term in (3) is again equal to zero in this case.

The method used for the proof of Theorem 2.7 consists in expressing p, o as a volume integral
on an higher-dimensional space. The first- and second-order shape derivatives of a volume integral
are well known in the context of shape calculus [16, Chapter 9] [22, Chapter 5] [40, Chapter 2].
However, the differentiability results of a shape functional F : Q — F(Q) are usually stated and
proved in terms of directional derivatives ¢ € R — F[(I 4+ t0)(Q2)] rather than Fréchet differential.

Indeed, we usually have F(Q) := [, f, where the integrand f can depend on €, for example
through the solutions of partial differential equations (PDEs), or can only be defined on Q, making
difficulties in defining f on the domain perturbations. Hence, in this case, it is easier to handle a
real variable ¢ than a space of vector fields 6. Since the two viewpoints are not entirely equivalent,
we emphasize that we consider here the Fréchet setting for the derivatives.

Moreover, the shape derivatives of order higher than two are little studied [22, Section 5.9.7]
although some structure theorems are available [28] [22, Section 5.9.4] [6]. Indeed, the second-order



shape derivative is usually enough to conclude about the optimality of a shape [13, 14], and even in
this case, the theoretical /numerical computation are difficult, especially when PDEs are involved.

In our situation, things are much simpler because the integrand f is defined on the whole space
and does not depend on the domain 2. Therefore, our third main contribution in this paper is
stated in Theorem 3.2. We prove that for any integer k& > 0, if f € W*! and if © is measurable,
then the associated map Fn : 0 € WH>® — f(I+9)(Q) f is of class C* around the origin.

The main achievement of Theorem 3.2 is to obtain an explicit formula (43) for the k-th-order
shape derivative of F' i.e. for the k-th-order differential of Fq at the origin for any integer k > 1.
In Theorem 3.3, we also manage to express (43) into a divergence form. Consequently, if {2 has
a Lipschitz boundary, then the shape derivatives of F' are expressed as boundary integrals (49)—
(50). In particular, in Corollary 3.5, we recover the well-known structure of shape gradient for the
first-order shape derivative of F

Vo e Wh° DoFqo(0) = [ fOndA.
o0

Furthermore, in Theorem 3.6, we show that for any integer k > 2, if  is a C''-domain and
if the perturbations are normal to the boundary (this hypothesis is fundamental here), then the
k-th-order shape derivative of F' has the following structure:

k oFF koo
v(elvn'vek) € (Wl’OOOCl) ’ DSFQ (011"'70k> = W(X) (Hefl (X)> dA(X) (5)
o0 i=1

The well-defined map aﬂk : 92 — R depends on f and © but not on the perturbations (9, ..., 0%).
Hence, by analogy with the finite-dimensional case, it is called the k-th-order partial derlvative of
F with respect to the domain . In addition, it has an explicit expression which is given by:

O F bl
90k — Z Z Z Z 7&( H [nQ]ij H [Daﬂng]ijipu‘) , (6)

Lyiv—1=1 1=0 I,C[1,k—1] p€ESI, i jel1,k-1] Jjen

1,k—1 X
card I;=I JE[EQIZ ] J¢nh

where Sy, is the set of permutations on [; i.e. of the bijective maps from I; into [;, and where
s: 8y, — {—1,1} denotes the signature associated with permutations. In order to get back to the
usual case of permutations on [[1, ], we recall that the signature of a permutation p € Sy, is defined
as s(p) := 3(p1_,1 opopy,), where py, is the unique strictly increasing map from [1,1] into I;. We also
emphasize the fact that the boundary values of the partial derivatives of f have to be understood
in the sense of trace. In particular, the map (6) is uniquely determined on 9 up to a set of zero
A(0Q N e)-measure, and as a consequence, it is correct to speak about the partial derivatives of F'
with respect to the domain 2.

The formula (6) is very well known for little value of k& but to our knowledge, such a general

expression is new in its generality. We refer to Corollary 3.7 for a precise statement concerning the
case k = 2 and for practical purpose, we compute the first partial derivatives:

o —
2;5 =(Vf|nq) + Hq f (7)

g% = (Hess f (nq) | ng) +2Hq (Vf | ng)+ f [Hé — trace (Dagn%)] ,

where Hg = divgong is the scalar mean curvature associated with the C'!-(hyper)surface 99,
with divgg(e) := div(e) — (D(e)ng | ng) = trace[Dpq(e)] denoting the tangential component of
the divergence operator.

To conclude this introduction, let us now explain how the paper is organized. In Section 2, we
obtain the shape derivatives of p, : 2 — p, () for general wave functions. First, we define the
probability as a shape functional in Section 2.1. In Section 2.2, we give the general differentiability
result for p, while in Section 2.3 (respectively Section 2.4), we treat the specific case of the first-
(resp. second-)order shape derivative of p,. Then, in Section 3, we study the shape derivatives
of a volume integral F' : 0 — fQ f. We treat the measurable case in Section 3.1, the Lipschitz
regularity in Section 3.2 and the C''!-domains in Section 3.3. Finally, Section 4 is an appendix
that gathers all the material and the proofs of standard results needed throughout the article.



2 Shape differentiability for general wave functions

2.1 On the expression of the probability for general wave functions

Let n > 2 be an integer henceforth set. In this article, we consider a quantum system of n electrons
whose chemical state is assumed to be entirely characterized by a given well-defined wave function
[32, Section 1.1.1]:

U (R® x {-3,31)" — C

{<2>“”(2)]Fﬁiﬂ(2>,w(2)y (8)

where x; and o; respectively refer to the space and spin variables of the i-th electron, for any
i € [1,n]. Since we are dealing with fermions, we assume the antisymmetry of the wave function
[41, Section 2.1.3|, and we set L%((R® x {—1,1})",C) as the complex separable Hilbert space of
all possible quantum states. However, we do not impose here a unitary L?-norm condition on the

wave function as it is often the case. In other words, we make the following hypothesis.

Assumption 2.1. The map V is a skew-symmetric form i.e. for any (i,j) € [1,n]? such that
i # j, and for any (0;,0;) € {—3,3}> and any (x;,%x;) € R? x R3, we have:

m[( x )< o )} — v {( o )< x )} ©)

Moreover, the map U is measurable and square integrable i.e. for any (o1,...,0,) € {—3, 11", the
following map belongs to L*((R®)",C):

Plowon) . R3x xRS — C

(KyeeerXn) ‘I’KE)(:: )] (10)

Finally, in addition to be well defined and finite, we assume that the following normalizing constant
18 a positive quantity i.e. it s not equal to zero:

e 2 G )

(Ulwu,ffn)e{*%’%}n
Hence, assuming that the wave function ¥ given in (8) satisfies Assumption 2.1, we can now use
the traditional probabilistic interpretation of the wave function [32, Section 1.1.1] in order to define
the shape functional in which we will be interested throughout the article. Indeed, the probability
to find for any ¢ € [[1,n] the electron i of spin o; in a domain ; is proportional to:

/ | W)
Q1 X...XQ,

where W(71:20n) ig defined by (10). Since W(o1:0n) i5 measurable, the above quantity is well
defined for any (Lebesgue) measurable subsets Q,...,Q, of R?, and it is finite since W(T1:n) is
square integrable. In particular, the probability to find n electrons in a measurable set ) C R?,
regardless of their spins, is proportional to:

> kG ()]

(01,...,0‘71)6{—%,%}72'
The constant of proportionality is determined by the fact that we expect to find n electrons in the
whole space R? with probability one. Hence, let ¢y > 0 be as in (11) and the probability p, () to
find n electrons in a measurable subset Q of R? is given by the following well-defined quantity:

DY /WK?)(?)]

(0’1,4..70'71)6{—%,5

2
dxy ...dx,. (11)

2
dxy ...dx,.

2
dxy ...dx,. (12)




Similarly, the probability py(Q2) to find zero electron in a measurable subset Q of R? is defined as:
po () :=pn (R\Q). (13)

We now set v € [1,n — 1] and search for the probability to find exactly v electrons in 2, where
ezactly means that the n — v remaining ones are located in the complement R3\Q). The associated
event can be interpreted as the reunion of the events finding evactly electrons i1, ... 1, in 1, taken
among all the subsets {i1,...,4,} of v pairwise distinct elements of [1,n]. Hence, for any subset
I, C [1,n] of v elements i.e. such that card I, = v, we introduce the set Qj, := [[;_, A;, where
A; = Q if i € I, otherwise 4; = R3\Q. Following the same arguments than for p, and pg, the
probability p, () to find exactly v electrons in a measurable subset 2 of R? is given by the following
well-defined quantity:

1 Xl
POy / o[(5)
o 11" U QI 71
( 1yeee» n)e{ 212} [ C|I1 n]]

card I, =v

dxy...dx,. (14)

Then, we observe that such a finite reunion is disjoint i.e. Q, NQy, =0 if I, # J, so we have:

po=t s [ fe(m ) (X))

O1,e0y0n)E 1,1 I,C[1,n]
(o1 n){ 22 card I, =v

2
dxy ...dx,

Since (9) is satisfied by ¥, we get sz,, | (e1smmon) |2 = fQUX(R:s\Q)nw |\I/(UPIU(1)5‘.-’U:DIU(n))|2, where
pr, : [1,n] — [1,n] is a bijective map satisfying py, ([1,7]) = [,. A new summation on the spin
variables o := Opr, (i) yields to 2017"~)U'rz fQIV |\IJ(Ul .... Un)‘Q = 251,50 fQ"X(RB\Q n—v ‘\I/ T Un)|2:

which does not depend on I, any longer. It can thus be removed from the corresponding sum for
which we know that card{I, C [1,n], card I, = v} = -~ = (7). We deduce that:

vi(n—v)!
1 /n
n@ = (") |
co \V b Qv x (R3\Q)"

\Ij|:<X1)’”.7<Xn >:|
g1 Op
(17 70'n)€{ ;7;

Although (14) should be the original definition for p, in the sense that it is clear with (14) that
py € [0,1] as it is the case for (12) and (13), we will however use the more practical formula (15) for
p, in the remaining part of the article. In other words, we are now in position to properly define
the shape functional in which we will be interested throughout the article.

2
dxy ...dx,. (15)

Definition 2.2. Assume that the wave function ¥ given in (8) satisfies Assumption 2.1. Let M be
the set of all (Lebesgue) measurable subsets of R® and co > 0 as in (11). Then, for any v € [0,n],
the following shape functional is a well-defined map:

Pv: M — [071]
Q — p, (),

where the probability p,(Q) to find exactly v electrons in the domain Q is well defined by (15) if
ve[l,n—1], by (12) if v = n, and by (13) if v = 0.

Remark 2.3. From the convention A° x B = B x A° = B for any sets A and B, we can deduce
(12)—(13) from (15) by setting v = 0 or v = n in (15). We will adopt this convention in the article,
in order to simplify the proofs and not to have to treat specifically the cases v =0 and v = n.

Finally, we can state a first result concerning the symmetry property of the probability.

Lemma 2.4. Let M be the class of all (Lebesque) measurable subsets of R3. We assume that the
wave function ¥ given in (8) satisfies Assumption 2.1. Then, the map p, : Q2 € M +— p,(Q) € [0, 1]
of Definition 2.2 is well defined and we have:

o (R¥) =po(#)=1 and VQeM, p,(Q)=po (R\Q).



In particular, the whole space R® (respectively the empty set () is optimal for p, (resp. for po).
Moreover, if O* is optimal for p,,, then R3\Q* is optimal for p,_, i.e.

I eM, p, ()= max p, Q) = pa (R3\Q*) = Max pny Q).
In other words, the shape optimization problem (1) only needs to be studied for integers v < "T'H
and it has an obvious global mazimizer if v =0 or if v = n.

Proof. Let M contain all the measurable subsets of R?. We assume that the wave function ¥ given
in (8) satisfies Assumption 2.1. Hence, from the foregoing, the map p, : 2 € M — p,(Q) € [0,1]
introduced in Definition 2.2 is well defined. First, we get p,(R3) = po(0) = 1 if we consider
(12)—(13) with Q = R3 and Q = (). Then, let Q € M. From (15), we get:

1 /n
12 Q = — / \II(U'l,...,O'”)
p ( ) Co <V) Z n v (R3\Q)" ¥

(o1, 7Un)€{—§;§

2
)

where ¥(“1n) and ¢ > 0 are respectively defined by (10) and (11). Using the property (9) of the

wave function, we deduce that fQUX(Rg\Q),L_U |\II(”1*“""")|2 = f(R3\Q)”—"><QV |\I/(""Jrl"“’”""’l"“’au)|2.
Observing that (Z) = #ly), = (nfu) and re-indexing the summation on the spin variables

G; = oy4i for any i € [1,n — v] and &; := 0;_pn4, for any i € [n — v + 1,n], we obtain:

1 n
= — (G1,--0n) 12
P () = = (n_ V) > /RS\Q)W oY I = pnv (RN\Q).

(61, ,an)e{ z,z}n

Finally, if we assume that there exists Q* € M such that p,(Q*) = maxgea po(Q), then for any
Q) € M, we deduce from the previous symmetry property:

Pn—v (Q) =Pv (RS\Q) X Ineax pV(A) =DPv (Q*) = Pn—v (RS\Q*) .

Hence, we get p,_, (R*\Q*) = maxoe pn_. (), concluding the proof of Lemma 2.4. O

2.2 On the shape derivatives of the probability for measurable domains
First, we recall some terminology about shape differentiability. We refer to Section 1 for notation.

Definition 2.5. Assume that the following shape functional is a well-defined map for a certain
class of admissible shapes:

By abuse of terminology, we say that F is shape differentiable at Q if the following associated
functional is well defined around the origin and Fréchet differentiable at the origin:

Fo 10— Fo(0) == F[(I+6)(Q)].

If it is the case, then the differential DoFq of the map Fq at the origin is called the (first-order)
shape derivative of F at Q. Similarly, for any integer k > 2, if Fq is (k — 1) times differentiable
around the origin and k times differentiable at the origin, then we say that F is k times shape
differentiable at Q, and the k-th-order differential D§Fq of the map Fq at the origin is called
the k-th-order shape derivative of F' at 2. Moreover, by analogy with the finite-dimensional case,
assume that there exists a unique well-defined function fq : 0Q — R such that:

DoFqo (0) = | fabudA.
o)

Then, the map fo, eventually depending on Q (but not on 0), is denoted by abuse of notation 2 89
and called the shape gradient of F' at . Similarly, assume that in addition to the existence of a
shape gradient, there exists a unique well-defined function fq : 02 — R such that:

OF

D2Fq(,0) = fabnbndA — / —Z[0,0]dA,
o0 o oQ

where Z[9,9~] is defined by (4). The map fq, eventually depending on Q (but not on (9,9)), 18

denoted by abuse of notation g?{; and called the shape Hessian of F' at €.




The shape gradient and Hessian form are expected from shape derivatives [28] [22, Section 5.9]
[6] but note that in Definition 2.5, we did not clearly specify on which spaces are defined F' and F,
because such a structure depends on the required regularity for the domain €2 and the vector field 6.
We also recall that Z[0, 6] defined by (4) represents the contribution of the tangential components.
In particular, Z[0,0] = 0 if 6 and § are orthogonal to the boundary 99 i.e. if 850 = 6 = 0.

Before stating our main result concerning the shape differentiability of p, : Q — p, () i.e. the
differentials at the origin of the associated map p, o : 6 — p,[({ + 0)(Q)], we study the continuity
properties of p,o. We recall that M refers to the class of measurable subset of R?, that C%!
denotes the set of Lipschitz continuous vector fields 6 : R? — R3, that W1 := L>*° N C%! is the
set of Lipschitz continuous bounded vector fields, and that B®! := {§ € C%!,||0||cor < 1} is the
open unit ball of C%! centred at the origin i.e. the space of Lipschitz contractions.

Lemma 2.6. Let n > 2 and v € [0,n]. Assume that the wave function VU given by (8) satisfies
Assumption 2.1. Then the shape functional p, : 2 € M +— p,(Q) of Definition 2.2 is well defined,
and for any Q € M, the associated map p,q : 0 € C1 — p,[(I + 0)(Q)] is well defined on B®!.
Moreover, for any Q € M, the map p, o : 0 € WL 5 p,[(I+6)(Q)] is continuous on B&-INW1T°.

Proof. Let n > 2 and v € [0,n]. We aim to consider the probability as a volume integral on an
higher-dimensional space. For this purpose, we need to keep track of the dimension of the space in
which we are working. Hence, the notatlon are modified in this direction. For example, M3 now
refers to the set of Q C R® measurable, By to the set of Lipschitz contraction 6 : R® — R3, etc.
Let § € BY'. From Proposition 4.1, the Lipschitz continuous map I3 +6 : x € R? — x +6(x ) eR3
is bljectlve and its inverse (I3 + 9) is also Lipschitz continuous. In particular, (I3 + 0)~! is a
measurable map and for any Q € Msj, we get (I3 + 6)(Q2) € Ms. Hence, for any 2 € Ms, the
map p,q : 0 € C3" — p,[(Iz + 0)(Q)] is well defined on BY'. We now study its continuity by
introducing the following higher-dimensional version of p,:

ﬁyl Mgn — R
~ ~ 1 /n
Q ~ — (") N gl on)|2 16
— a@=r(1) X [eeep
(015eees an)e{ éz}

where (10) defines W(1:-9n)  Since W(@1-9n) and ) are measurable, the integral is well defined
and it is finite since W(?1-++9») is square integrable. Hence, the map 7, is well defined by (16) and
we can thus apply Lemma 3.1 to p,. For any 2 € M3, themap p, & :0 € Cg;tl = Du[(I3n +60)(Q)]
is well defined on Bg’nl and moreover, the following map is continuous on IB%g;Ll N W31,’1°°:
Pog: Wa® — R an
0 — 5,50 =p |(In+0) ().
Then, we want to relate p, and p,. For this purpose, we consider the following map:
f . WI’OO(RS', RB) — Wl,oo ((RS)n, (Ri})n)
O:x—0x) — f0):=(x1,....,xp)— (0(x1),...,0(xn)),

which is well defined and linear. It is also continuous since one can check by direct calculations:

(18)

V0 € WSS, 1F ) i < VAlblyre  and (£ @)oo = Wllesa.  (19)
Moreover, let © € Mj3. Since the set 9 x (R*\Q)"~" belongs to Mas,,, we get:
pu(Q) =Dy [QV X (R3\Q)n_y] and Pva = Dy Qv X (R3\Q)n—v O f (20)

Since f is continuous and ﬁV7QUX(R3\Q)n v is continuous on ]B3n N ngnoo we deduce from (19)—(20)
that p, o is continuous on Bg’l N VV3 , concluding the proof of Lemma 2.6. O

We are now in position to prove our main shape differentiability result concerning the shape
functional p, : Q — p,(Q) of Definition 2.2. A striking feature is that we are able to get an explicit
formula (21) for the shape derivative of p, at any order. As for Lemma 2.6, the proof completely
relies on the shape differentiability results of Section 3 for a volume integral. We refer to Section 1
for the notation and we recall that H* denotes the usual Sobolev space of L?-maps whose partial
derivatives (in the weak distributional sense) are also L?-functions up to the order k.



Theorem 2.7. Let n > 2, v € [0,n], and ko > 1 be three integers. First, we assume that
the wave function U given by (8) satisfies Assumption 2.1. In particular, the shape functional
Py Q= p,(Q) of Definition 2.2 is well defined. Moreover, we assume that the map W(@1:on)
defined by (10) belongs to H* ((R®)™,C) for any (o1,...,0,) € {—3,3}". Then, for any Q € M,
the associated map p,.q : 0 € WH> — p,[(I+60)(Q)] is ko times Fréchet differentiable at the origin
and for any k € [1, ko], its differential of order k at the origin is given by the following continuous

symmetric k-linear form defined for any (01,...,0;) € WH® x ... x WH® by:

D’spuﬂ(el,...,ek):—;)(Z) > >y Z 2. > sl

OlyesOn)E LA dn,ie=1 ma,..ome=1 =0 L, C[1,k] pESH
( { 2 2} card I;=l

akfl (|\I/(Ul ..... an)|2)
yee s Xn 0. (x;.
/ﬂ"xa&sm)"—v 1 0(x;,) G oxa) | L 105 ()],

. m; i€[1,k]
€l1,k] J J<
e a
I, [Diﬂ} dx, . .. dx,
ng v Y MMy (5) "
(21)
where 1; i, =1 if 1j = iy(;) otherwise zero. In other words, the functional p, of Definition 2.2 is

ko times shape differentiable at any measurable subset of R™, and its shape derivative of order k is
given by (21) for any k € [1,ko]. Moreover, the associated map p,q : 6 € W — p,[(I + 0)(Q)]
is ko times continuously differentiable at any point of W1 N B%! and for any k € [1,ko], its
k-th-order Fréchet differential is well defined by the following continuous map:

Dipyg: Whe B — ck((Wh=)" R)

90 — (017 ceny gk) —> Dlocpy7([+90)(g) [91 [¢) (I + 00)71 ,...,9k [¢) (I + 00)71:| s
(22)
where D§p,, (1+04)(02) 8 the k-th-order shape derivative of p, at (I+60)(€2) given by (21), and where
LF refers to the class of continuous k-linear maps.

Proof. We use the notation of Lemma 2.6. We aim to relate (17) with p, in order to use the
results of Section 3 available for volume integrals. Let n > 2, v € [0,n], and ky > 1 be three
integers. We assume that the wave function ¥ given by (8) satisfies Assumption 2.1. In particular,
the shape functional p, : Q@ € M3z — p, () of Definition 2.2 is well defined. Moreover we
assume that the map ¥(~7») in (10) belongs to H* ((R3)™,C) for any (o1,...,0,) € {— i
Note that H*o-regularity is required on ¥ to get the ko-th-order shape differentlablhty First, let
Q € Ms. From Lemma 2.6, the map p,q : 0 € W' NBY' — p,[(I3 + 0)(Q)] is well deﬁned
and continuous. We now show that it is ko times differentiable at the origin. In the proof of
Lemma 2.6, we also established that the map p, : Q € Ms,, — p,(Q2) is well defined by (16). Since
we have |W(71:on)|2 ¢ WFol e can apply Theorem 3.2 to the map p,, from which we deduce
that p, g 0 € Wi v b, [(Isn + 0)(€)] is well defined and ko times differentiable at the origin.
Moreover, for any k € [1,ko], its k-th-order differential at the origin is given by the following
continuous symmetric k-linear form:

n 3 k
V(él,...,ék) € (Wl’oo)kv Op,/gz(alv"'vék) = Cl()(:/l> Z Z Z Z

1,--i=1 mi,... me=1 I1=0 I,C[1,k]
card I;=I

ok—1 (|‘IJ(01 ..... an)‘Z) 5 -
e ./ﬁ H a(X’LJ) (X17~~~7xn) jel[;[k]] |:9.7 (Xla"'vxn)_ 3(i;—1)4+m;
(017...,Un)€{_§7§} ]?[él]lkﬂ J¢171
a(0;
Y s ]] a(x_(]))(xh'-'axn) dxy . .. dx,.
PEST, JEL “p(4) My ()

3(7,J71)+mj
(23)



Then, we want to relate the k-th-order shape derivative of p, with the one of p,. Let Q € Ms.
We thus have Q¥ x (R3\Q)"~" € Ms,,. Considering the continuous linear map f given in (18),
we deduce from (19)—(20) that the map p, o = P, avx@s\qn-—v © f is ko times differentiable at
the origin and for any k € [1, ko], its k-th-order differential at the origin is given by the following
continuous symmetric k-linear form:

k
V(1 00) € (W) Dbpualr,.-.0) = D (huge sy o) 01, 60)
= Dfoybuarx@n\ayn-v [Dof(01),- .., Dof(0k)]

= Dpyarx@nay— [f(01), -, f(0k)].

Since [f(0;)(X1,- -, %Xn)|3(,—1)+m; = [05(Xi;)]m;, we deduce that [a(xip(j))mp(j)f(ej)]g(i_j_1)+m_j is
equal to zero if i,(;) # i; otherwise it is equal to [0, 0;(Xi,)]m,. Using this observation in (23),
we conclude that relation (21) holds true. Let us now consider the second part of Theorem 3.2.
For any set 1 € Mas,,, the map Pg: 0 € Wi, = pu[(Isn + 0)(2)] is well defined and ko times

continuously differentiable at any point of W, NBY,". Moreover, for any k € [1, ko], its k-th-order
differential is well defined by the following continuous map:

Dipg Wiz gy — ot ()" R)
9~0 — Dgoﬁ”’ﬁ = (él, ey 9~k) — Dgﬁu,([gn-&-éo)(ﬁ) él o (Ign + é())_l7 e
01 0 (I3, + 90)71} )
(24)
where D’éﬁy’ (Isn-+0) () 18 the k-th-order shape derivative of p,, at (Isn+60)(9) given by (23). Then,
as before, we can relate the k-th-order differential of ]5”75 with the one of p, . Let Q2 € M3 so we

have Q¥ x (R3\Q)"™" € Ma3,,. Considering the continuous linear map f given in (18), we deduce
from (19)-(20) that the map p,.o = Py, 0v x (m3\Q)n-~ 0 f is ko times continuously differentiable at any
point 6y € W3 °NBY" and we have for any k € [1, ko] and for any (6, . ..,0;) € W x.. . xWheo;

D pua(01,...0k) = Df (Buarsx@nay—vof) (01,...,0k)

= Dfybuarx@\an-v [Doof (01) ..., Do, f (0r)]

= Dfgyybrav <@y [ (01) -, f (0n)]

= DEp s+ 7 60)1 @ x @\ |f (01) 0 (Isn + f(80)) ", ...
L (B) o (Tsn + £ (60)) ']
where we have used (24) to obtain the last equality. Note also that using Proposition 4.1, we have

[I3n + f(00)](QV x (R3\Q)"™V) = [(I3 + ) (2)]” x [R3\(I5 + 6p)(22)]"~". We can also check that
f(0:) 0 [Tz, + f(00)] 7t = f[0; o (I3 + )~ !] for any i € [1, k] so we deduce that:

Dz‘op%Q (01, e 70k) = Dgﬁl/,[(lg—‘reo)(ﬂ)]uX[R3\(I3+90)(Q)]n71' |:f (91 e} (I3 + 00)_1> yee e
f (f)k o(I3+ 90)71”
~ —1
D (0)Pu [(s+60)(@)]* X [R3\ (I3 +60) ()]~ (Dof [91 ° (I3 + bo) }
Do f [91« o(I3+ 90)_1D
Dg [ﬁv,[uﬁoo)(sz)rx[RS\(Iweo)(sz)]"*“ © f] [91 ° (I +60) " ..
i (Is +00) |

= DEpu(15460)(2) [91 o(Is+60) ' ,....0k0 (I3 + 90)_1} :

Hence, we have proved that the k-th-order differential of p, o is well defined by the continuous
map (22) for any k € [1, ko], concluding the proof of Theorem 2.7. O
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2.3 On the first-order shape derivative of the probability

We refer to Sections 1 and 2.1-2.2 for notation, especially Definition 2.5 for explanations about the
notion of shape differentiability. Theorem 2.7 is stated in the specific ky = 1 and we show that we
can recover the shape gradient structure (2) by assuming the Lipschitz boundary of the domain.

Theorem 2.8. Let us consider the assumptions of Theorem 2.7 in the specific case ko = 1. Then,
the following map is well defined and integrable:

P: R¥x...xR® — R
(Xla"'7xn) — P(Xla"'axn) = <vx1 (|\I,(0'1,...,o'n)|2) (X17~~';Xn) | 9(X1)>
+ [ WlEron)|2 (xy,..0,x,,) div 0 (xg) .

Moreover, the map p,.q : 0 € WH*° s p,[(I + 0)(Q)] is Fréchet differentiable at the origin and its
differential is given by the following continuous linear form defined for any 6 € W1 by:

1/n
Dop,q () = — V/ / P (x1,...,X,)dXs...dx, | dx
opuse () o (V> Z n JQ ( Qv (R3\Q)" Y b s ) 1

(01,..,,0n)€{%,%}

+ (n—z/)/ / P (x1,...,Xp)dXs...dx, | dx;.
R3\Q Qv x (R3\Q)" 71

(25)
In other words, the functional p, : Q — p,(Q) of Definition 2.2 is shape differentiable at any
measurable subset of R3. If in addition, we now assume that Q is an open bounded subset of R3
with a Lipschitz boundary, then the shape derivative of p, at () takes the form given in (2), where
the shape gradient is uniquely determined up to a set of zero A(e N ON)-measure, and defined for
any point x € 02 by:

Ipy 1 (n 2

(x) := ( > 1// |Wn) 12(x, %y, ... X )dXs .. dXy,
N Co \V Z n QV—1x(R3\Q)" ¥
(o1, ,Un)€{272}

- (n-v) )
Qv x (R3\Q)" V!

2(x,xQ,...,xn)de...dxn.

(26)
In (26), the boundary values of ¥(@1-on) ¢ H'((R®)" C) are understood in the sense of trace.
Finally, the conventions A° x B=Bx A’ = A, A”' x B=Bx A" =0, and [, f(z,y)dy = f(x)
are used to interpret (2) and (25)—(26) if v € {0 1,n—1,n}.

Proof. First, the map P of the statement is well defined and integrable because § € W=, ¥ € H!,
and V(|¥|?) = 2Real(¥YVV). Then, we can apply Theorem 2.7 with kg = k = 1. The functional
Py Q= p,(Q) of Definition 2.2 is thus shape differentiable at 2 and its shape derivative Dop, q(0)
is defined for any 6 € W1 by the following quantity:

SO S LY T

(01,0n)e{~3.3}" = (27)
+ [wlonon) |12 (x) L x,) div 6 (xz)] dxy ...dx,.

Finally, we can use the alternating property (9) satisfied by the wave function ¥ in order to get
for any i € [1,n], for any (x1,...,x,) € R® x ... x R®, and for any (01,...,0,) € {—3,3}™

vx’i (l\Il(gl""’U“'”’o-")

2) (X1se ey Xy e Xn) = Vi, (|\1z<%~--701~--70n>\2) (Xiy oo X1y %n) . (29)

Inserting (28) in (27) and rearranging the summation on the spins variables in (27) by setting
G; =01, 61 = 0y, and 6; = o; for any j € [1,n]\{1,:}, we obtain that (25) holds true. It remains
to study the Lipschitz case. Hence, we now assume that €2 is an open bounded subset of R? with
a Lipschitz boundary. First, we recall that for any measurable subset A of (R®)"~! and for any
g € WHI((R3)™, C), we have in the sense of distributions thus for almost every x € R3:

/Vxl(g)(X,XQ,...,Xn)dXQ...anval |:/g(’,xg,...,xn)dXQ...an (x). (29)
A A
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Then, we can apply the Trace Theorem [17, Section 4.3] in (25) for any # € W1 NC'. Observing
that the unit outer normal to the boundary 9Q = 9(R*\Q) satisfies ngs\o = —ng, we deduce
that (2) holds true for any # € W1 N C!. Finally, we can extend the result to any § € W1
from standard approximating arguments. Indeed, for any 6 € W™, there exists a sequence
(0:)ien C WH2 N Ct converging to 6 strongly in L, weakly-star in W1°° and uniformly on
compact sets (consider the usual mollifier [17, Section 4.2.1 Theorem 1]). Note also that in (26) the
boundary values of W(7t:n) ¢ F1((R3)" C) are understood in the sense of trace. In particular,
they are uniquely determined up to a set of zero A(e N 9N)-measure. It implies that the shape
gradient of p, is unique and well defined by (26), concluding the proof of Theorem 2.8. O

We conclude this section by specifying the Fréchet differentiability property of the associated
map p,,q in the specific case kg = k = 1 of Theorem 2.7.

Corollary 2.9. Let us consider the assumptions of Theorem 2.7 in the specific case kg = 1.
Then, the map p,.q : 0 € W p,[(I 4 0)(Q)] is well defined and continuously differentiable at
any point of W1 NBYL. Moreover, its (first-order) differential is well defined by the following
continuous map:

Depya: whoenpo!l — EC(WLOO,R)

_ 30
o = Doypuo =0+ Dop, 1100y |00 +00)7"], (30)

where Dop,, (14+9,)(Q) 5 the shape derivative of p, at (I + 60)(Q) defined by (25). If in addition,
we assume that © is an open bounded subset of R® with a Lipschitz boundary, then the same result
still holds true but we can now use the expression (2) to define Dop,, (146,)() i (30).

Proof. First, for measurable Q) C R?, the above statement is precisely the content of Theorem 2.7
with kg = k = 1. If in addition, € is an open bounded subset of R? with a Lipschitz boundary,
then (14 6p)(9) is also a open bounded Lipschitz domain satisfying 9[(I + 0y)(Q2)] = (I + 6y)(0%2).
Moreover, § o (I +0)~t € Wb for any § € W1 and any 6, € W1 NB%! so we deduce that
the expression (2) defines well Dop,, (146,)(«) in (30), concluding the proof of Corollary 2.9. O

2.4 On the second-order shape derivative of the probability

We refer to Sections 1 and 2.1-2.2 for notation, especially Definition 2.5 for explanations about
the notion of shape differentiability. Theorem 2.7 is stated in the specific kg = 2 and we show that
we can recover the shape Hessian structure (3) by assuming the C':!-regularity of the domain.

Theorem 2.10. Let us consider the assumptions of Theorem 2.7 in the specific case kg = 2. First,
the two following maps are well defined and integrable:

Q: RPx..xR¥ — R
(X1, s Xpn) — Q(X1,...,Xy,) = <Hessx1 (Jwlermon)2) (xq,...,%,) 0 (x1) | 0 (x1)
+ <Vx1 (JEloron) 2) (xq,...,%,) | 0 (x1)div 0 (x1) + 0 (x1) div 6 (x1)
o) |2 (x4, LX) {div 0 (x1) div 0 (x;) — trace (DxlﬁDxlé)}

(1) R ) = (U () div 6 Gxn) div B (ko)
+ (Va, (|00 2) (x1,.0, %) | 0 (1)) div 6 (x2)
+ <vx2 ([T 2) (1, . %) | é(x2)>div 6 (x1)
+ Ei,l:l 6(2xl)k,(X2)l (|\I’(01""’0")|2) (X1, -5 %Xn) Ok (Xl)él (x2)

We also introduce the following map, which is well defined and integrable if Q) is an open bounded
subset of R® with a Lipschitz boundary and if 6 € Wh>* N CL:

S: OxR3x...xR}—R )
(X17 e 7X’I’L) — S(X17 e 7X1'L) = <vx1 (|\l/(0'1,...,0'n) 2) (Xl, . e ,Xn) ‘ 9 (Xl >9n (Xl)
W) 2 (xy, L x) (div 6 (1) 6 (x1) = Dy, 8 [0(x1)] | e
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Then, the map (30) is Fréchet differentiable at the origin i.e. p,q : 0 € WL s p,[(I + 6)(Q)] is
twice differentiable at the origin and its second-order differential is given by the following continuous
symmetric bilinear form defined for any (6,0) € W1 x Whoe py:

Dopyg(ﬂ 0) 1 (Tl> Z V/ (/ Q(xl,...,xn)dXQ...an> dx;
o o \Jor-1x @\

(o1 ome{ 33}
+(n7V)/ / Q(X1,...,Xp) dxs . ..dx, | dx;
R3\Q Qv x (R3\Q)"—¥—!

V(V—l)/ / R(x1,...,Xy)dx3...dX, | dx;dxs

axQ \Jar-2x®3\Q)" ¥

—|—21/(n—1/)/ / R(x1,...,X,)dx3...dx, | dxidxs
Qx(®3\Q) \Jor-1x(®3\Q)" 1

+ (n—u)(n—u—l)/ / R(X1,...,Xy) dX3...dX, | dx1dxs.
(R3\Q)x (R3\Q) \ /v x (R3\Q)n—v~2

(32)
In other words, the functional p, : Q — p, () of Definition 2.2 is twice shape differentiable at any
measurable subset of R3. If in addition, we now assume that Q is an open bounded subset ) of R?
with a Lipschitz boundary, then the restriction Dep, o : WH° N C' NBY — L. (W1 N CHR)
remains differentiable at the origin i.e. p,q : 0 € WH*NC v p, [(I+6)(Q)] is twice dzﬁerentmble
at the origin but its second-order differential can now be defined for any (0, 0~) (WhenCch)? b

D2p,(8,8) = /8  Ka(x.y)0n (0 (¥)dA () dA(y)

1
+<n) / / S(X17"'3Xn)dx2...dxn
Co \V a0 Qv—1x (R3\Q)"~
(0150,0n) 6{2,2

- (nfu)/ S(X1y...,Xp) dXg...dx, | dA(x1),
Qv x (R3\Q)" ¥ 1

(33)
where the kernel Kq : 9Q x 9Q — R is given for any (x,y) € 0Q x 9Q by the following formula:

1 /n
KQ (Xa y) = % <y) Z (l/ - 1) /Q ) |\I}(Ul,...,0'n) 2

(01,0n)E{ 3.3 VTR (RINQ)" T
—2v(n—v) [p(o10n)|2
Qv—lx(RS\Q)n—u—l

+n—v)(n-v-1) U (x,y, x5,
Qv x (R3\Q)" V2

(X,¥,X3,...,X,) dx3...dx,

(X,¥,X3,...,Xp) dx3...dx,

S Xp) dXg ... dXp,.

(34)
Finally, if we now assume that Q is an open bounded subset of R? with a boundary of class C*1,
then the second-order shape derivative of p, at Q can take the form given by (3), where the shape
Hessian is uniquely determined up to a set of zero A(e N ON)-measure, and defined for any x € 99
by:

0%p, 1 (n) /
X)= — v Hq (x) |\IJ(‘71""’”") 2(x,X2,...,Xp)
002 ( ) Co \V (o1 agej{é,é n Qr—1x(R3\Q)" ¥ | (

+ <Vx1 (|\I/(01,.4.,an)|2) (x,X2,...,X,) | ng (x)> dxs...dx,

v [ Ho (x) [§7t7)
v (R3\Q)" v

(T, (JWO 712 (%2, %) | g (%)) o

(35)

2(x,X2,...,X,)

In (31) and (34)—(35), the boundary values of U(71-n) ¢ H2(R*)™ C) and Vy, W) are
understood in the sense of trace. The conventions A'xB=BxA"=A, A" 'xB=Bx A=),
A2 xB=BxA? =0, and [, f(z,y)dy = f(x) are used to interpret (3) and (32)~(35) if
n € {2,3} andv € {0,1,2,n — 1,n — 2,n}.
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Proof. First, the maps @ and R of the statement are well defined and integrable because we have
0,0 € Who°, U € H? V(|¥?) = 2Real(UVV), and Hess(|¥|?) = 2Real(THess¥ + VI[VE]T).
The map S is also well defined and integrable but we have to assume the Lipschitz regularity of
the domain € to get the existence almost everywhere of the unit normal field ng, and also impose
that § € W1 N C! since we need to compute the boundary values of Do and div §. Then, we
can apply Theorem 2.7 with kg = k = 2. The functional p, : Q — pl,( ) of Definition 2.2 is thus
twice shape differentiable at () and its second-order shape derivative D3p, o (8, 0) is defined for any
(0,6) € Whoo x W by the following quantity:

n 3 2 (014e00) |2
O RED SEED SD oY | cve ”
= (X1, -, Xn) [0 (x0)],, [0 (x5)]i
W\ oSy s Sy 9000
8(|\IJ(01 ..... a',,,)|2) ~

(Xla cee 7XTL) [0 (Xi)]k [Dx_;‘ 0]”

+

9 \:[1(80'<X1)t;'C )2
+ (|8(xj)l) (X1, yXn) [é (Xj)]z [Dxie]kk
+ |q;(017~--707z)|2 (X17 ) ([Dxﬁ]kk [D 9] - zg [D e]kl [‘D 9]lk:>

Distinguishing the two cases i = j and i # j, we deduce that D3p, (6, 9) is equal to:

l n - (015000)
o <y> Z Z/DX(Rg\Q)n_V <Hessxi (|\I/ 1

_1 11" =1
(01,...70,”)6{ 2,2}
+ (T, (Wl “">|2) (51, %0) | 0.0x0) div 6 (x:) + 8 (x,) div 0 (x:))
+ [Wleom) |2 |:le 0 (x;) div 6 (x;) — trace (D 0Dy 9)}

2) (X1, s X )0 (%5) | é(xi)>

2 (O15-0m) )
Py v S >')<x1,...,xn>w<x1->1kWl

j€[1,n] k,l=1
J#£i B
+ (Vi (Ue170)12) (xq,...%,) | 0 (x;)) div 0 (x;)
(Vo (WO 2) (1, x0) | (x5) ) div 6 (x:)

4 [WTn) 12 (%L x,,) div 6 (x;) div 0 (x;) | dx; ... dx,.

(36)
We now proceed as in the proof of Theorem 2.8. We use the alternating property (9) of the wave
function ¥ in order to get:

Hessy, (\Wl ----- ”")\2)(x1,...,xn):Hessxl (|\1:<Gz' ----- 1 ”")|2)(Xi,...,x1,...,xn)

and

82 \IJ(Ul,...,U”) 2 82 \P(ai,aj,...,crl ..... 024es0n) |2
(| ‘)(xl,...,xn): (| |)(
a(xi)ka(xj)l 8(X1)ka(X2)l

Combining these observations and (28), we can now rearrange the summation on the spin variables
n (36). We deduce that relation (32) holds true by distinguishing the cases (x;,x;) € Q x €,
(xi,%;) € (R\Q) x (R}\Q), (xi,%;) € 2 x (R¥\Q), and (x;,%;) € (R*\Q) x Q, where the two last
cases lead to the same expression by exchanging the role of i and j with (9) and relabelling again
the spin variables.

Let us now study the Lipschitz case so we assume that Q C R? is an open bounded set with a
Lipschitz boundary and we consider the restriction map p,.q : 0 € W N Cl — p,[(I + 6)(Q2)].
Since W N C1 is also equipped with the W1*-norm, we deduce from Corollary 2.9 that p, q is
continuously differentiable on W N C! NB%!, its differential being well defined by:

Deppo: WhHenC'nB® — L, (Wh*nCLR)

_ 37
0o = Dgypua: 0 Dopy (146,)(Q) [9 o (I +6o) 1} : (37)
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Moreover, we obtain from the foregoing that the map (37) is differentiable at the origin i.e. p, o
is twice differentiable at the origin and its second-order differential is well defined by (32) for any
0,0) € (WH> N CY) x (Wh° N CY). Let us now use the additional regularity of €, 6, and 6 in
order to improve the expression (32). On the one hand, one can observe that the map R of the
statement can be expressed into a divergence form:

R(xieoyxn) = div [0 (Vg (10002 2) (0,32, x0) | (x2) )
W) 2 (0%, ., Xy,) div 9~(X2)>} (x1).

Arguing as in (29), we can thus apply the Trace Theorem [17, Section 4.3] to the integrals involving
Rin (32). A similar argument with the variable x5 yields to transform the integrals involving R in
(32) into the one involving the kernel K¢ in (33). The sign obtained depends on the outer normal
ngs\o = —ng of the boundary 99 = 9(R*\Q). On the other hand, we can treat the integrals

involving Q in (32) as follows. First, we assume that (6,0) € W2 x W2 5o we can write:

Dub(B)] (x2)

(o, %2,...,%,)0) 0 —

Q (%1, ..., %n) div [div (B (oran)|2

= div |:le (|\I/(l71,...70'n)

2 (0, .., %) é') o D,é(ﬁ)} (x1).

We emphasize that fact that the above equalities only hold true because we have assumed that
(0,0) € W2 x W2, Then, arguing as in (29), we apply the Trace Theorem [17, Section 4.3]
for the integrals involving @ in (32), from which we deduce the expressions involving S in (33).
More precisely, we need here to use the Trace Theorem for W' >°-fields, which can be obtained
from usual density arguments (see below (29)). Consequently, using again the fact that the unit
outer normal to the boundary 9Q = 9(R3\Q) satisfies ngs\o = —Nq, we have proved that (33)
holds true for any (6,60) € W2 x W2 Note also that even if (33) is not symmetric in  and 6,
the symmetry can be obtained from the above equalities. Finally, we get that (33) holds true for
any (0,0) € (Wh> N C) x (Wh*° N C) by standard approximating arguments. Indeed, for any
6 € W N, there exists a sequence (0))ren Of elements in W2°° such that 6 and [De0y);;
respectively converges to 6 and [De6];; uniformly on any compact subset of R® as k — +oo and
for any (i, j) € [1,n]? (consider again the usual mollifier [17, Section 4.2.1 Theorem 1]).

It remains to treat the C''!'-regularity. First, we decompose the operators in S and the vector
fields into a tangential and normal components. We thus have:

S(x1,...,%,) = divag [(|\Il(‘71""=‘7”)|2) (o,x2,...,xn)9] (xl)én (x1) )
+ (Vi (|@E)2) (x4, %) | 0o (X1)) On (x1) O (x1)
— et s, x) (Donb(Baa) | na) ().

Then, we assume that € is an open bounded subset of R? with a boundary of class C':!. Since the
outer normal field ng is now Lipschitz continuous, we deduce from Rademacher’s Theorem [17,
Section 3.1.2] that it is differentiable almost everywhere. Hence, we can write:

S(x1,...,%,) = divgg [(|\II(‘717""‘7”)\2) (o,x2,...,xn)9~n9}( 1)
+ (Vo (JUOX012) (31, %) | g (%1)) O (x1) O (x1)
e e e ) 216.6] ).

where we recall that Z[6, ] is defined by (4). Finally, arguing as in (29) with the above expression
of S, we can apply the Divergence Theorem for surfaces [27, Theorem 6.10] in (33), which is valid
with Ctl-regularity (adapt for example the proofs of [22, Proposition 5.4.9]). We deduce that the
second-order shape derivative of p, at 2 can take the form given in (3). We emphasize the fact that
n (31) and (34)—(35), the boundary values of W(“1:7n) € H2((R3)™, C) and Vy, ¥(@1+7n) have
to be understood in the sense of trace. In particular, the shape Hessian (35) is uniquely determined
up to a set of zero A(e N Jf)-measure and the same holds true for the kernel (34), concluding the
proof of Theorem 2.10. O

We conclude this section by specifying the Fréchet differentiability of the associated map p, o
in the specific case kg = k = 2 of Theorem 2.7.
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Corollary 2.11. Let us consider the assumptions of Theorem 2.7 in the specific case ko = 2. Then,
the map p,q : 0 € Wh* s p,[(I + 0)(Q)] is well defined and twice continuously differentiable at
any point of W NBYL. Moreover, its second-order differential is well defined by the following
continuous map:

Dip,q: WhtenB® — (2 (le‘x’ X Wl’OO,R)
90 — (91, 92) — D(Q)pu,(1+60)(§2) |:91 o (I + 90)_1 ,92 o (I + 90)_1} s

(38)

where Dgpl,7(1+90)(9) is the second-order shape derivative of p, at (I+6)(Q) defined by (32). If in

addition, we now assume that Q is an open bounded subset of R with a Lipschitz boundary, then

the restriction map p, o : 0 € WhH* NCl — p,[(I +6)(Q)] is still twice continuously differentiable

at any point of W1 N CY NBY! and its second-order differential is well defined by the following

continuous map:

Dipyo: Whenc'nB™» — L£2((Wh>nCh) x (Wh>ncCt),R)
b+ (61,62) > Dipy(rsa@) 010 (I+00) 020 (1+60) "],
(39)
where D%py7(1+90)(9) can now be defined by (33). Finally, if we assume that Q is an open bounded
subset of R® with a boundary of class C11, then the last result still holds true but we can now use
the expression (3) to define Dp,. (140,)() i (39).

Proof. First, for a measurable 2 C R3, the statement (38) is precisely the content of Theorem 2.7
with kg = k = 2. If in addition, © is an open bounded subset of R3 with a Lipschitz boundary, then
(I3 + 6)(£2) is also a open bounded Lipschitz domain satisfying 9[(I5 + 00)(Q2)] = (I3 + 6)(99).
Moreover, we have fo(I3+60y)~! € WH*NC! for any § € WH>NC! and any 8y € WH*NC NB%L.
We deduce that the expression (33) defines well Dgp,j7(1+90)(9) in (39). Finally, if Q is now an open
bounded subset of R?® with a Cl:l-boundary, then (I + 6p)(f) is also a C*!-domain and we can
use the expression (3) to define Dgp, (114,)(0) in (39), concluding the proof of Corollary 2.11. [

3 About the shape derivatives of a volume integral

In this section, the integer n > 2 is still fixed but now refers to the dimension of the real space R"
in which we are working (and not to the number of electrons as it was the case in Sections 1-2).
In particular, 2 now denotes a subset of R™ and 6 : R — R"™ is a well-defined vector field on R".
Our goal here is to study the shape differentiability properties of the following map:

F: M — R

Q — F(Q):= / f(x) dx, (40)
Q

where the integration is done with respect to the n-dimensional Lebesgue measure, and where M

now refers to the class of (Lebesgue) measurable subset of R™. We refer to Sections 1 and 2.1-2.2

for notation, especially Definition 2.5 for explanations about the notion of shape differentiability.

First, note that if f € L'(R™,R), the map F : Q — F(Q) is well defined by (40).

Then, we aim to establish precise shape differentiability results concerning (40) since the proofs
of Section 2 were all relying on the shape derivatives of a volume integral. We distinguish three
cases according to the regularity of the given domain. We also mention that from our statements,
we can recover the standard formulas for the first- and second-order shape derivatives of a volume
integral [16, Chapter 9] [22, Chapter 5] [40, Chapter 2].

3.1 The general case of a measurable domain

For any integer k > 1, we define W*! as the standard Sobolev space of L'-maps from R" into R
whose partial derivatives (in the weak distributional sense) are also L!-functions up to the order k.
In this section, we prove that if f € W*! and Q € M, then the map Fq, : 0 € WH s F[(1+6)(Q)]
associated with (40) is of class C* around the origin. In particular, we get an explicit formula (43)
for the shape derivative of a volume integral at any order. The proof is made by induction on & so
we first need to initialize the process by studying the continuity properties of Fg.
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Lemma 3.1. Letn > 2, f € L}(R",R), and Q € M. Then, the map Fq : 0 € C%! — F[(I+0)(Q2)]
is well defined on B®'. Moreover, Fqo : 0 € W1 s F[(I 4 0)(Q)] is continuous on B%1 nW1hee,

Proof. Let n > 2, f € L'(R",R), and 2 € M. First, applying Proposition 4.1, the map I +6 has a
Lipschitz continuous inverse for any § € B%!, from which we deduce that (I +)() is measurable.
Hence, the map Fy : 6 € C%! — F[(I +6)(Q)] is well defined on B%!. Then, let § € W1 0 CoL.
We use the change of variables formula valid for any Lipschitz continuous map [17, Section 3.3.3]
and the (reverse) triangle inequality in order to get:

/(1+9)(Q)f_/ ‘/ o (I+0) = f]|det[Dy (I +0)] ‘ ‘/f‘det (L+0)]]—1)

< [|det [Do (I +0)] [[Lo<[lf o (I +0) = fllLr + [Idet [De (I +60)] = 1| [ f]l L2

Combining (63) and the continuity at the origin of the Jacobian determinant of (I 4 6) ensured by
Proposition 4.4 with the one of § € W1 fo (I +6) € L*(R",R) ensured by Proposition 4.6,
we can let [|0]|y1.« — 0 in the above inequality. Hence, the map Fq : 0 € W1 s F[(I+6)(Q)] is
continuous at the origin. Finally, let § € W NB%!. We recall that (I +0)(2) is measurable and
moreover, note that for any h € W1 such that Al <1 — 8] co.1, we have || + hl|con < 1

SO we can write:
/ - = i s (41)
(I+6+h)(€) (I+6)(Q) (I+he)(Q0) Qo

where we have set Qy := (I +6)(Q) and hg := ho (I +6)~1. One can check that ||hg||L~ < ||h| L
and ||h9Hco,1 < ||h||00,1||(1+9)_1Hco,1 < ||h||co,1(1 - ||9||Co,1)_1 by Proposition 4.1 so we deduce
that:
[Pl o [Pllwree = [1Pllz=ll0lcor _ _[Ihllwro~

hollwiee < ||| g + — < . 42

ol < Wirlle=+ T oc0r = oo T [flcor 4
In particular, we have ||hg|lyw1.« — 0 as ||hly1.- — 0. Considering the continuity at the origin of
hg € W1 s F[(I + hg)(2)], we can let ||h]|1y1.« — 0 in (41). We have obtained the continuity
of Fo: 0 € Wh® i F[(I +0)(Q)] on Wh>*° NB%!, concluding the proof of Lemma 3.1. O

Theorem 3.2. Let n > 2 and ko > 1 be two integers. We consider f € WH:1(R™ R) and Q € M.
Then, the map Fq : 0 € W1 s F[(I + 0)(Q)] is ko times Fréchet differentiable at the origin and
for any k € [1, ko], its differential of order k at the origin is given by the following continuous
symmetric k-linear form defined for any (01,...,0;) € WH® x ... x WH® by:

8k_lf
) Z > D sl T o 11 1056, TT1Ds0],,,,
ir,.ik=1 1=0 L,C[Lk] pESy, @ ik dElLA] jen
card I;=l jjgi, J¢n

(43)
In other words, the functional (40) is ko times shape differentiable at any measurable subset of R™
and its k-th-order shape derivative is well defined by (43) for any k € [1,kq]. Moreover, the map
Fo:0 e Wh s F[(I+0)(Q)] is ko times continuously differentiable at any point of W1 NB%?
and for any k € [1, ko], its k-th-order differential is well defined by the following continuous map:

DiFo: Wb nBO — ck((wh=)" R)
0y — (91, ---,ak) — DISF(]_;,_QO)(Q) {01 o (I + 90)_1 ey O 0 (I+ 00)—1:| :

(44)
where D'gF(H@O)(Q) is the k-th-order shape derivative of F at (I + 600)(Q2) given by (43).

Proof. We are going to prove this result by induction on the integer k& € N. First, recalling the
usual conventions 9°f = f, Yico =0, [Licp = 1, and DgOFQ = Fa(0o) = F(1+0,)(0)(0), we deduce
from Lemma 3.1 that Theorem 3.2 holds true for £ = 0. Let us assume that it is also true for
some integer k > 0. Let n > 2 be an integer, f € W*t11 and Q € M. The induction hypothesis
ensures that the map Fy : 0 € W1 s F[(I + 0)(Q)] is k times continuously differentiable at any
point of W1 NBY%!. We now show that the additional regularity assumption we made on f allows
the function (44) to be differentiable at the origin. Let (0g,01,...,0;) € (W1>)**1 be such that
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l60]|co.r < 1. First, we express the k-th-order differential in a simpler form, using the change of
variables formula valid for Lipschitz continuous maps [17, Section 3.3.3]:

k—1
DgoFQ(ela"-aok) = Z Z Z Z § p / 1(?[ 8fX,L

U yeens ir=1 [=0 Ilclll k;]] pESI +0[)) ) e
card I;=I Jj[éjl]]
II [9 o (I+60) } I1 o. {9 o (I+60)" ] ,
JE[1,k] 7 jern 15p(5)
Jj¢nL

n

k ok-Lf
= )RS DI DR Dl /QMO(H%) 1T [0;1;,

i1,.ik=1 1=0 IL,C[1,k] PES JE[L,k]

cardl; =l J?Ejlk]] J&I
1 Dirsoo [9 o (I+00) } |det[Da (I + 6o)]].
jen 15ip(4)

For any § € Wh we define Def(6) as the set of points in R™ at which @ is differentiable. Note
that from Rademacher’s Theorem [17, Section 3.1.2], R™\Def () has a zero n-dimensional Lebesgue
measure. We can now introduce the set A := Def(0) N Def(0o) N (I + 60o) L [Def(6o (I+6p)~1)].
From Lemma 4.2, we get for almost every point x € R™ (more precisely for any x € A since R"\ A
has a zero n-dimensional Lebesgue measure):

D, 60 (I + Dxeo)_l = D(I+90)(x) 0o (I + 90)_1

Furthermore, we get from Proposition 4.4 that det[Dq(I48)] — 1 for the L*>°-norm as ||0||y-1.« — 0.
Hence, there exists § €]0, 1] such that for any ||0o || 1. < d, the Jacobian determinant of (I +6p) is
positive. Combining these two observations, we obtain from the foregoing that for any 6, € W1
such that |6 ||~ < o

n k k—1
LU YD YD YD R0 oo+ I] 1,

ie=1 =0 ILC[1,k] pESH jell,k]

card )=l jej[g[’fﬂ Jel
I1 [D.ej (1+D.ao)—1]  det[Du(I + 6o)] .
jen 2itp(5)

(45)
Then, we introduce the continuous (k+1)-linear form (43), which is symmetric i.e. for any p € Si4+1
and any (91, ey 9k+1) S (Wl’oo)k+1, we have D§+1FQ(9p(1)7 e ,ep(k»Jrl)) = D’(§+1FQ(017 ey 9k+1)-
We now prove that this good candidate is the (k + 1)-th order differential of F at the origin.
For this purpose, we express it differently. We emphasize the fact that we have not (yet) proved
that (43) is the (k + 1)-th order differential of F but we use its notation for convenience. We set
Ok+1 := Op to keep this in mind. We thus have:

DETF, (91, Bk, 00) =
k+1 oFF1-lf

Z YooY > sl LTI ow II a1, 1T, -
11,0tk tk41=1 =0 I,C[1,k+1] pESH 7 je1,k+1] Jen
card I,=l el kE+1] i
J&n
We split the above expression into two disjoint situations, the last one being itself splitted into
two subcases. In the first situation, we assume k + 1 ¢ I;. In this particular case, the sum on !
can stop at k since we are assuming that I; has at most k elements. Moreover, we can explicit the
indice ir41 and the subset I; is included in [1,%]. In the second situation, we assume k + 1 € I;.
Similarly, the sum on [ can start from one since we are assuming that I; is not empty. Then, two
subcases follow. On the one hand, we assume p(k + 1) = k + 1. In this case, this is equivalent to
search only for subsets I;_; C [1,k] of [ — 1 pairwise distinct elements, and also bijective maps
q:I—1 — I;_1, thenset I, :==I;_ 1 U{k+ 1} and p := q on I;_q with p(k+ 1) := k+ 1. On the
other hand, we assume p(k+ 1) # k+ 1 so we can make a partition on the bijections p : I — I; by
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fixing the element k& + 1. We thus have:

n k n
b ak—lf
DETYEG(0y, ..., 0, 00) = /
0 Q( 1 Uk, 0) ‘ Z Z Z Z S(p) QZ 8xi' H 8Xi.
i1,..,0=1 1=0 I,C[1,k] p€ESI ig41=1 ket : !
card I;=l ! JELLA
1 J¢n
[90]@&4rl H [gj]in[D'eﬂiﬂpm
JjE[L,k] Jjeh
J¢n
n k+1 P11
PIID SR DD S A | AL | QL
itie=1 =1 I,_;C[1,k] q€S1,_, Qe dElLE] j€hi—
card I;_1=l—-1 p:=q on I;,_, J.Z[[I’]] JjéIL_1
Li=I_1U{k+1}  p(kt1):=k+1 JE
Z [D'ao]ik+lik+1
ipp1=1
n k+1 oF—(=1y
> YooY 2 0 T I1 e, IT 0,
innik=1 I=1  L_,C[Lk] jo€L 1  pESH ?eling €I e
card I;_1=1—1 p(k+1)#£k+1 ]'QI ’ J€I 1 Jj#jo
Ii:=I 1 U{k+1} p(Go)=hk+1 T

Z I:D.ejO]ijoik+1 [Doeo]ik_,.lip(kﬂ) :

igr1=1

In the second integral above, p(k+1) = k+1 so the number of transpositions needed to decompose
p;ll opopy, is the same than for pl’lil ogopy,_,, from which we deduce that s(p) = s(q). Moreover,
in the last integral above, we make a change of indices r := p o t, where ¢ is only exchanging k + 1
and jo. Since the signature is a morphism of group, we have s(r) = s(pot) = s(p)s(t) = —s(p).
Indeed, ¢ permutes two indices of I; thus pl_zl otopy, € S is a transposition, whose signature is —1.
We are then back to a summation on r for which r(k+ 1) = k + 1 i.e. in the previous situation of

the second integral above. We can thus do the same foregoing procedure. We obtain:

n k oy
DEFYEG (61, ...,0k,00) = Z Z Z Z S(P)/Q<VM | 90>

i1,..,0k=1 1=0 L, C[1,k] pESI

e,k
card I;=I Jj[éll]]
H [631;, H [Debiliyi,
J€E1,k] Jjen
et
n k+1 —(]—
gk—( l)f
> > Y s e 11 b,
i1,nie=1 1=1 I,_1C[1,k] q€S1,_, jelLk] 7 je[1,k]
card I} _1=l-1 p:=q on I;_, jQIL,—l 3

Iii=I 1 U{k+1} p(k+1):=k+1

JEI 1
n k+1 oF—U=1)f
DD YEED SEEED DI SINICY Sy | RO
itenin=1 1=1 I_,C[1,k] jo€li-1 q€S1,_, e e GElLA]
card I;_1=1-1 ri=q on I3 Jé[]) J J¢Li—1
Ii=I_ U{k+1} (k1) =k+1 JE
[_D.ejOD.eo]ijoiq(jo) H [D.ej]ijiq(j).
jeli—1
J#3jo

Note that in the last product, we have replaced i, ;)] by i4(;) since they coincide on I;_1\{jo}.
Finally, we can notice that in the two last integrals, we have expressed everything in terms of I;
and ¢ and so we can drop the notation [;, p, and r. Re-indexing the summation on [ in the two
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last integrals by m =1 — 1, we get from all these observations:

n k
EAR RS D SHED DD SIND SRT0Y NS | 00

i1,..,0,=1 m=0 [, C[1,k] q€Si,, jel,k]
card I,,=m jél,,
ak—mf 8k_mf
<Vw|90> 100 + o LT D0, div(00)
jellkl J€lm je[ia] C I€Im
IELm i¢Im
oy D.6; Do0;,D.0
" Z W H [ ¢ ]]ijiqu) [_ *¥Jo e O]ijuiq(jo)
SR L B =
J¢Im

(46)
We now introduce some more notation in order to handle the quantities (43)—(46) we want to
estimate. For this purpose, we set:

8k—m ak—m ak—m
“°::M°<I+9°>’ "O:naﬁiw c°::<vrwf<.'90>’
jelk] jele] jelk

i¢In i#In e
and for any j € [1,m]:
_ . —1
5= (Db I+ DO,
b] = [D.epIWL(j)]iﬂfnl(j)idplm(j)]
—[D.0 Daboli,,,

P1y () (D lalpr,, (D]

We also set a1 := det[De(I 4 6p)], bint1 := 1, and ¢;11 := div(fy). Then, we introduce the
following map:

Ry (6o, ...,0) = D Fo (61,...,0r) — DEFo (01,...,0k) — DT Fqo (61, ...,0k,00) .

Considering the expressions (43) and the ones (45)—(46) we have established, in each product/sum
concerning j € I,,, we make a change of indices u := p;i (j) so as to order the product/sum from
u =1 to u = m. We obtain with our notation:

i1,.0=1 m=0 [, C[1,k] qESIm je[[l k:]]
card I,,=m J¢Im
m—+1 m—+1 m—+1

ul;[Oau Hb —Zcue H by

uo=0 u€[0,m+1]
uFug

[
(]
™=

s [ T 1

Sim JG[[l k]]

m+1 fup—1 m—+1 m+1 -1 m+1
S (A1) [ e T awren 35 (11w (] n
up=0 u=uo+1 l=upg+1 \u=up+1 u=[+1

Therefore, we can now estimate each term in the last equality in order to obtain the required
relation |Rg (6o, ..., 0k)| < R(n,f,k,&o)l_[?:o 10;|lwi. with |R(n, f,k,00)] — 0 as ||6p||w1. — O.
Let us detail this procedure. First, we can apply Proposition 4.6 to the maps 0¥~ f € Whl,
m € [0, k]|, then use the Cauchy-Schwarz inequality with (61), and combine the relations (62)—(63)
with the fact that ||0g]|w1.~ < d < 1. We deduce that:

(GO - bO - CO) (H au) Am+1
u=1

m—+1
n
<o-0(125) 1oalbwr~i6n) T 1651ns

J€Im

Lt

20



where |R(6p)| — 0 as ||6p||wr.~ — 0. Hence, we have estimated the first term of the first sum.
We can proceed similarly for the other ones. Using the L'-norm for the maps 0*~™f € Wht,
m € [0, k], and the L>°-norm for the remaining terms, we get from the Cauchy-Schwarz inequality
with (61), relations (62)—(63) with ||fp||w1. < § < 1, and Proposition 4.3:

m up—1 m
Z bO < H b > Aoy — u Cug) ( H au) Am+1

up=1 u=ug+1

1
n
<m0t (25 Uflhwes [dolens (6o) T 163lcns
J€Im

where |R(0y)| — 0 as ||fg||co.r — 0. The same arguments and Proposition 4.4 also yield to:

bO <H bu) (aerl - bm+1 - Cm+1)
u=1

where |R(6p)] — 0 as ||6p]|cor — 0. We next observe that m < k and 0 only depends on n
(in fact one can prove that § = ﬁ), where we recall that 6 €]0,1[ is such that the Jacobian
determinant of (I + 0) is positive for any ||0]|y1. < 6. Gathering the three last estimations and
these observations, we thus have obtained:

5 ("ﬁlb ) o = oo = ) ( il )

up=0 u=ug+1

< £ llwealfollcos R(Bo) TT 16;lcon,

Lt JE€Im

<C (TL, ka f) ||00||W1'°°R(00) H ||0j HWI"”?

Lt jeIm

(47)
where C'(n, k, f) > 0is a fixed constant depending only on n, &, and || f||yy+.1, and where |R(6p)] — 0
as ||fo|lw1. — 0. We continue our estimations. Arguing as in (70) with 6y and o™ f ¢ W1,
m € [0, k]|, we use the Cauchy-Schwarz inequality with (61), relation (62) with ||fp||w1.~ < <1,
and Proposition 4.3 in order to get:

coi (uﬂ au> a; —by) ( ﬁ bu> b1

u=Il+1

Ll
m—1
n
<yt (125) Wlwessa lollRi60) TT 16500,
J€Im

where |R(0y)| — 0 as ||fg||co.r — 0. The same arguments combined with Proposition 4.4 give:

m n m
Co (H au) (am+1 = bim1) < (1_5> £ llwrsr2 (160l R(Bo) T] 165llco,
u=1 L1 J€Ly,
where |R(6p)| — 0 as ||0]|cor — 0. Similarly, we get from Proposition 4.3:

uo—1 m -1

S (T 3 (T o) IT o)

uo=1 l=up+1 \u=up+1 u=Il+1 1

n m—2
<o (125) mlm = Dl s ol o) IT 10cs
J€lm

where |R(6p)| — 0 as ||fg||co.r — 0, and also from Proposition 4.4:

ug—1 m
Z bo (H b ) < H au) (am—i-l - bm+1)

ug=1 u=uo+1

s
m—1
n
<o (25) " Wlwealolcos R(60) T 1651ns
Jj€lm

where |R(6p)| — 0 as ||6p]|cor — 0. Gathering the four last estimations and observing again that
m < k and § < 1 only depends on n, we obtain:

m+1 fuo—1 m-+1 -1 m—+1
() 3 (I e (1T )
up=0 l=up+1 \u=uo+1 u=Il+1 Ll (48)

< Ok, || lwrsrn)ll6ollwoR(60) TT 16;llws=,
J€lm
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where C(n, k, || f||yr+1.1) > 0 is a fixed constant depending only on n, k, and || f||y#+1.1, and where
|R(6p)] — 0 as [|f]|cor — 0. Finally, we use (47)—(48) to estimate the last expression obtained for
Ry (00,01, ...,0r). We deduce that:

Ry (0p.04.....0
1B(6o, e, .- o)l = sup [ B (8,01, 60 |
01, 0pyewiooye N01wree o [0k .o
01,...,0,#0

k k
< Ok lflwen) lbollwaee Do > Do > RO

i1,..,0=1m=0 [, C[1,k] q€S1,,
cardl,,=m

We emphasize the fact that even if the notation omitted it, the R(6y) in (47)—(48) depends on n, k,
and f, but also on iy, ...,ix, m, I, and ¢. Since all the sums are finite, we can take the maximum
of these R(6y) for example, and we end up with ||| R (0, e, ..., ®)||| < [|o]lw1. R(n, k, f,0y), where
|R(n, k, f,00)] — 0 as ||6p]lwr.e — 0 with R(n, k, f,0) depending only on n, k, f and 6. We have
thus established that the map (44) is differentiable at the origin i.e. Fq : 0 € W1 — F[(I+6)()]
is k + 1 times differentiable at the origin for any measurable subset 2 of R".

We now show that Fy is k + 1 times differentiable at any point of B N W1, Let 6, € W
be such that ||6g||co.r < 1. From Proposition 4.1, the map I+ 6, has a Lipschitz continuous inverse.
In particular, we deduce that Qg := (I + 6p)(Q2) is measurable. Consequently, from the foregoing,
the function Fo, : 0 € WL s F[(I +6)(Q0)] is k + 1 times differentiable at the origin. Let ¢ > 0
and we set € := g(1 — ||0g]|co.1)¥Tt > 0. There exists § €]0,1] such that for any § € W1 such
that [|0||wi.~ < d, we have:

1D} Fo, — DiFo, — D™ Foy (o, &, 0)]|| < cll0]s-

Proceeding as in (41), we observe that for any h € W such that ||h[/1.0c < 8(1—||6p]lco.r), we
have ||y + h||con < 1 so we can write for any (61,...,0) € WhH x ... x Whee:

(D5,

b nFa —Df Fal (01,...,60,)

_ D§+1FQO |:91 O (I+ 90)_1 P '70k o (I+90)_1 ,h,O (I+ 90)_1:|

— [D§Fo, = DbFay] (010 (I+600) " ... 00 (I +60)
— DB, (010 (T+00) 7" o (T4 60) 0]

where we have set 6 := ho (I +60y)~!. As in (42), we have ||0]/y1. < 1"77"'00% < § so we get:
c0,

|[D§o+hFQ - DgoFQ](Hl’ - '79k) - D’3+1F90[01 © (I+90)_1 RN (I+ 90)_1’h0 (I+90)_1]|
k

< ||D§Fo, — D§Fo, — Dg™ Fag (e, o, 0)|l [T 1600 (7 +60) ™ [l
=1

1011l w1.s €
< €||h0 (I+00 ||W1°° I | 1— |00 |COl < ( ||0 || o1 )k+1 ||hHW1°° | I ||91||W1°°'
=1

=€

Consequently, we obtain for any h € W1 such that ||h]|j1.c < 8(1—||0]con):
11D, Fo— Df, Fa—Dg ™ Fag[(8)o (1 +60) ..., (8)o (I +60) ™", ho (I +60) 'J[I| < eflflwr.e.

Since (61,...,0k,h) € (WhH)E+L sy DEFLEG 030 (T+60) ", ..., 060 (I+60) " ho(I+60)"
is a continuous symmetric (k + 1)-linear form, we have proved that Fq : 0 € Wh> — F[(I +6)(Q)]
is k + 1 times differentiable at any point of W1 NB%! and its differential is well defined by (44)
with k& + 1 instead of k.

Then, we now show that the (k 4+ 1)-th order differential of Fy, is continuous at the origin.
Let 8y € W1 be such that ||fp]|y1.« < &, where we recall that § > 0 is such that the Jacobian
determinant of I + 6 is positive. Since we have just proved that (44) holds true for k + 1, we can
rigorously use the same arguments than we used in the beginning of the proof in order to get that
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(45) holds true for k + 1 instead of k. Moreover, considering the expressions (43) and (45) with
k+1 instead of k, in each product/sum concerning j € I;, we make a change of indices u := pfll(j)
so as to be able to order the product/sum from u = 1 to u = I. Using again the previous notation
we introduced below (46), we thus have for any (01,...,0511) € WH x ... x Whee:

[Dy ' Fo — D™ Fo) (61, .. e,m)

k+1 141 141
- Y >y S f I W, |ITs-IIn

i1,eesiip1=1 1=0 I,C[1,k+1] ¢€S, Q e1,k+1] u=0 u=0

card I;=l jeI,
k1 141 fuo—1 41

:ZZZZ/H ZHb (auo —buy) [T aul,

1,.. Slk41= 11l= OIlglll k+1]]qu[ JElIl k)+1]] uo=0 u=uo+1

card I;=l ean

where (aj,b;)1<j<i+1 are defined as before (see below (46) where m has been replaced by ), but
where k is replaced by &k + 1 in the definition of (ag, by). Therefore, we can now estimate as before
each term in the last equality in order to get |||DkJrl Dk+1FQ||| — 0 as ||6o|lwr.~ — O.
Let us detail this procedure. First, we can apply Proposition 4.6 to the maps 0*T'~'f ¢ L1,
1 €0,k + 1], use the Cauchy-Schwarz inequality with (61), and combine relations (62)—(63) with
16o]lwi. < & < 1. We deduce that:

ao - bo (H au) al+1

where |R(6p)| — 0 as ||6p||lwr.~ — 0. Hence, we have estimated the first term of the first sum.
We proceed similarly for the other ones. Using the L!-norm for the maps 9¥+1=!f 1 € [0,k + 1],
and the L°-norm for the remaining terms, we get from the Cauchy-Schwarz inequality with (61),
relations (62)—(63) with ||0g||w1.e < § < 1, and Proposition 4.3:

S (ﬁb) - >< 1 )

ug=1 u=uog+1

n +1
< (n—1)! <15> R(6o) [T 16;llcor,

Lt Jjen

L1

l
5) Ulbwsssa 260 TT 1l

JjenL

<l\/ﬁ(n—1)!<1"

where |R(0y)| — 0 as ||fo||cor — 0. The same arguments combined with Proposition 4.4 lead to:

!
bo <H bu) (@41 — bit1)
u=1

where |R(6p)] — 0 as ||fp||cor — 0. Gathering the three last estimations and observing that
I <k+1 with 6 €]0, 1] only depending on n, we obtain:

li (uh1b> uy — b )( lﬁ au>

uo=0 u=uo+1

< flwere | TT 10501 con | R(Bo).

Lt Jjen

<Ok If lwessa) | TT 1651w | R(60),

Lt JjEL

where C(n, k, || f||yr+1.1) > 0 is a fixed constant depending only on n, k, and || f||y#+1.1, and where
|R(00)| — 0 as ||fo||w1.« — 0. We use this last inequality in order to estimate the last expression
obtained for Dg(;‘rlFQ — DEF1Fq. We deduce that:

| [DiH Fo — DET o] (61, Ops1) |

11Dg," Fo = D Falll = sup ; ;
(01,‘..9k+1)€(W1’°O)k+1 || 1 ||VV1'oo e H k"!‘l”VVl’OQ
01,...,0+17#0

k+1

ST R I SR SR SR S

T yeeey tgy1=1 =0 I,C[1,k+1] q¢E€Sy,
card I;=l
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As before, even if the notation omitted it, the R(6p) in the previous estimations were depending on
n, k, and f, but alsoon iy, ..., 4k, [, I}, and g. Since all the sums are finite, we can take the maximum
of these R(f) and we end up with ||| Dy Fo—Dg ™ Fol|| < R(n, k, f,60), where [R(n, k, f,6)| — 0
as ||0o||w1.c — 0 with R(n, k, f,8) depending only on n, k, f and 6. Therefore, we have established
that the map DEF1Fy : 6y € W — Dyt Fy € LA+ ((W°)*1 R) is continuous at the origin
ie. Fo:0€ W F[(I+0)(Q)]is k+ 1 times continuously differentiable at the origin for any
measurable subset ) of R™.

Finally, it remains to establish that the map D¥*!Fy, is continuous at any point of B®!' N1,
The arguments are the same than those used to obtain the (k+ 1)-th order differentiability at any
point of W NBY%! from the one at the origin. Let 6y € W1 be such that ||fy||co.r < 1. From
Proposition 4.1, the map I + 6y has a Lipschitz continuous inverse. In particular, we deduce that
Qo := (I +6p)(2) is measurable. From the foregoing, the map Fg, : 0 € Wh> — F[(I +6)(Qp)] is
k +1 times continuously differentiable at the origin. Let ¢ > 0 and set € := (1 — ||p||co.1 )*+1 > 0.
There exists § €]0, 1 such that for any § € W1 such that [|0]|1. < §, we have the inequality
|[|DET Fo, — D§™ Fa,||| < e. Proceeding as in (41), we observe that for any h € W1 such
that ||h||lwi.e < 6(1 — ||fg]|co.1), we have the estimation |0y + h||co.r < 1 so we can write for any
(91, C 0k+1) e Whe x ... x Whee:

[Dé?jthn - nglFsz] (01,...,0511) = [D§+1FQO - D§+1FSZO] [010(I4600)"", ..., 06101 +60)7"],

where we have set 6 := ho (I +60y)~!. As in (42), we have ||0]/y1. < %% < 6 so we get:
c0,

k+1
D5 Fa — DEF Fol (01, ., 0ks1) | < |ID5 Fou — D Fou |l T 1600 (14 60) ™" llwre
k1 =t k1

< ey L ws = e IT Wil
Hence, we obtain |||D§O++1hFQ—D§j1FQ||| < e for any h € W such that |||y < 5(1—|0]| o)
i.e. DFFflFy is continuous at any point W1 N B%!'. Consequently, we have proved that the
statement is true for £ = 0, and that if it is true for an integer £ > 0, then it is true for k + 1
provided f € WH+L1 Therefore, by induction, for any integer ky > 1, if f € W*o! then we
obtain recursively that for any k € [1, ko], the functional (40) is k times shape differentiable at
any measurable subset of R™, its k-th-order shape derivative being well defined by (43). Moreover,
Fqo:0 € Wh s F[(I+6))(2)] is k times continuously differentiable on W1:>°NB%1, its k-th-order
differential map being well defined by (44), which concludes the proof of Theorem 3.2. O

3.2 The intermediate case of Lipschitz regularity

In this section, we show that further regularity on the boundary and the vector fields yields to
express (43) into a divergence form. Applying the Trace Theorem [17, Section 4.3]|, we obtain a
new relation for the shapes derivatives of a volume integral. Moreover, if we assume that one of
the vector fields is normal to the boundary, then the expression can be significantly simplified.

Theorem 3.3. Let n > 2, ko > 1, and f € WFoL(R™ R). We consider an open bounded subset
of R™ with a Lipschitz boundary Then the map Fqo : 0 € WhH° N O F[(I +0)(Q)] is ko times
Fréchet differentiable at the origin and for any k € [1, ko], its differential of order k at the origin
is given for any (01,...,0r) € Wh°NCH) x ... x (WL nCt) by

n 8k 1f
DEFq (64,...,0 :/ ] LdA
ofa (t1 ) o9 \ 4 %:1 1]_[ 8XZ71:[

> SOY Y /Hnm

io1=1 1=1 L,C[1k-1] pESy, B i jell,k-1]
card T—1 Je[[jlélz 1 jen
(Or)n H [D'ej]ijipm N Z [De0;, (ek)]in [nQ]iml) H [D‘ej]ijipu') dA.
JEL J1€l; Jill
JI7FI

(49)
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Moreover, in the case where 0y, is normal to the boundary i.e. if we have 0;(x) = (6i),, (x)na(x)
for any point x € 02, then relation (49) takes the following form:

D§Fo (04,...,6k) =

S akflflf

Z Z Z S(Z?)/ Tl oxi, H [ej]ij H [Dasﬂj]ij%) (0k),, dA.
e jell,k—1] K Jellk—1] jel
card I;=l jé]l e

(50)
Finally, the map Fq : 0 € WH* N CY — F[(I +0)(Q)] is ko times continuously differentiable at
any point of W N CLNBY! and for any k € [1, ko], its k-th-order differential is well defined by
the following continuous map:

DiFq: Wh>n ' nB™  — £k ((wh=nch)" R)
Oy +—— (91,...79k) »—>D’3F(1+90)(Q)[91o(I—i—GO)’l,...,Gko(I+00)’1]
(51)
where D§F(11.4,)(q) 15 the k-th-order shape derivative of (40) at (I+60)(S) given by (49) in general
and by (50) if O is normal to the boundary.

Remark 3.4. We emphasize here the fact that even if the right member of (49) is not symmetric
with respect to the vector fields, the shape derivative (43) is a continuous symmetric k-linear form.
In fact, the symmetry of a derivative is a consequence of the Fréchet differentiability. Hence, (49)
is a symmetric k-linear form and (50) also holds true if any of the vector fields is normal to OX).

Proof. Let n > 2, kg > 1, f € W*o:l(R™, R), and consider an open bounded set  C R" with a
Lipschitz boundary. Since W1 N (! is equipped with the W1 > -norm, we can apply Theorem 3.2
to the restriction map Fo : § € W N Ct — F[(I + 6)(22)], which is thus ko times continuously
differentiable on W1 N Ct NB%!, For any k € [1, ko], its k-th-order differential is well defined
by (51), where D§F(11g,)() is the k-th-order shape derivative of (40) at (I + 6)(Q2) given by (43)
for the moment. We now aim to use the additional regularity we made on the boundary and the
vector fields in order to improve (43). First, we assume that (61,...,0;) € W2 x ... x W2,
The proof consists in establishing that in this case, the right member of (43) can be expressed in
the following divergence form:

k—1

n - b akflflf
O S S S i e i | BV (XN oS

) - X, ,
11,050 =1 =0 I[glll,k—l]] pESIl 4E|Il k,‘—l]] 15 jeﬂ17k_1]] JjEL
card ;=1 J jé[ jel,
l

k—1—1
S X0 g | e B,
i tp(d1) .

le .

[D.ejl]ihik H [D.Gj]ijip(j)

JEL

J#n
(52)
We emphasize the fact that (52) is equal to the right member of (43) only for W2>-vector fields.
Note also that if this last assertion is true, then we obtain that (49) holds true by applying the Trace
Theorem [17, Section 4.3] to (52). More precisely, we obtain that (49) holds true for W2 -vector
fields and we extend the result to the W' N C'-ones from standard approximating arguments.
Indeed, for any § € W N C*, there exists a sequence (6;)reny of elements in W2 such that
0 and [D46y);; respectively converges to 6 and [D46];; uniformly on any compact subset of R™ as
k — +o0 and for any (i,j) € [1,n]? (consider the usual mollifier [17, Section 4.2.1 Theorem 1]).
Therefore, the main difficulty here is to check by direct calculations that (52) is equal to the right
member of (43). Let us now detail the great lines of this (tedious) calculation. On the one hand,
we expand the ig-partial derivative in the first integral of (52), which is composed of a product of
four terms. This expansion (from left to right) thus yields to the sum of four terms respectively
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denoted by Ay, A, A3z and A4. Similarly, the i,; )-partial derivative in the second integral of
(52) is expanded and yields to the sum of five terms referred to as By, Ba, Bs, By, and Bs. Note
that the terms A,, A3, Bs and Bs take a partial derivative with respect to a product (on j ¢ I,
or j € I;). Hence, a new sum appears for the expansion of these terms and the notation jy refers
to it. On the other hand, the right member of (43) is divided into three situations as in the proof
of Theorem 3.2 (see below (45)). We denote by C; the case where k ¢ I;, by Cy the case where
k € I; and p(k) = k, and by Cs the case where k € I; and p(k) # k. With these notation in mind,
we get from the foregoing that (49) holds true if we can prove that:

A1 +Ay+ A3+ Ay + B+ By + Bs+ By + Bs = C1 + Cy + Cs.

More precisely, we are going to check that C; = Ay, Co = Ay, C3 = B3, As+By = — By, A3 = — By,
and Bs = 0. Since the term C; corresponds to the situation where k ¢ I;, the sum on [ can stop at
k—1 and the subset I; is chosen in [1, k — 1], from which we immediately get C; = A;. Concerning
the relation involving Cs, we are in the situation where k € I; and p(k) = k. The sum on / can
thus start at one and it is equivalent to search for I;_; C [1,k — 1] and ¢ € S;,_, by setting
I; ;=11 U{k} and p := q on I;_; with p(k) := k. Note also that s(q) = s(p). Re-indexing the
summation on [ by setting m := [ — 1, we deduce that Co = A4. Then, C3 corresponds to the case
where k € I; and p(k) # k so the sum on [ can start at two and we can search for I;_; C [1,k — 1]
by setting I; := I;_; U {k}. We can also partition the sum on p € Sy, such that p(k) # k by
fixing the element k. In other words, we get a sum on jo € I;_; followed by a sum on p € Sy,
such that p(jo) = k. We can re-index this last sum by setting ¢ := p o ¢, where ¢ only exchanges
Jjo and k. We are back to a summation on ¢ € Sy, with ¢g(k) = k i.e. to the situation of Cy but
in this case we have s(q) = s(pot) = s(p)s(t) = —s(p). Proceeding as for Cy, we deduce that
C3 = Bs. Then, we decompose the term Bj into two disjoint situations. On the one hand, we
impose p(j1) = j1, which is equivalent to choose I;_; C [1,k — 1] and j; € [1,k — 1]\I;—1 then set
I := 1,1 U{j1}. Similarly, the sum on p € Sy, with p(j1) = j1 is reduced to a sum on g € Sy,_,
by setting p := ¢ on I;_; and p(j1) := j1. Note also that s(p) = s(q). Re-indexing the summation
on [ by setting m :=1 — 1, we get that this expression yields to —A;. On the other hand, we have
p(j1) # j1 and we can partition this sum by fixing the element p(j;). More precisely, searching
for I; C [1,k — 1] is equivalent to search for I;_y C [1,k — 1] and jo € [1,k — 1]\I;—1 by setting
I; :=I;_1 U{jo}. Similarly, the sum on j; € I; followed by the one p € Sy, such that p(j1) # j1 is
replaced by a sum on j; € I;_; followed by one on p € Sy, with p(j1) = jo. We can next re-arrange
the summation of the permutations by setting ¢ := p o ¢, where t is only exchanging jo and j;.
We are thus back in the previous situation where ¢(j;) = j; but a negative sign now appears since
s(q) = s(pot) = s(p)s(t) = —s(p). Proceeding as before, we get that this term is equal to —Bs.
Hence, we have proved that B; = — Ay — By. Comparing the two terms As and By, we immediately
get that A3 = —B, by observing that the sum on [ in A3 can start at one since I; is not empty
in this case. Finally, it remains to check that Bs = 0. This is the term with A3 and B, which
needs the W?2>-regularity assumption on the vector fields. Performing a change of variables the
permutations by setting ¢ := p ot where t exchanges the two different indices appearing in the
second-order partial derivatives of f, one can notice that we obtain the same expression, up to a
sign since s(q) = s(pot) = s(p)s(t) = —s(p). We deduce that B; = —Bg i.e. Bs = 0. Therefore, we
have proved that (49) holds true. Moreover, for any 6y € W1 NCtNBY%!, the domain (I +6y)(Q)
also has a Lipschitz boundary 9[(I + 0¢)(Q)] = (I + 65)(09Q) and @ o (I + 6y)~* € W N C? for
any § € W N C'. Hence, we deduce that we can use (49) instead of (43) to define D§F\(149.)(0)
n (51). It remains to study the case where 0 is normal to the boundary. Again, the calculations
are tedious so we only sketch the proof. We assume 6, = (6 )nng on 992 and we deduce from (49):

n

8k 1f
DEFo (04,...,0k) :/a > H ) LdA
Q

U1,y lh—1= 1H Xij j=1

n akflfl
P> S Y S /Hg; T, 0,

ik—1=11=1 [,C[1,k—1] p€ESy, Y jel1,k-1] (53)

card I;=l jE[[jlgljl 1 J¢nL

H [D°9j]ijip(j> B Z [Deb, (nﬂ)]in [nQ]imm H [D‘ej]ijip(j) dA.
Jjen J1€l; Jifz
J7I1
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Let us now distinguish the tangential and normal part of the differential operator. Therefore, we
expand the product j € I; in (53) as follows:

H [D'ej]ijipm - H <[D899j]ijip<j) +[Def; (nﬂ)]ia‘ [nﬂ]im’))
Jjen jen
1
= Z Z H [Deb; (n”)]ij [nﬂ]imn H [Dagoj]ijipm
m=0 J,,CI, JEIm JEIm\Im

card Jp,,=m

First, note that the first boundary integral in (53) corresponds to the case I = 0 in (50). Hence, we
have to check that the remaining part of (50) is equal to the second integral in (53). This latter
is the difference of two terms denoted by A; and A,. Then, we expand the product j € I, in
A; as above while the same is done for Ay in the product j € I,,\{j1}. The idea now consists in
setting J41 := Jm U {41} in As. In particular, the summation on j; € I; followed by the one on
Jm € I)\{j1} is equivalent to search for J,,+; C I;. Re-indexing the summation on m by setting
m =m+ 1, we deduce that As is equal to A, apart from the case m = 0 which is exactly the the
remaining part of (50) we were talking about. Consequently, we have established that (50) holds
true, concluding the proof of Theorem 3.3. O

Corollary 3.5. Consider the assumptions of Theorem 3.8 in the case ko = k = 1. Then, (40) is
shape differentiable at Q and its shape derivative is given by the following continuous linear form:

Vo € W, DoFq () = | fOndA. (54)
o0

Moreover, the map Fq : 0 € Wh® — F[(I + 0)(Q)] is continuously differentiable on W12 N B!
and its differential is given by the following continuous map:

DoFo: W'nBY — £, (W= R) (55)
0y — DQUFQ =0 DOF(I+90)(Q) [9 o (I + 00)_1] s

where DoF(149,)(q) is the shape derivative of (40) at (I + 60)(S2) given by (54).

Proof. Applying Theorem 3.2, we get that Fn : § € WL — F[(I + 0)(Q)] is continuously
differentiable on W1 NB%! and its differential is well defined by (55) but the shape derivative of
(40) is given by:

VO € W, DoFo (0):/div(f9).
Q

Applying the Trace Theorem [17, Section 4.3, we get that (54) holds true for (W1>° N C')-vector
fields. We can extend the result to any § € W1 > from standard approximating arguments. Indeed,
for any § € W, there exists a sequence (6;);ey C W N C! converging to § L>-strongly,
Wh_weakly-star, and uniformly on compact sets (consider the usual mollifier [17, Section 4.2.1
Theorem 1]). Finally, for any 6, € W1 NB%!, the domain (I + 6,)(Q2) has a Lipschitz boundary
(I +60)(Q)] = (I +60)(0Q) and 0o (I +6y)~t € Who for any § € W1>°. Hence, (54) can be
used to define (55), concluding the proof of Corollary 3.5. O

3.3 The specific case of C''''-domains

In this section, we show that the C''!'-regularity of the boundary is enough to ensure the notion
of partial derivative with respect to the domain at any order higher than two. We emphasize here
a technical issue related to the case where the perturbations are normal to the boundary. The
results of Theorem 3.6 that follows could have been found by inserting the relation 6; = (6;)nno
in (49). However, in order to do so, we have to define Dyng whereas ng is a priori only defined
on the boundary. This can be done be considering an extension Ng € W5 N C! of the normal
vector but this is possible only if 90 is a C%-surface. Therefore, the great advantage of (50), apart
from its simplicity, consists in expressing the shape derivatives with the tangential operator Dgygq,
which an intrinsic notion. In particular, Dgong can be defined via the local parametrization of
the surface, for which we only need C':!-regularity. This technical detail can be important in the
applications since the C1:1-regularity has various geometrical characterizations (positive reach [18],
uniform ball property [12], oriented distance function [16, Chapter 7]).
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Theorem 3.6. Let n > 2, kg > 2, and f € WFL(R™ R). We consider an open bounded set
Q C R™ with a boundary of class C*'. If we assume that all the vector fields are normal to the
boundary i.e. if 0; = (0;)nng on O for any j € [1, ko], then the results of Theorem 3.3 hold true
but (5)—(6) can be used instead of (50) to define D§F(116,)(0) in (51).

Proof. Let n > 2, ko > 2, f € WFol(R™, R), and consider a C'*!-domain Q C R™. First, assuming
that the vector fields are normal to the boundary, we can apply Theorem 3.3: for any k € [[1, ko], the
k-th-order shape derivative of (40) is well defined by (50). Since ng, is a Lipschitz continuous map, it
is differentiable almost everywhere using Rademacher’s Theorem [17, Section 3.1.2]. Consequently,
we can correctly insert the expression (0;)nng in the term Dy, of (50). Then, we expand the
corresponding product as follows:

[1 Poctsl,,., = I (Imoli, Voa(@nl,, , + @)n[Doonal;;, )

Jjen JEL
l

=> > 1T o], 11 [Voa(0i)nl;, I 0)a [Daemnal; ;
m=0 J,CI; JEIm JE€EIm FEIM\Im

card J,,=m

Inserting the above expansion in (50), we now distinguish two cases, the last one being itself
splitted into two subcases. First, we assume that there exists j € .J,, such that p(j) € J,.
In this case, we can consider the sum involving the indice i,.;) and we get that the term will
involve ZZBU)ZI[HQ]%U)[V[)Q(ej)n}ip(j) = (no | Van(#j)n) = 0 so it is equal to zero. Hence, it
only remains terms such that p(J,,) C I;\J,,. Similarly, we can consider two disjoint subcases.
If there exists j € I;\J,, such that p(j) € J,,, then we get that such terms will involve a sum
Z?p(]_):l [Doonaliji,;, Mali, ;, = [Doana(na)]i; = 0, the last equality coming from the (tangential)
differentiation of the relation |ng|? = 1 in the local parametrization, and the fact that Daong is
a self-adjoint endomorphism. Therefore, it only remains the terms for which p(J,,) C I;\J,, and
p(I\JIm) C I;}\J,,. We obtain that it remains only the case p(I;) = I;\J,,, which is possible only if
Jm = 0 i.e. if m = 0. Finally, one can check that this term is precisely the one given in (5)—(6),
concluding the proof of Theorem 3.6. O

Corollary 3.7. Consider the assumptions of Theorem 3.6 in the case ko = k = 2. Then, the map
(40) is twice shape differentiable at Q and its second-order shape derivative is given by the following
continuous bilinear form:

0’F OF

V(0,0) € (Wh>nch)?,  D2Fo(0,0) = | FsufndA— | Z=Z[0,0)dA, (56

(7)6( )7 09(7) 69892 6989[7] ; ()

where g—g and 2271‘; are given in (7), and where Z[0,0)] is defined by (4). Moreover, the map

Fo:0 e WhenCl — F[(I+0)(Q)] is twice continuously differentiable on W1 N Ct*NBY! and
its second-order differential is given by the following continuous map:

D2Fy: WienColnB — 2 ((leoo nct)® ,R)

\ ) (57)
0y — (9, 9) — D%F(I+90)(Q) {0 o (I + 90)71, 0o ([ + 90)71] s

where DGF (149, s the second-order shape derivative of (40) at (I + 6)(Q2) given by (56) .
Proof. Applying Theorem 3.3, we get that Fq : § € Wh°NCl — F[(I+6)(2)] is twice continuously
differentiable on W N C* NB%! and its second-order differential is well defined by (57) but the
second-order shape derivative of (40) is given by:

V(0,0) € (W', nCY2,  D2Fq(6,0) :/ [(Vf 1 6) 6, +f<div (8)6 — D.O(B) | ngﬂ dA.

20
We can now distinguishing the tangential and normal parts of the operators and of the vector fields,
which is allowed because 92 has C''!-regularity. Then, we can apply the Divergence Theorem for
surfaces |27, Theorem 6.10], which is valid with C'!-regularity (adapt for example the proofs of |22,
Proposition 5.4.9]). We deduce that the second-order shape derivative of (40) takes the form given
in (56). Finally, for any 0y € W1 N Ct N B!, the domain (I + 6)(Q) also has a C*'-boundary
Ol(I+60)(Q2)] = (I+0)(00Q) and Oo (I+6y)~' € WheNC? for any § € WH>* N CL. Hence, (56)
can be used to define (57), concluding the proof of Corollary 3.7. O
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4 Annexes

In this section, we aim to derive all the technical material that was needed throughout the article.
The results presented here are standard [16, Chapter 9] [22, Chapter 5] [40, Chapter 2] and they are
organized as follows. First, we recall some terminology about differentiability in Banach spaces and
we introduce the Sobolev norms in which we are interested. Then, we give some differentiability
results related to the inverse, the Jacobian determinant, and the composition operator.

4.1 Some definitions and notation

Let n > 2 be an integer henceforth set. The space R" is equipped with its usual Euclidean structure:
for any (x,y) € R™ x R, we have set (x | y) := > ,_, zpyx and |x| := /(x| x) = /D_p_, [zx]?
More generally, any set F here refers to a real vector space provided with a norm || e ||g. The set
L.(E, F) of continuous linear maps between two such spaces is endowed with its operator norm:

Vue Lo (B,F), lulll:= sup 12&e
xce  ||%|E
x#0p

This norm is complete as soon as || e || is complete, and L.(E, E) is a unitary Banach algebra
[33, Chapter 18]. We also recall that if E is finite dimensional, then the norms defined on E are
equivalent and complete [4, T §2 Section 3]. In this case, E is necessarily a Banach space and any
linear map w : F — F'is continuous. Moreover, a well-defined map g : £ — F' is said to be Fréchet
differentiable at a point x € E if there exists a continuous linear map Lx € L. (E, F') such that:

VheE, g(x+h)=g(x)+Lx(h)+|hlz R(h),

where ||R(h)||r — 0 as ||h||g — 0. In this case, the operator Ly is unique, denoted by Dyg, and
called the differential of g at the point x. If in addition, the map Deg:y € E — Dyg € L.(E, F)
is well defined around x and continuous at x, then we say that g is of class C' at x or continuously
differentiable at x. Similarly, we can proceed recursively for any integer k > 2. Hence, if the map
D lg:.yeEw Df,’lg € LF-1(EF=1 F) is well defined around x and differentiable at x, then
we say that g is k times (Fréchet) differentiable at x, and the differential of D¥~1g at x is identified
with a continuous k-linear map, denoted by DXg and called the k-th-order differential of g at x,
via the following bijective linear isometry:

Lo(B.CEV(BSLF)) —s k(B F)
Yo — [uyg : (Yh -~-aYk—1) — Uy (yla -~-aYk—1)] — (y05y17 ~-~7Yk—1) = Uyq (y17 ~-~7Yk—1) )

where LX(E¥ F) is the set of continuous k-linear maps equipped with the norm:

U X1y, XE)||F
Vueﬁ’j (E”ZF)7 [|ul|] := sup [ )| .
(X1,...,x1)EE" HX1||E ||XkHE
(x1,-..,xx)#(0g,...0E)

If in addition, the map Dfg:y € E — D € LE(E*, F) is well defined around x and continuous at
the point x, then we say that g is of class C* at x or k times continuous differentiable at x. Then,
for any real p > 1, we denote by LP the space of measurable maps from R™ into R™ whose p-th
power is integrable, and by L the space of measurable maps from R” into R™ that are essentially
bounded. They are respectively endowed with their usual norm:

1
V(Eg) € LF x L%, £l = (/ |f<x>|pdx) and gl = e sup [ ()
R™ <cRn

where the integration is done with respect to the usual n-dimensional Lebesgue measure. We recall
that each LP and L*° are Banach spaces [33, §3.11 Theorem]. Moreover, for any measurable map
f : R™ — R which is locally integrable, we say that f is weakly differentiable if there exists a
measurable map g : R®™ — R™ which is locally integrable, and such that:

Ve, [ @) lp)dc=—[ 100 divpx)dx
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where C2° refers to the set of smooth maps from R™ into R” with compact support. In this case,
the function g is unique, denoted by V f, and called the weak gradient of f. For any real p > 1, we
can now introduce the Sobolev space W1 as the set of functions f € LP(R",R) that are weakly
differentiable and whose weak gradients V f are functions of L?. Moreover, any WP is a Banach
space [5, Chapter 9] endowed with the norm:

wrews, Iflhy= ([ 176Pax) 41941,

The space C%! of Lipschitz continuous maps from R” into R is equipped with the norm:

0 (x) — 0 (%
= CO,I7 ||0H0,1 = sup M
(x,%)ER™ xR™ |x — x|
X#X

We recall that C%! is not a Banach space i.e. the norm || e ||o1 is not complete. We denote by
B% := {0 € C%', ||f]lo1 < 1} the open unit ball of C%! centred at the origin i.e. the set of
Lipschitz contractions. We recall that C%! can be identified with the subspace of continuous maps
from R™ into R™ whose weak partial derivatives are functions of L [17, Section 4.2.3]. Moreover,
any Lipschitz continuous map is differentiable almost everywhere [17, Section 3.1.2] and we have
10]0,1 = esssupyern ||| Dx0||| for any 6 € C%1. We also introduce the space W12 = L>° 0 C%! of
Lipschitz continuous bounded maps from R” into R™, provided with the norm:

Vo € Wi, 10111,00 := [10lloc + 1Bll0,1-

In particular, W1 is a Banach space [5, Proposition 9.1] and I : x € R" — x € R" denotes the
identity map. Finally, we can define recursively for any integer & > 2 the Sobolev spaces W*? as
the set of all maps f : R® — R that are in W1? and such that each component of its weak gradient
is a function of W*=1P, It can be endowed with the norm:

|1,p + Z Haif”k—lm-

i=1

Vfe WS Iflkp = IIf

Similarly, the space W*° is defined recursively as the set of maps @ : R — R™ that are in W1
such that their partial derivatives are functions of W*=1°_ It is equipped with the norm:

n
1,00 +Z 10:0]] k-1, 00-

i=1

VO € WE 10]lk,00 := |10

To conclude, W*P and W** are Banach spaces for any integer k > 2 [5, §above Section 9.2] and
we use the specific notation H* := W*2 because it is an Hilbert space |5, Proposition 9.1].

4.2 About the differentiability related to the inverse operator

Proposition 4.1. Let § € B®'. Then, I + 0 is a (1 + ||0]|0.1)-Lipschitz continuous map which is
invertible, and its inverse (I +0)~! is a W},”M—Lipschitz continuous map satisfying:

10]/0,1

I+60) ' -1 ST,
[ (I+8) lloa < 7= 100

(58)
In particular, the map 0 € C%1 s (I +0)~1 € C%! is well defined on B%' and it is continuous at
the origin. If in addition, we assume that 0 is bounded, then we have (I +0)~' — 1 € W and
the following estimations hold true:

_ 0)11.00
I+60)' =T Oogni’, 59
|| ( ) ”17 1_ ||9||071 ( )
_ 01100 \°
I(I+0)"" = I +0]|o < (' ”217 ) : (60)

In particular, the map 6 € WH° — (I +0)~1 — I € WL is well defined on WH>° NB®! and it
is continuous at the origin. Moreover, the map 0 € WH>® — (I +0)~1 — I € L™ is differentiable
at the origin, its differential being the opposite of the inclusion map from W1 into L>.
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Proof. Let 6 € B%!. First, from the triangle inequality, we get the (14 ||0]|o.1)-Lipschitz continuity
of I+ 0. Then, for any z € R", the map x € R" — z — 0(x) € R” is a contraction thus the Banach
Fixed-Point Theorem [5, Theorem 5.7] asserts there exists a unique point x, € R™ such that
z—0(x,) = X, i.e. I+0 is a bijective map. Moreover, since (I+6)~! =T —60o(I+6)~!, we obtain
N(T40)"o,1 < 146|021 ]|(I+6)" 0,1, from which we deduce that (I4+60)~!isa %—Lipschitz
continuous map. Similarly, we have ||(1+6)" = I|lo1 = || =00 (I +0) " o1 < [|0llo.1]|(Z+60)" o1
so relation (58) holds true. Finally, if we now assume that 6 is bounded, then we also get:

- Olo,1 101100 = 10ll0,1110llsc _ [1611,00
T40) = Iy < []loc + —1lo_ _ 1O, : < ’
i = 7 TS B T PR R
1 _ 1 1 19113 o
T +6)" =T+ 0l =10 =00 +6)" lloo < [10lloa [l = (I +6) " [loo < =
< [10]loo
To conclude the proof of Proposition 4.1, (I —6)~! — I € W1 and (59)-(60) hold true. O

Lemma 4.2. Let § € C%'. Then, the differential map D0 : x € R = D,0 € R™ is well defined
almost everywhere, measurable, and it is essentially bounded by \/n||0/0,1 in the matriz space R" .
In particular, the map 0 € C%' — D,0 € L“(R",R"z) is well defined, linear, and continuous.
Moreover, for almost every point x € R™, we have Dy (I +60) = I + Dy and if we assume that
10]lo,1 <1, then we also have D ;1 g)x)[(I +0)7] = (I + Dx0)~"! for almost every point x € R".

Proof. Let 6 € C%1. First, we define Def(6) as the set of points in R™ for which @ is differentiable
and Rademacher’s Theorem [17, Section 3.1.2] ensures that 6 is differentiable almost everywhere.
Then, the differential D46 of 6 at any x € Def(0) is a well-defined linear map, thus identified with
its (n xn)-matrix representation in the canonic basis of R" denoted by (ey, ..., e, ). Hence, the map
Do6 : x € Def(0) — Dy € R™ is measurable if and only if [Deb)ij : x € Def(0) — 0;6;(x) € R is
measurable for any (i, j) € [1,7n]?, which is the case since it is respectively the pointwise limits of
the continuous maps (ij)keN :x € R" — k[f;(x+1e;)—0;(x)] € R. Moreover, for any x € Def(6),
we have:

[ DxBllgn> = < Vness sup D0l = v [[6llo,1, (61)
xER™

where jy € [1,n] satisfies |0;,0;(x)| = maxi<;<n |0;0;(x)|. Hence, § € C%! — Do6 € L°°(]R”,]R”2)
is a well-defined map, which is also linear (thus continuous by (61)). Indeed, for any A € R and
any (01,0) € C%1 x C%1 we have Dy + ADx0s = Dy (01 + M) for any x € Def(61) N Def(02)
i.e. almost everywhere by Rademacher’s Theorem. Hence, we get Do(01 + M2) = Doy + ADob5.
Similarly, we have Def(0) = Def(I + 6) and I 4+ Dyx0 = Dy (I + ) for any x € Def(f). Using
again Rademacher’s Theorem, the last equality holds true almost everywhere. Finally, let § € B%!.
Proposition 4.1 ensures that (I + ) has a Lipschitz continuous inverse. Hence, at any point
x € A:= Def(I+0)n I+ 0)" Def[(I+0)7']), we can correctly differentiate the relation
(I+0)" oI +0) =TI and it yields to Diigy)[({ + 0)'](I + Dxf) = I. Since we have
[[|IDx0]]] < 1|0]lo1 < 1, the matrix I + Dx0 has an inverse [33, §18.3], which is multiplied to the
last equality to get D49y [(I +60)7'] = (I + Dx8)~'. Combining [17, Section 2.4.1 Theorem 1]
and [17, Section 2.2 Theorem 2| with Rademacher’s Theorem, we deduce that R™\ A has a zero
n-dimensional Lebesgue measure i.e. D(;1g)x)[(1 +60)7'] = (I + Dx0)~" for almost every x € R",
concluding the proof of Lemma 4.2. O

Proposition 4.3. Let § € B%'. Then, (I+ D.0)"':x € R" s (I + Dy)~* € R" is well defined
almost everywhere and it is a measurable map satisfying for almost every point x € R™:

v (62)

I+ Dyd) gz < —4—.
I( ) e < 7 ol

In particular, the map 0 € C%! s (I + D0)~! € LOO(R",R"Z) is well defined on B%'. Moreover,
it is differentiable at the origin and 2it5 differential at the origin is given by the continuous linear
map 6 € C% s —Dof € L>®°(R",R™).
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Proof. Let 6 € B%!. First, from Lemma 4.2, we deduce that the map D,0 : x € R" — D, € R
is well defined for almost every point x € R™ and the matrix I + Dy0 is invertible since we have
(I + Dq¢0)~ 1 is well defined almost everywhere.
Moreover, it is measurable as the composition between D,6, which is measurable by Lemma 4.2,
and the map A € {B € R™,|||BJ|| < I} I +A4) e R"" which is continuous [33, §18.4]. Then,
we use successively Lemma 4.2, relation (61) applied to (I + 6)~!, and Proposition 4.1 in order to
get for almost every point x € R™:

NG

H (I‘i‘Dxé’)i1 ”]R"2 < ”D'[(I+9)71]”1;&(]1@7@]1@"2) < \/HH (I"‘a)il ||O,1 < %~

Hence, § € C%! s (I + Do)~ € L=(R", an) is well defined on B%!. It remains to prove that it
is differentiable at the origin. From Lemma 4.2, the map f : 6 € C% — D,0 € L=(R",R"") is well
defined, linear and continuous. In particular, f is differentiable at  any point and its differential at
any point is the map f itself. In addition, themap g: A € {B € R"’, [|B]|| < 1} — (I+A) le ]R"

is differentiable at the origin [33, §18.4] and its differential is given by Dgg : A € R" — —A e R™.
We deduce that the map go f : § € C%! s (I + Do0)~! € LOO(R",R"Q) is differentiable at the
origin, and its differential is given by the following continuous linear map:

Vo € C*', Do(go f)(0) = Ds0)g[Dof(0)] = Dog[f(0)] = —f(6) = —D.b,

concluding the proof of Proposition 4.3. O

4.3 About the differentiability related to the Jacobian determinant

Proposition 4.4. Let § € B%'. Then, the Jacobian determinant of I + 0 i.e. the function
x € R" — det[Dx(I 4 6)] € R is well defined almost everywhere. In addition, it is a measurable
map which satisfies for almost every point x € R™:

n'

det (D (I +0)]] < T

(63)

In particular, the map 0 € C%! — det[Do(I + 0)] € L>=(R",R) is well defined on B*. Moreover,
it is differentiable at the origin and its differential is given by the divergence operator i.e. by the
continuous linear map 6 € C%1 s div(0) := trace(Do0) € L=°(R",R).

Proof. Let § € B®!. From Lemma 4.2, the map Do6 : x € R" — D, 0 € R™ is well defined almost
everywhere and measurable. Since the determinant is a continuous map and De(I +60) = I + D0
by Lemma 4.2, the Jacobian determinant of 7+6 is well defined almost everywhere and measurable.
First, we can express the Jacobian determinant of I 4+ 6 by using the set S,, of permutations of n
elements i.e. the set of bijective maps from [1,n] into [1,n]. Introducing the map s : S,, = {—1,1}
defining the signature a permutation, it follows for almost every point x € R™:

det[Dx (I+6)] = det(I+Dx) = > s0)[[ Lo+ 0ipii) (%)) (64)
PES, i=1
Expanding the product and using the fact that I,;); = 1 if and only if j = p(j), we deduce that:

det [Dy (I + 0)] Z Z Z s(p) H 0i0p(s) (X) . (65)

k=0 I,C[L,n] PES,, i€l
cardly=k Vj¢lr,p(3)=j

Then, note that 0;0,;)(x) is the p(i)-th component of the vector Dy6(e;) where e; is the unit
vector whose components are zero except the i-th one which is equal to one. Therefore, we have:

10i0p(iy () | = [ [Dx (€i)] = [Dx0 (e:) | < [[[Dx0]l] |es] < (|00, (66)
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Combining (65) and (66), we obtain:

n k—1
|det [Dy (I + 0)] Z > S s ] 1900 )| < (H(n—ﬂ) 16151
" ~ k=0

k=0 I,,C[1,n] peES, i€l =0
cardly=k Vi¢Lp(j)=j <ll6llo.x

The last inequality comes from the fact that []. 0.1 = ||0][§.1 does not depend on p and Ij.
We can thus remove it from the corresponding sums for which card{p € S,, |Vj ¢ I, p(j) =j} = k!

and card{I C [1,n], card Iy =k} = (}) = W Hence, we get:

|det [Dx (I + 0)] Znnfl (n—
k=0

The last inequality holds true because [|0[lo,1 < 1 and the geometric series >, . [|0]/f ; converges.
Hence, estimation (63) holds true. Finally, the map J : 6 € C%!  det[Do(I + 6)] € L=°(R"™,R) is
the composition of the determinant det : R™ — R with the affine map I + f, where f is its linear
part defined as f : 0 € C%l s Do0 € LOO(R”7R”2). Since the determinant is differentiable and
since f is linear and continuous by Lemma 4.2, we deduce that .J is differentiable at the origin and
its differential is given by:

Vo € C%' DyJ(0) = Dg[det o (I + f)](0) = Drdet[Do(I + f)(0)] = trace [f(8)] div (6) .
To conclude, the divergence operator is the differential of J = det o (I 4 f) at the origin. O

Corollary 4.5. Let 0 € B%!. Then, the map x € R™  det([Dx(I + 6)]7!) € R is well defined
almost everywhere, measurable, and it satisfies for almost every point x € R™:

n!

(1 =110lo.)"

In particular, the map 0 € C%' — det([De(I + 0)]71) € L°(R"™,R) is well defined on B

|det ([Dx (I+ 9)]*1) | < (67)

Proof. Let 6 € B%!. Considering Proposition 4.3 and Lemma 4.2, (I + Do)~ = [Do(I + 6)]7!
well defined almost everywhere and measurable. Since the determinant is a continuous map, we
deduce that x € R" — det([Dx(I +6)]7!) € R is well defined almost everywhere and measurable.
Applying relation (64) to [De(I + 0)] 71, we get for almost every point x € R™:

n

|det([px(1+a)r1)| - |det[(1+De } 3 sty \H|[I+Dx9)’1 N

p(i)i
PES, ~1 =1

1 " n!
< _ < —
< 2 (1—|||Dx9|||> (1= [10]lo,0)"

PESH

<UD~ H]|

Hence, relation (67) holds true and the map 6 € C%! s det([Do(I + 6)]7!) € L>°(R",R) is well
defined at any point of B%!, concluding the proof of Corollary 4.5. O

4.4 About the differentiability related to the composition operator

Proposition 4.6. Let f € L'(R",R). Then, the map 0 € C%!' — fo (I +60) € L*(R™,R) is well
defined on B®'. Moreover, 0 € W1 s fo (I +0) € L*(R",R) is continuous at the origin. If in
addition, we have f € Wb, then § € W1 s fo(I+0) € L'(R"™ R) is differentiable at the origin
and its differential is given by the continuous linear map 6 € W s (Vf | ) € L' (R™, R).

Proof. Let f € L'(R",R). First, we check that the map § € C% s fo (I +6) € L*(R™",R) is well
defined around the origin. Let § € B%1. The function fo (I +6) is measurable as the composition
of the Lipschitz continuous map (I + 6) with the measurable map f. Proposition 4.1 ensures that
the map (I +0) has a Lipschitz continuous inverse, from which we deduce for almost every x € R™:

1 = det (I) = det ([Dx (I+0)] " oDy (I+ a)) = det ([Dx (I+ 9)]—1) det [Dx (I + 6)].
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Consequently, using this last observation, relation (67), and the change of variables formula valid
for any Lipschitz continuous map [17, Section 3.3.3], we get:

[ 1sbero0ollax = [ 1fbxr 0 ()det (1 + Dxt)™| det D (14 6)]ax

n!
S A= 10lo)" /Rn |f [x+ 6 (x)] det (Dx(I + 0)) |dx. (68)

- [ 17 )lay < +oc

Hence, we obtain f o (I +6) € L'(R",R) for any f € L*(R",R) and any 6 € B®!. Then, we prove
that the map 0 € W1 i fo (I +6) € L*(R™,R) is continuous at the origin. Let § € W be
such that [|0]|1,.0 < 2. We proceed by a density argument: there exists a sequence of smooth maps
(fi)ien : R® — R with compact support converging to f in L'(R™,R) [5, Corollary 4.23]. On the
one hand, we have [|6]o,1 < 2 <1 so the foregoing holds true. We can apply the arguments of (68)
to the map f — f; in order to get for any i € N:

I f = fillor@r
(T —=110]l0,1)"

On the other hand, since the map f; is smooth with compact support, we have for any i € N:

||f o (I + 9) — fi e} (I—l— 9) ||L1(Rn)]R) < < n'Q”Hf — fi”Ll(Rn’R).

[fio (I +0) = fill Lr@» r) = / fi[x+ 0 ()] = fi (%) |[dx < || fillcor mn r) 0]loc L7 (supD fi) -
]Rn
Combining the triangle inequality with these two observations, we deduce that for any ¢ € N:

lfoI+0)—fllor@rry < (L+2"2)[f = fil r@rr) + I fillcor @ r) 10]l1,00 £™ (supp fi). (69)

Let € > 0. There exists I € N such that || f; — f|lz1(&nr) < We set:

e
2(1+27nl) -

0 := min (1 ° )
' 27 2| frllcor (mnr) L7(supp f1))

For any § € W' such that ||0[|1,cc < 6, we get from (69) that ||f o (I +60) — f[lL1(rnr) < € Le.
the map € W1 s fo (I +6) € L*(R™",R) is continuous at the origin. We now assume that
f € Whl and we prove that § € W1 5 fo (I +6) € L'(R",R) is differentiable at the origin.
First, note that the linear map § € W~ (Vf | ) € L}(R",R) is well defined and continuous
since we get from the Cauchy-Schwarz inequality:

/ [(Vf(x) | 6(x))|dx < /IR IV (x)] 10 (x) |dx < [[0]]1,00[[V fll1 < +o00. (70)
We want to show it is the differential of § € W' — fo (I +06) € L'(R",R) at the origin. For

this purpose, we introduce the following map:

Ry: Wb — L[YR"R)
0 — Rp0):=fo(I+0)—f—(Vf|0).

From the foregoing observations (68) and (70), the map Ry is well defined on the open unit ball of
W1ee centred at the origin. Therefore, let € W1:°° be such that ||0]|1,c < 1. Now, let us assume
for a moment that f is a smooth map with compact support i.e. f € C*(R",R). We consider
x € R" and introduce the function ¢ : ¢t € [0,1] — f[x + t0(x)]. Since ¢ is the composition of the
affine map gx : t € [0,1] — x + t0(x) € R™ with f, it is differentiable on [0, 1] and we have:

Vt € [0,1], ¢'(t) = De(f © 9x) = Dy, (1)f © Degx = (Vflgx(t)] | 95 () = (Vf [x +t0 (x)] | 0 (x)).

The Fundamental Theorem of Calculus [33, §7.16] gives fol [ (t) — ¢'(0)]dt = (1) — ¢(0) — ¢'(0)
thus for any x € R™, we obtain:

/0 (Vx40 (x)] = Vf(x) [0x)dt=fx+0(x)]-[f(x) - (Vf(x)[0(x)).
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Then, it comes successively:

/n |Rp(0)] = /n /01 (VfIx+1t0(x)]— Vf(x) | 0(x)dt |dx
/Rn 61 ( / V1 [ + 10 (x)] = Vf () |dt) dx.

N

Hence, using the Fubini-Tonelli Theorem [33, §8.8 Theorem]|, we have established that:

1
0f € CERR), IROlans < 6l [ ([ 1956 00] - V7 G0 lar) ax. (7

We now assume that f € W' and we show that (71) still holds true by a density argument.
Indeed, there exists a sequence (f;);en of smooth maps with compact support converging to f in
the Whlnorm [5, Theorem 9.2|. Let i € N. We get from (71) applied to f;:

1
IR Oy < IR 0) = Ry @)l + 100 [ ([ 19501000 = 95, ()t ) ax.

=Ry, (6)

On the one hand, we combine relation (68) applied to the maps f; — f and 6, with observation (70)
applied to V(f; — f) in order to obtain:

R (0) — Ry, (0)||L1 (rr r) < {1 + Ifi = fllzr e ry + 10lloc IV fi = V fll1.

n!
(1- ||9||o,1)”}

On the other hand, we combine relation (68) applied to V(f; — f) and t6 in order to get:

. - 1 |
Ry, (0) < By (0) + [1 +f u_ﬁ‘ml)ndt} IVf — Vil

Therefore, from these two last inequalities, we deduce that:

- 1461 o
||Rf<9>Ll(Rn,R)<||9||1,ooRf<a>+[1+2|e||1,m+n! 1011, ]Ilfz'—f

(1= 10]l1.00)"

l1,1-

By letting i — +00, we have obtained that relation (71) holds true for any f € W', Finally, it only
remains to prove that \Ef(0)| — 0 as [|0]l1,00 — 0 in order to conclude about the differentiability
of the map 0 € Wh* — fo (I +6) € L'(R",R) at the origin. Again, we are using a density
argument. Let f € W! and § € W' be such that ||f||1,c < 3. There exists a sequence (f;);en
of smooth maps with compact support converging to f in W', Let i € N. As before, we get from
the triangle inequality and relation (68) applied to the maps V(f; — f) and t6:

Ry(0)] < By, (0) + [1 n 1o = Flun < Bp(0) + (U 2 fi — Fll.

n!
(1- 9||1,oo)"}

Moreover, since f; is smooth with compact support, we have:

0,1-

R 0)i= [ ([ 1950+ 10000) = V1 G0 ) dx < 27 supp 1) 10]: 9

Let € > 0. There exists I € N such that || fr — f]j1,1 < We set:

__e
2(1+27nl)

1 €

6 ;= mi
m1n{2, 2L (supp f1) IV fr

1.

lo,1

Consequently, for any § € W such that [|0]|1,.0 < &, we have obtained |§,c(9)| < € as required.
To conclude, |Rs()] — 0 as [|f]j1,00 — 0 so the map § € Wh>® — fo (I +6) € L'(R",R) is
differentiable at the origin, and its differential is given by § € W1 — (Vf | ) € L}(R",R). O
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Conclusion

In this article, we have derived various formulas (43) (49) (50) (54) (5) (56) for the shape derivatives
of a volume integral, depending on the regularity of the domain. In particular, we have proved
that C'!-regularity is enough to define a notion (6)—(7) of partial derivatives with respect to the
domain at any order higher than two, while the Lipschitz regularity is enough to define a shape
gradient. Then, we have applied these results in order to obtain the fine shape differentiability
properties associated with (1) and sum up in Table 1. These results have important applications
in Quantum Chemistry for the model of Maximal Probability domains (MPDs).

Finally, we conclude by giving some numerical considerations associated with the formula (21),
which is a priori computable by Quantum-Monte-Carlo methods. However, we have seen that it
can also involve integrals (2)-(3) on the boundary of a domain, which has zero measure from a
probabilistic point of view. However, the shape gradient (26), shape Hessian (35), and the kernel
(34) of p, are (n—1)- or (n—2)-dimensional volume integrals. In particular, they can be reasonably
computed by Quantum-Monte-Carlo methods. In a future work, we will consider the specific case
of wave functions given by a sum of Slater determinants with some numerical applications.
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