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aISEM, Université de Montpellier, CNRS, France
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Abstract. Genomic selection is today a hot topic in genetics. It consists in
predicting breeding values of selection candidates, using the large number of ge-
netic markers now available thanks to the recent progress in molecular biology.
One of the most popular method chosen by geneticists is Ridge regression. In
this context, we focus on some predictive aspects of Ridge regression and present
theoretical results regarding the accuracy criteria, i.e., the correlation between
predicted value and true value. We show the influence of the singular values, the
regularization parameter, and the projection of the signal on the space spanned
by the rows of the design matrix. Asymptotic results in a high dimensional
framework are also given; in particular, we prove that the convergence to an
optimal accuracy highly depends on a weighted projection of the signal on each
subspace. We discuss also on how to improve the prediction. Last, illustrations
on simulated and real data are proposed.

Keywords: Accuracy, Genomic Selection, High Dimension, Linear Model, Pre-
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1. Introduction and background

This year 2016, professor Michael Goddard and professor Theodorus Meuwis-
sen were awarded The John J. Carty Award for the Advancement of Science by
the National Academy of Science. They are considered as pioneers in the devel-
opment of genomic selection (GS), because of their stimulating paper Meuwissen
et al. (2001). In this context, our manuscript is devoted to methodological as-
pect of GS, a hot topic in genomics.

1.1. Preliminaries

For many years, geneticists focused on linkage analysis (LA) in order to
detect on a given chromosome a Quantitative Trait Locus, so-called QTL: a
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QTL is a section of the DNA that contains one or more genes influencing a
quantitative trait which is able to be measured.

In this context, the most popular statistical method was Interval Mapping
(Lander and Botstein (1989)). It consists in performing statistical tests along
the genome. Using the information brought by genetic markers, the presence of
a QTL is tested at every location in the genome.

Later, geneticists moved on to genome-wide association studies (GWAS). In
contrast to LA, GWAS are based on unrelated individuals and as a result, larger
sample sizes can be considered. GWAS enabled the discovery of many SNP-trait
associations in humans (e.g. age-related macular degeneration, Fritsche et al.
(2016), autisum spectrum disorder, Connolly et al. (2017)).

However, both approaches (LA and GWAS) suffered from the fact that they
were unable to detect QTLs with very small effects. Recall that most traits
of interest are governed by a large number of small-effect QTLs (Goddard and
Hayes (2008); Buckler et al. (2009)). It turns out that predictions based on
selected SNPs could not be considered as reliable.

Today, Genomic Selection, motivated by the seminal paper of Meuwissen et
al. (2001), is an extremely popular technique in genetics. It consists in predicting
breeding values of selection candidates using a large number of genetic markers,
thanks to the recent progress in molecular biology. The goal is not to detect
QTLs anymore, but to predict the future phenotype of young candidates as soon
as their DNA has been collected. GS relies on the expectation that each QTL
will be highly correlated with at least one marker (Schulz-Streeck et al. (2012)).
In genetics, this correlation is named Linkage Disequilibrium (LD): it refers to
the non independence of alleles at 2 different loci (see Durett (2008) for more
details).

GS was first applied to animal breeding (see Hayes et al. (2009)) and later
to plant breeding (Jannink et al. (2010)): it was recently investigated on apple
(Kumar et al. (2012)), sugar beet (Wurschum et al. (2013)), pea (Burstin et al.
(2015)), and on inbred lines of rice (Spindel et al. (2015)).

1.2. A linear model

Let us introduce the statistical model associated to GS. The quantitative
trait is observed on n training (TRN) individuals and we denote by Y1, . . . , Yn
the observations. p markers lie on the genome, and βj refers to the fixed marker
effect of the j-th marker. In what follows, X is a matrix of size n × p, and ′

denotes transposition. The i-th row of X, written as x′i = (Xi,1, . . . , Xi,p), rep-
resents the genome information at each marker available for the i-th individual.

A fixed number of QTLs lie on the genome, having an effect on the quan-
titative trait. For 1 ≤ j ≤ p, βj = 0 means that the corresponding marker is
not a QTL, whereas βj 6= 0 refers to a QTL. In genetics, this setting is named

complete LD. In what follows, ‖β‖00 :=
∑p
j=1 |β|

0
(with 00 = 0) will denote the

number of QTLs (i.e. non null marker effects).
We assume the following causal linear model for the quantitative trait:

Y = Xβ + ε, (1)
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where Y = (Y1, . . . , Yn)
′
, β = (β1, . . . , βp)

′
, ε ∼ N (0, σ2

eIn), In is the identity
matrix of size n and σ2

e refers to the environmental variance.
In this manuscript we propose an analysis conditional on the observed values

x1, . . . , xn. However, before imposing this conditioning, we have to precise that
the matrix X is independent of ε. Simulated data will be generated accordingly.
In what follows, r will denote the rank of the matrix X, and R(X) will refer to
the linear space generated by the rows of X.

1.3. Introducing a test individual

A supplementary individual, so-called test (TST) individual (denoted new) is
genotyped but not phenotyped. Using same notations as those used for the TRN
population, xnew denotes the column vector containing the genome information
at the p markers of the individual new. As a result, the quantitative trait Ynew
can be written

Ynew = x′new β + εnew,

where εnew ∼ N (0, σ2
e).

We suppose that x′new, εnew and ε are all independent.

1.4. Introducing the accuracy

In GS, we are interested in predicting either the genotypic value x′new β,
or the phenotypic value Ynew. In both cases, an estimator Ŷnew is constructed
from a prediction model learned on n TRN individuals. Ŷnew is a function of the
random variables xnew and ε. Then, the quality of the prediction is evaluated
according to some accuracy criteria, i.e. the correlation between predicted and
true values. This criteria is a key element in genetics: it plays a role in the rate
of genetic gain. Indeed, the accuracy is one component present in the breeders
equation (see for instance Lynch and Walsh (1998)). The phenotypic accuracy
ρph, also called predictive ability, is defined in the following way

ρph :=
Cov

(
Ŷnew, Ynew

)
√

Var
(
Ŷnew

)
Var (Ynew)

, (2)

whereas the genotypic accuracy ρg is defined as

ρg :=
Cov

(
Ŷnew, x

′
newβ

)
√

Var
(
Ŷnew

)
Var (x′newβ)

. (3)

Note that, when xnew, εnew and ε are all independent, these two accuracies
are linked by the relationship ρph/ρg = h, where h is defined as the squared
root of the heritability of the trait:

h2 :=
Var (x′new β)

Var (Ynew)
=

Var (x′new β)

Var (x′new β) + Var (εnew)
=

β′Var (xnew)β

β′Var (xnew)β + Var (εnew)
.

(4)
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In what follows, we set σ2
G := Var (x′new β) and, as a consequence, we have the

relationship h2 = σ2
G/
(
σ2
G + σ2

e

)
.

Depending on the authors, one focuses either on the phenotypic accuracy
(e.g. Visscher et al. (2010)) or on the genotypic accuracy (e.g. Daetwyler et al.
(2008, 2010)).

In what follows, the oracle situation will denote the settings where the QTLs
locations and their effects are known. Then, under the oracle situation, the
natural predictor is Ŷnew = x′new β. As a result, according to formula (2), the
oracle accuracies are the following

ρoracleg = 1, ρoracleph = h.

1.5. Some background on Ridge regression

In the present study we propose to focus on Ridge regression, one of the most
popular methods for prediction of breeding values. Ridge regression (Tihonov
(1963); Hoerl et al. (1970)) has been studied for many years. In genetics, this
regression model, initially proposed by Meuwissen et al. (2001) and Whittaker et
al. (2000), is called random regression best linear unbiased predictor (RRBLUP)
or genomic best linear unbiased predictor (GBLUP).

The Ridge estimator, suitable in a high dimensional setting (i.e. p > n), is
the following:

β̂ := (X ′X + λIp)
−1
X ′Y, (5)

where λ refers to a regularization (or tuning) parameter.
Although Ridge regression is approximately 60 years old, statisticians keep

studying this topic and excellent papers have been published recently (e.g. Shao
and Deng (2012); Bühlmann (2013); Dicker (2016)).

1.6. Our contributions and roadmap

Our study starts, in Section 2, by recalling recent results on the accuracy.
After a quick reminder on the singular value decomposition we introduce our
main result, Theorem 1, that presents a general formula for the genotypic ac-
curacy ρg. This is a key formula for the rest of the manuscript, since the other
theorems and lemmas are built on it. According to Theorem 1, ρg depends on
the projection of the signal β onR(X). This projection can be named “weighted
projection” since some weights depending on singular values and on the tuning
parameter λ act as multiplying factors.

Section 3 focuses on the case where TRN and TST samples come from the
same probability distribution. In this context, Theorem 2 gives an estimation
ρ̂g of ρg which does not require the genome information of TST individuals.
In other words, before genotyping TST individuals, it is possible to evaluate
the accuracy of the future predictions on TST individuals. This estimation can
help geneticists to figure out whether or not their population is appropriate for
GS. Lemma 1 introduces a lower bound for ρ̂g: as in ii) of Theorem 1 of Shao
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and Deng (2012), it only takes into account a global projection of the signal on
R(X), with a global weight (i.e. same weights on each subspace).

Lemmas 2 and 3 propose a sharper analysis. In particular, Lemma 2 deals
with the case where the projected signal is spread out uniformly on each vector
of an orthonormal basis of R(X). It shows that under six given conditions,
the estimation ρ̂g tends to the oracle genotypic accuracy. These conditions are
basically imposed on the singular values and on the ratio between the rank r of
the matrix X and the projected signal on R(X).

Lemma 3 investigates certain extreme cases where the projected signal be-
longs either to the subspace spanned by the vector of an orthonormal basis of
R(X) associated to the largest singular value of X, or to the subspace spanned
by the vector associated to the smallest singular value. This setting is particu-
larly interesting, since Ridge regression imposes shrinkage without taking into
account the signal.

In Section 4 we tackle the problem of TRN and TST samples not coming
from the same probability distribution. Theorem 3 introduces an estimator ρ̌g
of ρg. In contrast to ρ̂g, ρ̌g requires genome informations on TST individuals.
From a theoretical point of view, ρ̌g relies on the scalar product between a
random projection of the signal and the usual projection of the signal on R(X).
Lemma 1 presented in Supplementary material is the analogue of Lemma 1
under this new configuration.

Last, in Section 5 we propose a “modified” predictor for the genotypic accu-
racy; it is still derived from Ridge regression, but it may present better perfor-
mances (cf. Theorem 4). We propose to project the vector Y on a well chosen
subspace of the space spanned by the columns of X. In Lemma 6 we will give
conditions for having an increase in terms of accuracy.

Our paper ends in Section 6 with an illustration on simulated data, mimick-
ing the evolution of a population over time. We show the impact of the different
probability distributions (TRN and TST) on the quality of the estimated accu-
racy. Furthermore, we highlight the fact that proxies built on our theoretical
results outperform existing proxies in GS. Note that most of the existing proxies
are built on Daetwyler et al. (2008)’s seminal formula: it consists in substituting
an estimation of the effective number of independent loci Me into this formula
(see paragraph 6.2.3 for more details). Performances of the “modified” Ridge
estimator are also illustrated. Finally, a real data analysis is proposed; it relies
on the recent paper of Spindel et al. (2015) dealing with GS in rice.

2. General expression for the accuracy

2.1. Introducing Ridge regression and the corresponding accuracy

Recall the expression of the Ridge estimator:

β̂ = (X ′X + λIp)
−1
X ′Y.

Since we have the well-known relationship

(X ′X + λIp)
−1
X ′ = X ′ (XX ′ + λIn)

−1
, (6)
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the computation of β̂ only requires the inversion of a n× n matrix.
In this context, the prediction for the so-called new individual is the follow-

ing:

Ŷnew := x′newβ̂ = x′newX
′V −1Y, where V = XX ′ + λIn.

In what follows we will assume that Y , the columns of X, Ynew and xnew are
all centered.

According to formula (5) of Rabier et al. (2016), assuming that x1, . . . , xn
are known and that ε, xnew and εnew are random, the genotypic accuracy has
the following expression:

ρg =
β′ Var (xnew)X ′V −1Xβ(

σ2
eE
(
‖x′newX ′V −1‖2

)
+ β′X ′V −1XVar (xnew)X ′V −1Xβ

)1/2

σG

, (7)

where ‖.‖ is the L2 norm and Var (xnew) is the covariance matrix of size p× p.
Note that this accuracy can be viewed as a conditional accuracy, since this
expression was obtained conditionally on the TRN design matrix X.

2.2. SVD decomposition

Following Shao and Deng (2012) and Bühlmann (2013), let us consider the
singular value decomposition of X:

X = PDQ′, (8)

where P is an n× r matrix satisfying P ′P = Ir, Q is a p× r matrix satisfying
Q′Q = Ir, and D = Diag (d1, . . . , dr) with d1 ≥ . . . ≥ dr > 0. The columns of
Q (resp. P ) constitute an orthogonal basis of the space spanned by the rows
(resp. columns) of X. In what follows, Q(s) will denote the s-th column of Q,
and as a consequence R(X) = Span

{
Q(1), . . . , Q(r)

}
. By construction QQ′ is

an idempotent matrix, and QQ′β is the projection of β onto R(X). We set

θ := QQ′β

and, as mentioned in Shao and Deng (2012), we have the relationship

θ̂ := QQ′β̂ = β̂.

The Ridge estimator β̂ presents therefore the particularity that it belongs to
R(X).

2.3. Results

We introduce the following notations

A1 := β′ Var (xnew)X ′V −1Xβ , A2 := σ2
eE
(∥∥x′newX ′V −1

∥∥2
)

A3 := β′X ′V −1XVar (xnew)X ′V −1Xβ , A4 := σ2
G.

Our main result is the following.
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Theorem 1. Let Σ = Var (xnew) be the covariance matrix of size p × p. Fur-
thermore, let us assume that X is known and that ε, xnew and εnew are random.
Then, the genotypic accuracy has the following expression

ρg =
A1

(A2 +A3)
1/2

(A4)
1/2

, where

A1 =

r∑
s=1

d2
s

d2
s + λ

β′ Σ Q(s)Q(s)′β , A2 = σ2
e

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)

A3 =

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
Σ

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)
, A4 = β′Σβ.

The proof is given in Section 1 of the Supplementary material.
The phenotypic accuracy ρph is obtained by replacing the term A4 at the

denominator by A4 + σ2
e . Note that Q(s)Q(s)′v is the projection of a column

vector v of size p on the vector space spanned by Q(s). In view of Theorem 1, ρg
depends on the projections Q(s)Q(s)′β of the signal and also on the projections
Q(s)Q(s)′xnew of the genome information for the individual new.

In what follows we are interested in estimating the genotypic accuracy ρg.
A consistent estimator of A2 is easily derived from the Law of large numbers.
Besides, by Slutsky’s lemma in the matrix case, consistent estimators of A1, A3

and A4 can be obtained provided that a consistent estimator of the covariance
matrix Σ is used. This finally leads to a consistent estimator of ρg.

However, finding a consistent estimator for Σ is very challenging in the high
dimensional setting; it is nowadays a hot topic in statistics. Some recent results
(see e.g. Cai et al. (2010)) address this question, but the authors make quite
restrictive assumptions on the covariance matrix Σ.

In our present work we have chosen the empirical covariance estimator, since
it is the classical estimator used by geneticists in practice. We will show on
simulated data that our estimators perform in a very satisfactory manner.

3. Estimation when TRN and TST samples come from the same prob-
ability distribution

In this section, let us consider the case where the TRN and TST samples
come from the same probability distribution. In this context, using the empirical
covariance matrix X ′X/n as an estimation of the covariance matrix Σ from
Theorem 1, we obtain the following theorem.

Theorem 2. Let us assume that x1, . . . , xn and xnew are independent and
identically distributed (i.i.d.). Besides, let us consider that x1, . . . , xn have
been observed (i.e. X is known), and that ε, xnew and εnew are random. Then,
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an estimation of the genotypic accuracy is

ρ̂g =
Â1(

Â2 + Â3

)1/2 (
Â4

)1/2
,

where

Â1 =
1

n

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

, Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

Â3 =
1

n

r∑
s=1

d6
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′β
∥∥∥2

, Â4 =
1

n

r∑
s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

In contrast to Theorem 1, the projections Q(s)Q(s)′xnew are not present in this
new expression. Theoretical developments rely on the following estimation Â2

of A2:

Â2 :=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XQ(s)Q(s)′Q(s)Q(s)′X ′

)
.

The proof is given in Section 2 of the Supplementary material.
This estimation ρ̂g relies only on information collected on TRN (phenotypes

and markers). As a consequence, this accuracy estimation can be used to eval-
uate GS accuracy before genotyping of the TST individuals. Note that the
unknown quantity β present in Theorem 2 can be estimated for instance by
LASSO (Tibshirani (1996)), Adaptative LASSO (Zou (2006)) or Group LASSO
(Yuan and Lin (2006)). We refer to our applications in Section 6.

Let us now give bounds for the quantity ρ̂g.

Lemma 1 (Bounds on ρ̂g). Using same assumptions as in Theorem 2, we
always have

‖QQ′β‖2 mins
d4s

d2s+λ√
σ2
e r + ‖QQ′β‖2 maxs

d6s
(d2s+λ)2

√
‖QQ′β‖2 maxs d2

s

≤ ρ̂g ≤ ρoracleg .

The proof is given in Section 3 of the Supplementary material.
According to this lemma, the smaller the ratio r

‖QQ′β‖2 is, the larger the

lower bound is. Furthermore, the quantity mins
d4s

d2s+λ
should be large enough,

and the term maxs
d6s

(d2s+λ)2 not too large.

Although the above lower bound can give a first indication on the quality of
the prediction, a sharper analysis is needed (see below). Indeed, until now, as
in ii) of Theorem 1 of Shao and Deng (2012), we have only taken into account
a global projection QQ′β of the signal on R(X), with a global weight.
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3.1. Convergence of ρ̂g to ρoracleg when n→ +∞ and p→ +∞
Recall that d1 ≥ d2 ≥ . . . ≥ dr > 0 are the singular values of X. To study

asymptotic properties of ρ̂g, we consider that

d2
1 ∼ nψ with 0 < ψ ≤ 1,

d2
r ∼ nη with η ≤ ψ ≤ 1 and η and ψ not depending on n.

Recall that the notation un ∼ vn means that un
vn
−→ 1 when n→∞.

Moreover, we will assume that

‖QQ′β‖2 ∼ n2τ with τ < η and τ not depending on n.

These conditions are largely inspired from Shao and Deng (2012) and Fan and
Lv (2008).

Let us consider a regularization parameter λ such as λ→∞ and λ = o
(
d2

1

)
.

Besides, Ω1, Ω2 and Ω3 will denote the three following sets:

Ω1 :=
{
s
∣∣λ = o(d2

s)
}

, Ω2 :=

{
s

∣∣∣∣d2
s ∼

1

Cs
λ with Cs > 0

}
, Ω3 :=

{
s
∣∣d2
s = o(λ)

}
.

Note that Ω1 contains at least the index 1. On simulated data, after having
chosen λ by Restricted Maximum Likelihood (Corbeil and Searle (1976)), so-
called REML (cf. Section 6), these different sets were not empty.

In what follows, we will call respectively “largest singular values” the ones
whose index s belong to the set Ω1. In the same way, “intermediate singular
values” and “smallest singular values” refers to the sets Ω2 and Ω3 respectively.

Let us introduce a few extra conditions:

• (C1) n2τ

r

∑
s∈Ω1

d2
s → +∞

• (C2)
∑
s∈Ω3

d2
s = o(λ)

• (C3)
∑
s∈Ω3

d4
s = o(λ2)

• (C4) n2τ/r = o(1/λ), i.e. λ = o(r/n2τ )

• (C5) #Ω1 = O(1)

• (C6) #Ω2 = O(1),

where #Ω refers to the cardinal of the set Ω. We refer to the Supplementary
material for some explanations on these technical assumptions.

The following lemma assumes that the signal is spread out uniformly on each
subspace.

Lemma 2 (Convergence to the oracle accuracy). Let us consider same as-
sumptions as in Theorem 2. Besides, let us suppose that the projected signal is
spread out uniformly on each subspace Span

{
Q(s)

}
, i.e.∥∥∥Q(s)Q(s)′β

∥∥∥2

∼ n2τ

r
, s = 1, . . . , r (9)
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and let us assume that conditions (C1-C2-C3-C4-C5-C6) hold. Then we have
ρ̂g −→ ρoracleg .

The proof is given in Section 4 of the Supplementary material.
If we set r = nγ with 0 < γ ≤ 1, then the condition (C4) implies that

τ < γ/2. In other words, when trying to recover the oracle accuracy, the lower
the rank r is, the weaker the signal can be.

Recall that the tuning parameter λ is such as λ → ∞, λ = o
(
d2

1

)
. Let us

now introduce the following lemma which deals with some extreme cases.

Lemma 3 (Extreme cases). Let us consider same assumptions as in Theo-
rem 2.

1. If the projected signal belongs only to Span
{
Q(1)

}
, that is to say∥∥∥Q(1)Q(1)′β

∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0, for 1 < s ≤ r, then

• if 2τ + ψ > 1, then ρ̂g → ρoracleg .

• if 2τ + ψ < 1

– if
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+ψ

)
, then ρ̂g → ρoracleg

– if n2τ+ψ = o
(∑r

s=1
d4s

(d2s+λ)2

)
, then ρ̂g → 0.

2. If the projected signal belongs only to Span
{
Q(r)

}
, that is to say∥∥∥Q(r)Q(r)′β

∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0 , for 1 ≤ s < r, and

moreover λ ∼ Cnη+κ with κ > max(0,−η), C > 0, then,

• if τ + η/2− κ < 0, then ρ̂g → 0.

• if τ + η/2− κ > 0

– if
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+η−2κ

)
, then ρ̂g → ρoracleg

– if n2τ+η−2κ = o
(∑r

s=1
d4s

(d2s+λ)2

)
, then ρ̂g → 0.

The proof is given in Section 5 of the Supplementary material.

Since
∑r
s=1

d4s
(d2s+λ)2

≤ r, we have r = o
(
n2τ+ψ

)
and thus the condition∑r

s=1
d4s

(d2s+λ)2
= o

(
n2τ+ψ

)
can be replaced by r = o

(
n2τ+ψ

)
. In the same way,

condition
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+η−2κ

)
can be replaced by r = o

(
n2τ+η−2κ

)
.

According to this lemma, when the projected signal belongs only to Span
{
Q(r)

}
,

κ should be not too large in order to ensure that τ + η/2− κ > 0 and also that
r = o

(
n2τ+η−2κ

)
. As a consequence, the tuning parameter λ should be chosen

appropriately.

Summary of the results in Section 3: We present an estimation ρ̂g of the geno-
typic accuracy which is suitable when TRN and TST individuals are sampled
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from the same population. This estimation relies only on information collected
on TRN (phenotypes and markers). So, it is possible to evaluate the accu-
racy of the future prediction of TST individuals before genotyping them. In
other words, our formula can help geneticists to figure out whether or not their
population is appropriate for GS.

4. Estimation when TRN and TST samples do not come from the
same probability distribution

In this section we consider the general case where the TRN and TST samples
do not come necessarily from the same probability distribution. Furthermore,
let us assume that genome informations for nnew new individuals are available
and that we are willing to predict the phenotypes of those individuals. Let Xnew

be a random matrix of size nnew×p containing the genomic markers of the new
individuals. The singular value decomposition of Xnew is the following:

Xnew = WFZ ′,

where W is a nnew×rnew matrix satisfying W ′W = Irnew , Z is a p×rnew matrix
satisfying Z ′Z = Irnew , and F is rnew × rnew diagonal matrix of full rank.

In what follows, < ., . > denotes the usual scalar product. UsingX ′newXnew/nnew
as estimator of the covariance matrix Σ, we obtain the following Theorem 3, a
random version of Theorem 2.

Theorem 3. Let us assume that X is given and that Xnew is random, with its
rows being i.i.d. Then, an estimator of the genotypic accuracy is

ρ̌g =
Ǎ1(

Ǎ2 + Ǎ3

)1/2 (
Ǎ4

)1/2 , (10)

where

Ǎ1 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

(
rnew∑
α=1

f2
α < Z(α)Z(α)′β,Q(s)Q(s)′β >

)
,

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

nnew∑
i=1

(
rnew∑
α=1

fα Q
(s)′Z(α)W

(α)
i

)2

,

Ǎ3 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

Q(s)′β

r∑
`=1

d2
`

d2
` + λ

Q(`)′β

(
rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s), Z(α)Z(α)′Q(`) >

)
,

Ǎ4 =
1

nnew

rnew∑
α=1

f2
α

∥∥∥Z(α)Z(α)′β
∥∥∥2

.

Note that the expression in Equation (10) was obtained with the help of the
estimator Ǎ2 defined in the following way

Ǎ2 :=
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XnewQ

(s)Q(s)′Q(s)Q(s)′X ′new

)
.
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The proof is given in Section 6 of the Supplementary material. In contrast to
Section 3, we need to collect the genome information on TST in order to compute
the quantity ρ̌g. Lemma 1 of the Supplementary material is the analogue of
Lemma 1. Contrary to the lower bound introduced in Lemma 1, the new lower
bound can take negative values, since the scalar product < ZZ ′β , QQ′β > is
present in the numerator. This may happen when the rows of X are not i.i.d.
or when the probability distributions of TRN and TST are very different.

In Section 6 we will illustrate performances of ρ̌ph and ρ̂ph on simulated and
real data.

Summary of the results in Section 4: We present an estimator ρ̌g which can be
used to estimate the genotypic accuracy when TRN and TST individuals are
not sampled from the same population. An example of application is plant
breeding: since a large number of generations can be obtained easily, the fitted
model is not readjusted at each generation, in order to save time or costs due
to genotyping. In contrast to Section 3, our estimator ρ̌g relies on informations
collected on TRN (phenotypes and markers) and on TST (markers).

5. How to improve the quality of the prediction

In this section, we introduce another estimator of marker effects β derived
from Ridge regression, which may present, in some cases, better performances
than previously studied estimators. We propose to project the vector Y on a well
chosen subspace of the space spanned by the columns of X. Let 1 ≤ r̃ ≤ r and
σ(.) a one-to-one map σ : {1, . . . , r̃} → {1, . . . , r}. We thus have σ(k) 6= σ(k′)
for k 6= k′.

Let us consider the estimator

β̃ = X ′V −1P̃ P̃ ′Y , where P̃ =
(
Pσ(1), . . . , P σ(r̃)

)
.

Note that P̃ P̃ ′Y is the projection of Y on Span
{
Pσ(1), . . . , P σ(r̃)

}
.

Besides, we set Q̃ =
(
Qσ(1), . . . , Qσ(r̃)

)
. Then, the corresponding prediction

for the so-called new individual is the following:

Ỹnew = x′newβ̃ = x′newX
′V −1P̃ P̃ ′Y.

We refer to Subsection 6.2.4, where we describe a procedure for choosing σ(.)
and r̃.

Let ρ̃g be the analogue of ρg, with Ŷnew replaced by Ỹnew (cf. formula (3)):

ρ̃g :=
Cov

(
Ỹnew, x

′
newβ

)
√

Var
(
Ỹnew

)
Var (x′newβ)

. (11)

A more explicit formula for ρ̃g is given in Lemma 2 of the Supplementary ma-
terial. This lemma can be viewed as a version of Theorem 1 based on this new
estimator. Let us now present a lemma which is the analogue of Theorem 2.
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Lemma 4. Let us consider same assumptions as in Theorem 2. Then an esti-
mation of the quantity ρ̃g is

ˆ̃ρg =
ˆ̃A1(

ˆ̃A2 + ˆ̃A3

)1/2 ( ˆ̃A4

)1/2
,

where

ˆ̃A1 :=
1

n

r̃∑
s=1

d4
σ(s)

d2
σ(s) + λ

∥∥∥Q(σ(s))Q(σ(s))′β
∥∥∥2

, ˆ̃A2 :=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

ˆ̃A3 :=
1

n

r̃∑
s=1

d6
σ(s)

(d2
σ(s) + λ)2

∥∥∥Q(σ(s))Q(σ(s))′β
∥∥∥2

, ˆ̃A4 := Â4.

The proof is given in Section 8 of the Supplementary material.
Note that the quantities Ã1, . . . , Ã4 are the analogues of A1, . . . , A4 in this

new setting.
Let us next introduce our Lemma 5, which is the analogue of Lemma 1

regarding bounds for the genotypic accuracy.

Lemma 5 (Bounds on ˆ̃ρg). Let us consider same assumptions as in Theorem
2. Then we always have∥∥∥Q̃Q̃′β∥∥∥2

min
1≤s≤r̃

d4σ(s)
d2
σ(s)

+λ√
σ2
e r̃ +

∥∥∥Q̃Q̃′β∥∥∥2

max
1≤s≤r̃

d6
σ(s)

(d2
σ(s)

+λ)2

√
‖QQ′β‖2 max

1≤s≤r
d2
s

≤ ˆ̃ρg ≤ ρoracleg .

The proof relies heavily on the proof of Lemma 1, using the expressions of ˆ̃A1,
ˆ̃A2 ans ˆ̃A3 given in Lemma 4. We can notice that at the denominator, the

quantities r̃ and
∥∥∥Q̃Q̃′β∥∥∥ replace now the quantities r and ‖QQ′β‖ of Lemma 1.

This decrease at the denominator will be profitable provided that the numerator
does not decrease too much.

Remark : Note that if Â1 − ˆ̃A1 = 0, then ˆ̃ρg ≥ ρ̂g.
This is the case for example if

∥∥Q(`)Q(`)′β
∥∥2

= 0, for all ` /∈ {σ(1), . . . , σ(r̃)}.
Indeed, in this case we have ˆ̃A1 = Â1 and thus ˆ̃ρg ≥ ρ̂g.

For fixed n, we can obtain the following comparison between ˆ̃ρg and ρ̂g.

Lemma 6. Let us suppose that Â1− ˆ̃A1 6= 0. Then we have ˆ̃ρg ≥ ρ̂g if and only
if the following relation holds:

ˆ̃A1

Â1 − ˆ̃A1

≥ ( ˆ̃A2 + ˆ̃A3)

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3)

1 +

√√√√ Â2 + Â3

ˆ̃A2 + ˆ̃A3

 .
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The proof is given in Section 9 of the Supplementary material. In other words,
under this condition, the accuracy is improved and as a consequence, we should
choose the estimator Ỹnew instead of the classical estimator Ŷnew.

In what follows, we propose to give extra explanations on the results in this
subsection. Let us introduce the estimator ~β such as

~β := X ′V −1 ~P ~P ′Y

where ~P denotes the matrix obtained from P by removing the columns vectors
P (1), . . . , P (r). ~Ynew will denote the corresponding prediction:

~Ynew = x′new
~β.

Let P⊥ be a matrix of size n× n− r whose columns form an orthogonal basis

of
(
Span

{
P (1), . . . , P (r)

})⊥
. We then have the relationship:

Y = PP ′Y + P⊥P⊥′Y = P̃ P̃ ′Y + ~P ~P ′Y + P⊥P⊥′Y.

By definition we have X ′P⊥P⊥′Y = QDP ′P⊥P⊥′Y = 0p, where 0p denotes
the column vector of size p with all components equal to 0. Then, we have

β̂ = (X ′X + λIp)
−1X ′Y = (X ′X + λIp)

−1X ′(P̃ P̃ ′Y + ~P ~P ′Y )

= X ′V −1P̃ P̃ ′Y +X ′V −1 ~P ~P ′Y.

As a result, β̂ = β̃ + ~β and Ŷnew = Ỹnew + ~Ynew. We further have

Cov
(
β̃, ~β

)
= Cov

(
X ′V −1P̃ P̃ ′Y,X ′V −1 ~P ~P ′Y

)
= X ′V −1P̃ P̃ ′Var (Y ) ~P ~P ′V −1X

= σ2
eX
′V −1P̃ P̃ ′In ~P ~P

′V −1X

= Op,

where Op denotes the zero matrix of size p× p.
As a consequence, Cov

(
Ỹnew, ~Ynew

)
= Op. We deduce that the variance of

Ŷnew can be decomposed in the following way:

Var(Ŷnew) = Var(Ỹnew) + Var(~Ynew).

By definition, according to Rabier et al. (2016), we have

A1 = Cov(Ŷnew, Ynew), A2 +A3 = Var(Ŷnew)

As a consequence, we can obtain the following estimations

Ĉov(Ŷnew, Ynew) = Â1, V̂ar(Ŷnew) = Â2 + Â3.
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We have analogue estimates for Ỹnew and ~Ynew.
In what follows, ~ρg is the analogue of ρ̃g, with Ỹnew replaced by ~Ynew. ~̂ρg

will refer to an estimation of ~ρg. With these notations, we obtain the following
corollary of Lemma 6.

Corollary 1. Suppose that Ĉov
(
Ỹnew, Ynew

)
6= 0 and Ĉov

(
~Ynew, Ynew

)
6= 0.

Then we have the following three possible situations:

1. We have ˆ̃ρg ≥ ρ̂g if and only if

Ĉov
(
Ỹnew, Ynew

)
Ĉov

(
~Ynew, Ynew

) ≥ V̂ar
(
Ỹnew

)
V̂ar

(
~Ynew

)
1 +

√√√√√1 +
V̂ar

(
~Ynew

)
V̂ar

(
Ỹnew

)
 .

In this case, we also have ˆ̃ρg ≥ ~̂ρg.

2. We have ~̂ρg ≥ ρ̂g if and only if

Ĉov
(
Ỹnew, Ynew

)
Ĉov

(
~Ynew, Ynew

) ≤
√√√√√1 +

V̂ar
(
Ỹnew

)
V̂ar

(
~Ynew

) − 1.

In this case, we also have ~̂ρg ≥ ˆ̃ρg.

3. We have ρ̂g ≥ ˆ̃ρg and ρ̂g ≥ ~̂ρg if and only if√√√√√1 +
V̂ar

(
Ỹnew

)
V̂ar

(
~Ynew

)−1 ≤
Ĉov

(
Ỹnew, Ynew

)
Ĉov

(
~Ynew, Ynew

) ≤ V̂ar
(
Ỹnew

)
V̂ar

(
~Ynew

)
1 +

√√√√√1 +
V̂ar

(
~Ynew

)
V̂ar

(
Ỹnew

)
 .

The proof is deferred to the Section 10 of the Supplementary material.
For a given r̃ and a given partition function σ(.), the above results allow to

choose between the estimators ~̂ρg, ˆ̃ρg and ρ̂g. These conditions are expressed
in terms of the ratios of the respective covariances and variances. An opened
question is how to choose the best partition among all possible partitions.

We further introduce the following notations : for i = 1, . . . , 3,

Ω̃i := Ωi ∩ {σ(1), . . . , σ(r̃)}.

We then have the following analogue of Lemma 2 which treats the case when
the signal is spread out uniformly among the different subspaces.

Lemma 7. Let us consider the same assumptions as in Lemma 2. Moreover,
we suppose that we have the relation∑

s∈Ω̃1

d2
s ∼

∑
s∈Ω1

d2
s.

Then we have ˆ̃ρg −→ ρoracleg and ρ̂g −→ ρoracleg .
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The proof is given in Section 11 of the Supplementary material. In other words,
we have to impose that the L2 norm of the singular values belonging to Ω̃1,
respectively to Ω1, are equivalent.

In the same way as for the classical Ridge estimator, let us focus on a few
extreme cases.

Lemma 8 (Extreme cases). Let us consider same assumptions as in Theo-
rem 2.

1. If 1 ∈ {σ(1), . . . , σ(r̃)} and the projected signal belongs only to Span
{
Q(1)

}
,

that is to say∥∥∥Q(1)Q(1)′β
∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0, for 1 < s ≤ r,

and moreover 2τ + ψ < 1 and the following two conditions hold

•
∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+ψ

)
;

• n2τ+ψ = o
(∑r

s=1
d4s

(d2s+λ)2

)
,

then ˆ̃ρg −→ ρoracleg , whereas ρ̂g −→ 0.

2. If r ∈ {σ(1), . . . , σ(r̃)} and the projected signal belongs only to Span
{
Q(r)

}
,

that is to say∥∥∥Q(r)Q(r)′β
∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0 , for 1 ≤ s < r,

and moreover λ ∼ Cnη+κ with κ > max(0,−η), C > 0, τ + η/2 − κ > 0
and the following two conditions hold

•
∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+η−2κ

)
;

• n2τ+η−2κ = o
(∑r

s=1
d4s

(d2s+λ)2

)
,

then ˆ̃ρg −→ ρoracleg , whereas ρ̂g −→ 0.

The proof is largely inspired from the proof of Lemma 3. According to this
lemma, there are a few cases where at the same time, the new accuracy ˆ̃ρg is
optimal and the classical accuracy ρ̂g is null.

Note that the condition
∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+ψ

)
can be replaced by

the condition r̃ = o
(
n2τ+ψ

)
. In the same way, the condition

∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 =

o
(
n2τ+η−2κ

)
can be replaced by the condition r̃ = o

(
n2τ+η−2κ

)
.

In Supplementary material we also investigate the same setting as in Theo-
rem 3, when Xnew is random. Lemmas 3 and 4 in Supplementary material are
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the analogues of the previous Theorem 3 and of Lemma 1 in Supplementary
material, respectively.

Summary of the results in Section 5: We introduce a new estimator β̃, derived
from Ridge regression, which may lead to an increase in term of GS accuracy.
It consists in projecting the vector Y of phenotypes on a well chosen subspace
of the space spanned by the columns of X (i.e. the marker genotypes of the
TRN individuals). r̃ denotes the rank of this new subspace. The accuracy will
particularly increase when the rank r of X is large and most of the projection
of the signal β belongs to the space spanned by the axis associated to the
largest singular values of X. In order to find an appropriate subspace, the

quantity ˆ̃A1/Â1 (resp. ˇ̃A1/Â1) has to be computed for different values of r̃, when
TRN and TST are (resp. not) sampled from the same population; a procedure
for choosing r̃ is described in Section 6.2.4. To sum up, we propose a new
genomic predictor of TST individuals that outperforms the classical RRBLUP
or equivalently GBLUP. Besides, we derive its accuracy estimates, ˆ̃ρg or ˇ̃ρg
corresponding to TRN and TST individuals sampled from the same population
or not sampled in the same population, respectively.

6. Applications

In this section we propose to illustrate our theoretical results with the help
of simulated data.

6.1. Simulation framework

Genomic data were generated by means of the R package hypred of Technow
(2014) and according to the same process as in Rabier et al. (2016). In particu-
lar, populations were simulated by random mating between haploid individuals
(i.e. with only one copy of each chromosome), during (a) 30, (b) 50, or (c) 70
generations. Recombination was modeled according to Haldane (1919). Recall
that Haldane modeling assumes that the number of recombinations follow a
standard Poisson process.

In generation zero, two haploid founder lines were crossed. These two lines
were completely different genetically, the first (resp. the other) line having
allele +1 (resp. −1) at each marker. Generation 1 consisted of (a) 400 or (b)
500 haploid offsprings of these two founders. After that, the population kept
evolving by random mating with a constant size at each generation. In the
final generation, either 500 individuals or 400 individuals were sampled. Under
the 400 offsprings scenario, 2 individuals were randomly selected, and 100 full
sibs were generated in order to obtain some closely related individuals (as in
classical genomic studies). So, this procedure allows to deal with two kinds of
TRN populations, both based on 500 individuals: one containing 100 full sibs,
and the other not containing any full sib. The prediction model was evaluated on
100 TST (in all cases) produced in the last generation. Note that our simulated
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population is a simplified population, since our individuals are haploid and our
two founders present a complete Linkage Disequilibrium.

We focused on one chromosome of length 1 Morgan. We considered 3 dif-
ferent densities of genetic markers equally spaced on the chromosome: (a) 100,
(b) 1,000, or (c) 2,000 SNPs. We studied two configurations for the phenotypic
model: (a) 2 QTLs located at 3cM and 80cM with effects +1 and −2, respec-
tively, and (b) 100 QTLs located every centimorgan, with the same effect +0.15.
The environmental variance σ2

e was set to 1.
In what follows, we focus on the phenotypic accuracy criteria. ρ̂ph and ρ̌ph

denote the analogue of the quantities ρ̂g and ρ̌g for the phenotypic accuracy.
As in Rabier et al. (2016), we set the value of σ2

e to 1 and we consider this true
value in the expressions of ρ̂ph and ρ̌ph. Recall that ρph is obtained by replacing
the term A4 by A4 + σ2

e in our Theorem 1. Indeed, in what follows, since we
consider h unknown, we cannot use the relation ρph = hρg.

The empirical accuracy was computed with the R software, using the empir-
ical correlation between the predicted values and the true values. Note also that
all the quantities presented in the different tables are averages based on 100 sim-
ulations. Since we analyze the case where X does not vary across replicates, one
simulation consists (a) in regenerating 100 TST individuals by random mating
between individuals from the penultimate generation, and (b) in regenerating
new phenotypes (TRN+TST).

The regularization parameter λ was estimated by REML. The R package
rrBLUP, and in particular its function kin.blup were used in order to compute
the variance components.

6.2. Illustrations on simulated data

6.2.1. Different probability distributions

To begin with, we propose to investigate the long-term behavior of GS,
i.e. the reliability of the predicted model as a function of time (Habier et al.
(2007); Goddard et al. (2009)). For instance, in plants, since a large number of
generations can be obtained easily, the fitted model is usually not readjusted at
each generation, in order to save time or costs due to genotyping.

In this context, Figure 1 compares different estimators of the phenotypic
accuracy as functions of the number of generations during which the TST sample
evolved. The TRN sample was always based on 30 generations. We can notice
that ρ̌ph(β) matches the empirical accuracy whatever the number of generations
for TST. In contrast, ρ̂ph(β) deteriorates overtime. This is as expected, since
ρ̌ph(β) handles explicitly the TST matrix Xnew, which is not the case of ρ̂ph(β)
that relies on the TRN matrix X.

Table 1 in Supplementary material considers the same number of generations
for TRN and TST and focuses on the case where a few siblings (100 or none)
are included in the TRN sample. Recall that when full sibs are incorporated,
the TRN and TST samples do not come from the same probability distribution.
According to this table, even in the presence of 100 full sibs, we observe a good
agreement between the empirical accuracy and estimations based on ρ̂ph(β). In
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view of Figure 1 and Table 1 in Supplementary material, it seems that the fact
of not readjusting the model overtime has more impact on prediction than the
presence of full sibs in the TRN set. To sum up, ρ̌ph(β) appears to be a reliable
estimator whatever the simulation framework.

6.2.2. Behavior of the accuracy when β is estimated

In practice, the vector β containing the marker effects is an unknown quan-
tity. Therefore, we propose to consider here different estimators of β suitable
in a high-dimensional setting. We concentrate here on the LASSO (Tibshirani
(1996)), the Adaptative LASSO (Zou (2006)) and on the Group LASSO (Yuan
and Lin (2006)) estimators. Note that other estimators could have been chosen.
Recall that the LASSO is a L1 penalization method, and that the Adaptative
LASSO replaces the L1 penalty by a weighted penalty. Zou (2006) proved that
Adaptative LASSO enjoyes oracle properties. Last, the Group LASSO estima-
tor differs from his cousins, since it allows to handle a group structure for β.
We used the R packages glmnet, parcor and gglasso for computing the LASSO,
the Adaptative LASSO and the Group LASSO estimators, respectively.

Tables 1 and 2 focus on the scenario with 2 large QTLs and 100 small QTLs,
respectively. According to Table 1, the Adaptative LASSO estimator presents
better performances than his cousins, whatever the density of markers and the
number of generations. As expected, the best estimators are the ones assuming
known β. Note that since the TRN and TST are based on the same number of
generations, we did not observe significative differences between ρ̂ph and ρ̌ph.

Table 2 shows that the accuracy based on LASSO and cousin methods de-
teriorates slightly for a high density of markers (1,000 or 2,000). This accuracy
also decreases when the number of generations increases. In view of the two
tables, the Adaptative LASSO estimator is closer to the empirical accuracy un-
der the 2 QTLs scenario. Indeed, when two large QTLs well separated lied on
the genome, the Adaptative LASSO method was able to recover perfectly those
QTLs, whereas the 100 QTLs scenario makes the signal recovery less trivial.

To complete our simulation study, it is worth to consider the case of a mixture
between major genes and multiple small QTLs, which mimics probably better
the common architecture for a lot of traits. We thus generated two large QTLs
located at 3cM and 80cM, and 98 small QTLs located every centimorgan (except
at 3cM and 80cM). We considered three scenarios: (a) large QTLs with effects
+0.5 and −0.6, small QTLs with the same effect +0.07, (b) large QTLs with
effects +1 and −0.7, small QTLs with the same effect +0.1, (c) large QTLs with
effects +2 and −2, small QTLs with the same effect +0.1.

According to Table 2 in Supplementary material, under these new configura-
tions the performances are still fair, even if they deteriorate slightly in presence
of a high density of markers.

To conclude, in view of all our results presented in this section, the Adap-
tative LASSO seems to be the most appropriate method for substituting β̂ into
the expressions of ρ̂ph and ρ̌ph.
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6.2.3. Comparison with existing methods

A large number of formulas for accuracy are available in the literature. One
of the most popular was proposed in Daetwyler et al. (2008): the authors as-
sumed that the gene locations are known (i.e. the indices of the non null coeffi-
cients of β are perfectly known) and focused on an orthogonal design. A general
version of their formula regarding the genotypic accuracy is√√√√ h2/(1− h2)

‖β‖00
n + h2

1−h2

. (12)

Recall that ‖β‖00 =
∑p
j=1 |β|

0
, with (00 = 0). Later, the authors allowed for

the presence in the genome of a large number of loci that cannot be considered
independent due to linkage and a fixed genome size. In particular, they proposed
to substitute the effective number of independent loci Me for ‖β‖00 into their
original formula. Subsequently, a large number of research groups built on this
concept and proposed different ways of estimating Me.

Table 3 compares the performances of seven different proxies in terms of the
phenotypic accuracy. Three of these proxies, the ones based on Me1, Me2 and
Me3, rely on the effective population size (e.g. Goddard et al. (2011)), whereas
the MLJ -based proxy comes from association studies (see Li and Ji (2005)).
The expressions of Me1, Me2 and Me3 are the following:

Me1 =
2NeL

log(4Nel)
, Me2 =

2NeL

log(2Nel)
, Me3 =

2NeL

log(Nel)
,

where L, l and Ne denote the genome length, the average chromosome length
and the effective population size, respectively. Me1 was proposed by Goddard et
al. (2009), whereas Me2 and Me3 by Goddard et al. (2011). We refer to Rabier
et al. (2016) for more details on the estimation of Ne based on Hill and Weir
(1998). The fifth proxy is the one introduced in Rabier et al. (2016). Note that
the heritability h2 was estimated with the help of variance components obtained
by the R package rrBLUP. Last, the remaining proxies are those suggested in
our present paper: ρ̂ph(β̂ADLASSO) and ρ̌ph(β̂ADLASSO).

Table 3 reports the Mean Squared Error (MSE) associated to each method,
based on 15 architectures. An architecture refers to a fixed number of: (a)
SNPs; (b) QTL numbers, effects, and locations. There are 15 architectures as
we considered (a) either 100, 1, 000 or 2, 000 SNPs, and (b) either 2 large QTLs,
100 small QTLs, or the 3 scenarios of Table 2 in Supplementary material.

According to Table 3, ρ̌ph(β̂ADLASSO) and ρ̂ph(β̂ADLASSO) are the most
competitive proxies. They outperform our recent proxy of Rabier et al. (2016),
and other classical proxies used by geneticists. As expected, ρ̌ph(β) yields the
best performances. However, it cannot be computed in practice, since it depends
on the unknown β.

6.2.4. The quality of the prediction can be improved

In this subsection we propose to illustrate the quality of the predictions
based on β̃. Recall that this estimator is built after having projected the vector
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Y on a well chosen subspace of the space spanned by the columns of X.
In order to find an appropriate subspace, we used the following procedure.

We decided that
d4σ(k)

d2
σ(k)

+λ

∥∥Q(σ(k))Q(σ(k))′β
∥∥2

was the k-th largest term of the

sequence
(

d4s
d2s+λ

∥∥Q(s)Q(s)′β
∥∥2
)
s=1,...,r

. The value of r̃ was chosen as the largest

value satisfying the condition ˆ̃A1/Â1 ≤ υ, where υ denotes a tuning parameter.
The corresponding accuracy was then computed for a given value of υ.

Since υ was unknown, we performed an optimization over the grid
{0.7, 0.8, 0.9, 0.925, 0.95, 0.975, 0.99} and kept the highest accuracy.

Tables 4 and 5 focus on the cases n = 500 and n = 800, respectively. Accord-
ing to these tables, in all the cases we studied, the quantity ˆ̃ρph(β) was greater
than ρ̂ph(β). In the same way, the empirical accuracy associated to the new esti-

mator (i.e. estimated correlation cor(Ỹnew, Ynew)), was always greater than the
classical empirical accuracy based on the Ridge estimator (i.e. cor(Ŷnew, Ynew)).

Last, Table 6 focuses on the case where the vector β belongs to R(X). In
particular, we considered β = 0.3Q(1) + 0.3Q(2) + 0.3Q(3). As expected (cf.
remark below Lemma 5), ˆ̃ρph(β) takes greater values than ρ̂ph(β).

6.3. Real data: GS in rice

To conclude this article, we propose to analyze some data from the recent
paper of Spindel et al. (2015) dealing with GS in rice.

We considered the dataset of 13,101 SNPs, randomly chosen by the authors
from their 73,147 collected SNPs. We decided to focus on two rice traits: flow-
ering and yield. Besides, our analysis relies on the dry season 2012. 80% of
the observations were chosen for the TRN set, and the remaining 20% were
affected to the TST set. According to the data, the number of TRN individuals
was n = 252 for flowering and n = 248 for yield. In both cases we considered
nnew = 63. Table 7 shows a comparison of the performances of seven different
proxies in terms of phenotypic accuracy. The computed MSE relies on 100 data
sets (with random individuals in the TRN and TST sets).

In order to compute proxies based on Me1, Me2 and Me3, we used the value
L = 13.101 for the genome length (from Section “GS using marker subsets”
of Spindel et al. (2015)), and l = 1.09175 for the average chromosome length.
Recall that the rice presents 12 chromosomes. In order to make calculations
easier, the effective population size Ne was obtained by using only 1,007 SNPs
spread out in the genome (a SNP every 0.012 Morgan). Furthermore, we used
the Adaptative LASSO method to compute our suggested proxies, ρ̂ph(β) and
ρ̌ph(β). Note that since σ2

e was unknown, we considered the estimation of σ2
e

given by REML.
According to Table 7, ρ̌ph(β̂ADLASSO) is the most interesting proxy. Indeed,

for flowering and yield, the associated MSE was the smallest among all proxies,
and the associated mean accuracies were pretty close to the empirical accura-
cies (0.5485 vs. 0.5576 for flowering, and 0.2650 vs. 0.3361 for yield). As a
consequence, the results presented in this manuscript should be of interest for
geneticists.
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7. Conclusion

In this manuscript we propose somewhat complementary estimators for the
accuracy in GS.

With the help of the quantities ρ̂g and ˆ̃ρg, geneticists can now figure out
whether or not their population is appropriate for GS. Indeed, before geno-
typing TST individuals, they can have an idea of the reliability of the future
predictions. In contrast, the estimators ρ̌g and ˇ̃ρg seem to be more appropriate
to give answers to a challenging question in GS: the choice of the TRN indi-
viduals with respect to the TST set (e.g. Rincent et al. (2012)). Given a set
of young candidates recently genotyped, breeders want to know the most infor-
mative individuals to be phenotyped among the ones collected over years. In
that sense, it is always profitable to handle explictly the link between TRN and
TST populations. From a technical point of view, our study focuses exclusively
on the asymptotic properties of ρ̂g and ˆ̃ρg. Indeed, we did not investigate the
asymptotic properties of the estimators ρ̌g and ˇ̃ρg. Since Xnew is a random ma-
trix, it would have required to consider explicitly the limiting distribution of the
eigenvalues of X ′newXnew/nnew (e.g. Dicker (2016)). This could be investigated
in future research. Another topic of interest is the behavior of the estimators
when a few individuals are removed from the TRN set. Removing one row of X
leads to a compression of the singular values interval: the difference between the
largest and the smallest singular values decreases (see for instance Chafäı et al.
(2009)). Last, since the Adaptative LASSO estimator was found to be the most
appropriate substitute for β, it should be interesting to quantify theoretically
the loss of information due to an estimated β.

To conclude, GS is a very fruitful topic for geneticists and statisticians and
a large amount of methodological questions remain open.

Supporting information. Additional information for this article is
available online
Text S1 : Supplementary material containing several proofs and tables.
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Figure 1: Comparison among different estimators of the phenotypic accuracy as a function
of the number of generations during which the TST sample evolved (TRN sample is always
based on 30 generations). The chromosome is of length 1M and 2 QTLs are located at 3cM
and 80cM with effects +1 and −2, respectively (n = 500, nnew = 100, σ2

e = 1). Emp. Acc.
refers to the empirical phenotypic accuracy.
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Table 1: Comparison among different estimators of the phenotypic accuracy, in presence of
a few major genes (n = 500, nnew = 100, σ2

e = 1). The chromosome is of length 1M and

the 2 QTLs are located at 3cM and 80cM with effects +1 and −2, respectively. β̂LASSO,
β̂ADLASSO, β̂GPLASSO refer to the LASSO, Adaptative LASSO and Group LASSO estima-
tors of β, respectively. Emp. Acc. refers to the empirical phenotypic accuracy. The standard
errors for the estimates are given in brackets.

Nb markers Method 30 generations 50 generations 70 generations

100

Emp. Acc. 0.6967 (0.0048) 0.6804 (0.0049) 0.6708 (0.0055)
ρ̂ph(β) 0.6969 (0.0001) 0.6765 (0.0001) 0.6717 (0.0001)

ρ̂ph(β̂LASSO) 0.5962 (0.0028) 0.5767 (0.0029) 0.5735 (0.0030)

ρ̂ph(β̂ADLASSO) 0.6927 (0.0017) 0.6675 (0.0018) 0.6676 (0.0020)

ρ̂ph(β̂GPLASSO) 0.5934 (0.0028) 0.5595 (0.0029) 0.5484 (0.0031)
ρ̌ph(β) 0.6915 (0.0015) 0.6731 (0.0015) 0.6654 (0.0017)

ρ̌ph(β̂LASSO) 0.5907 (0.0029) 0.5742 (0.0029) 0.5677 (0.0036)

ρ̌ph(β̂ADLASSO) 0.6872 (0.0020) 0.6712 (0.0022) 0.6614 (0.0027)

ρ̌ph(β̂GPLASSO) 0.5857 (0.0030) 0.5580 (0.0031) 0.5411 (0.0037)

1,000

Emp. Acc. 0.7015 (0.0047) 0.6683 (0.0053) 0.6713 (0.0043)
ρ̂ph(β) 0.7155 (0.0001) 0.6597 (0.0001) 0.685 (0.0001)

ρ̂ph(β̂LASSO) 0.6197 (0.0027) 0.5354 (0.0031) 0.5720 (0.0026)

ρ̂ph(β̂ADLASSO) 0.7066 (0.0015) 0.6488 (0.0017) 0.675 (0.0016)

ρ̂ph(β̂GPLASSO) 0.6244 (0.0025) 0.5471 (0.0029) 0.586 (0.0023)
ρ̌ph(β) 0.6889 (0.0017) 0.6576 (0.0021) 0.6642 (0.0023)

ρ̌ph(β̂LASSO) 0.5965 (0.0030) 0.5347 (0.0037) 0.5544 (0.0038)

ρ̌ph(β̂ADLASSO) 0.6812 (0.0021) 0.6454 (0.0027) 0.6548 (0.0030)

ρ̌ph(β̂GPLASSO) 0.6022 (0.0028) 0.5495 (0.0034) 0.5708 (0.0035)

2,000

Emp. Acc. 0.6977 (0.0055) 0.6316 (0.0060) 0.4174 (0.0077)
ρ̂ph(β) 0.6933 (0.0001) 0.6254 (0.0001) 0.4600 (0.0004)

ρ̂ph(β̂LASSO) 0.5872 (0.0030) 0.4794 (0.0042) 0.2790 (0.0044)

ρ̂ph(β̂ADLASSO) 0.6783 (0.0017) 0.6134 (0.0020) 0.4399 (0.0033)

ρ̂ph(β̂GPLASSO) 0.5904 (0.0027) 0.4814 (0.0035) 0.2801 (0.0045)
ρ̌ph(β) 0.6881 (0.0016) 0.6264 (0.0025) 0.4095 (0.0041)

ρ̌ph(β̂LASSO) 0.5842 (0.0034) 0.4831 (0.0042) 0.2522 (0.0050)

ρ̌ph(β̂ADLASSO) 0.6830 (0.0029) 0.6138 (0.0031) 0.3890 (0.0058)

ρ̌ph(β̂GPLASSO) 0.5902 (0.0032) 0.4878 (0.0042) 0.2601 (0.0050)
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Table 2: Comparison among different estimators of the phenotypic accuracy, in presence of
multiple small QTLs (n = 500, nnew = 100, σ2

e = 1). The chromosome is of length 1M and
100 QTLs with the same effect +0.15, are located every centimorgan. Same notations as in
Table 1.

Nb markers Method 30 generations 50 generations 70 generations

100

Emp. Acc. 0.8504 (0.0027) 0.8055 (0.0035) 0.7056 (0.0049)
ρ̂ph(β) 0.8346 (0.0001) 0.8007 (0.0001) 0.6938 (0.0001)

ρ̂ph(β̂LASSO) 0.7990 (0.0013) 0.7010 (0.0013) 0.6043 (0.0034)

ρ̂ph(β̂ADLASSO) 0.8366 (0.0007) 0.8036 (0.0008) 0.6998 (0.0017)

ρ̂ph(β̂GPLASSO) 0.7813 (0.0012) 0.7370 (0.0014) 0.5611 (0.0026)
ρ̌ph(β) 0.8434 (0.0015) 0.7941 (0.0020) 0.6981 (0.0026)

ρ̌ph(β̂LASSO) 0.8020 (0.0024) 0.7471 (0.0025) 0.6006 (0.0049)

ρ̌ph(β̂ADLASSO) 0.8426 (0.0018) 0.7959 (0.0019) 0.7029 (0.0033)

ρ̌ph(β̂GPLASSO) 0.7889 (0.0023) 0.7250 (0.0025) 0.5611 (0.0037)

1,000

Emp. Acc. 0.8700 (0.0022) 0.8143 (0.0036) 0.7233 (0.0048)
ρ̂ph(β) 0.8781 (0.0000) 0.8086 (0.0001) 0.7308 (0.0001)

ρ̂ph(β̂LASSO) 0.8558 (0.0007) 0.7635 (0.0017) 0.6532 (0.0027)

ρ̂ph(β̂ADLASSO) 0.8495 (0.0006) 0.7627 (0.0012) 0.6718 (0.0016)

ρ̂ph(β̂GPLASSO) 0.8508 (0.0006) 0.7581 (0.0014) 0.6466 (0.0023)
ρ̌ph(β) 0.8604 (0.0013) 0.8045 (0.0019) 0.7162 (0.0027)

ρ̌ph(β̂LASSO) 0.8299 (0.0019) 0.7502 (0.0026) 0.6233 (0.0039)

ρ̌ph(β̂ADLASSO) 0.8226 (0.0018) 0.7489 (0.0023) 0.6452 (0.0034)

ρ̌ph(β̂GPLASSO) 0.8273 (0.0018) 0.7479 (0.0024) 0.6224 (0.0036)

2,000

Emp. Acc. 0.8590 (0.0024) 0.8045 (0.0043) 0.7387 (0.0047)
ρ̂ph(β) 0.8464 (0.0001) 0.8113 (0.0001) 0.7319 (0.0001)

ρ̂ph(β̂LASSO) 0.8116 (0.0011) 0.7662 (0.0014) 0.6503 (0.0030)

ρ̂ph(β̂ADLASSO) 0.8102 (0.0007) 0.7641 (0.0009) 0.6697 (0.0016)

ρ̂ph(β̂GPLASSO) 0.8062 (0.0009) 0.7607 (0.0012) 0.6495 (0.0024)
ρ̌ph(β) 0.8510 (0.0015) 0.7936 (0.0023) 0.7300 (0.0026)

ρ̌ph(β̂LASSO) 0.8096 (0.0023) 0.7339 (0.0035) 0.6317 (0.0041)

ρ̌ph(β̂ADLASSO) 0.8093 (0.0020) 0.7358 (0.0033) 0.6542 (0.0031)

ρ̌ph(β̂GPLASSO) 0.8074 (0.0020) 0.7322 (0.0033) 0.6364 (0.0039)
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Table 3: Mean squared error (with respect to the Empirical accuracy) corresponding to 7 prox-
ies. The MSE corresponding to ρ̌ph(β) is also shown . MSE=

∑15
a=1 (AccPa −AccEa)2 /15

where 15 is the number of studied architectures. AccEa and AccPa are averages on 100 repli-
cates, and denote respectively, for architecture a, the Empirical Accuracy and the Accuracy
based on the chosen proxy (30 generations for TRN).

MSE based on 50 generations for TST 70 generations for TST
ρ̌ph(β) 5.9685× 10−5 3.8455× 10−5

ρ̌ph(β̂ADLASSO) 1.2108× 10−3 1.2118× 10−3

ρ̂ph(β̂ADLASSO) 2.2677× 10−3 1.5168× 10−3

Plos One (2016) 3.3056× 10−3 1.007× 10−2

Me1 3.7936× 10−3 1.3779× 10−2

Me2 3.7508× 10−3 1.3518× 10−2

Me3 3.6970× 10−3 1.3165× 10−2

MLJ 5.5578× 10−3 6.1021× 10−3

Table 4: Illustration of the predictions based on β̃. cor
(
Ŷnew, Ynew

)
(resp.

cor
(
Ỹnew, Ynew

)
) refers to the empirical correlation between Ŷnew (resp. Ỹnew) and Ynew.

The chromosome is of length 4M and 100 QTLs with the same effect +0.15, are located every
centimorgan on [0, 1M]. 4,000 markers (p=4,000) are equally spaced on [0, 4M] (n = 500,
nnew = 100). The standard errors for the estimates are given in brackets.

σ2
e Method 50 generations 100 generations

1

cor
(
Ŷnew, Ynew

)
0.7478 (0.0049) 0.5959 (0.0074)

cor
(
Ỹnew, Ynew

)
0.7682 (0.0048) 0.6132 (0.0068)

ρ̂ph(β) 0.7399 (0.0002) 0.6352 (0.0002)
ˆ̃ρph(β) 0.7570 (0.0001) 0.6541 (0.0001)

9

cor
(
Ŷnew, Ynew

)
0.2874 (0.0086) 0.1949 (0.0098)

cor
(
Ỹnew, Ynew

)
0.3152 (0.0087) 0.2163 (0.0099)

ρ̂ph(β) 0.3023 (0.0003) 0.2320 (0.0003)
ˆ̃ρph(β) 0.3306 (0.0002) 0.2604 (0.0002)

Table 5: Same as Table 4 except that n = 800.

σ2
e Method 50 generations 100 generations

1

cor
(
Ŷnew, Ynew

)
0.7908 (0.0041) 0.6101 (0.0063)

cor
(
Ỹnew, Ynew

)
0.8087 (0.0036) 0.6289 (0.0053)

ρ̂ph(β) 0.7965 (0.0000) 0.6508 (0.0001)
ˆ̃ρph(β) 0.8095 (0.0005) 0.6663 (0.0001)

9

cor
(
Ŷnew, Ynew

)
0.3725 (0.0097) 0.1981 (0.0106)

cor
(
Ỹnew, Ynew

)
0.4044 (0.0093) 0.2302 (0.0108)

ρ̂ph(β) 0.3766 (0.0003) 0.2248 (0.0032)
ˆ̃ρph(β) 0.4041 (0.0001) 0.2494 (0.0035)
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Table 6: Comparison among the quantities ρ̂ph(β) and ˆ̃ρph(β), when the vector β belongs to

R(X). The chromosome is of length 1M, β = 0.3Q(1) + 0.3Q(2) + 0.3Q(3) and nnew = 100.
The standard errors for the estimates are given in brackets.

σ2
e n Method 200 generations 400 generations

1
500

ρ̂ph(β) 0.7550 (0.0001) 0.6721 (0.0002)
ˆ̃ρph(β) 0.7810 (0.0001) 0.7041 (0.0001)

800
ρ̂ph(β) 0.7487 (0.0001) 0.7037 (0.0001)
ˆ̃ρph(β) 0.7728 (0.0001) 0.7312 (0.0001)

9
500

ρ̂ph(β) 0.3370 (0.0004) 0.2623 (0.0004)
ˆ̃ρph(β) 0.3809 (0.0001) 0.3079 (0.0001)

800
ρ̂ph(β) 0.3317 (0.0003) 0.2904 (0.0004)
ˆ̃ρph(β) 0.3734 (0.0001) 0.3330 (0.0000)

Table 7: Mean squared error (with respect to the Empirical accuracy) corresponding to 7
proxies, and based on rice data from Spindel et al. (2015) (dry season 2012). The computed
MSE rely on 100 data sets (with random individuals in TRN and TST sets). The average, for
each proxy, is given in brackets. The Empirical accuracy was 0.5576 for flowering, and 0.3361
for yield, in average (n = 252 for flowering, n = 248 for yield, nnew = 63 in both cases).

MSE based on Flowering Yield

ρ̌ph(β̂ADLASSO) 1.6248× 10−2 (0.5485) 2.807× 10−2 (0.2650)

ρ̂ph(β̂ADLASSO) 2.41× 10−2 (0.6201) 4.85× 10−2 (0.4571)
Plos One (2016) 7.08× 10−2 (0.7903) 1.25× 10−1 (0.6647)

Me1 4.49× 10−2 (0.7055) 5.70× 10−2 (0.5234)
Me2 4.18× 10−2 (0.6917) 5.10× 10−2 (0.5064)
Me3 3.83× 10−2 (0.6741) 4.43× 10−2 (0.4854)
MLJ 4.71× 10−2 (0.7142) 6.27× 10−2 (0.5383)
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1. Proof of Theorem 1 of the main manuscript

By definition,

A1 = β′ Var (xnew)X ′V −1Xβ.

We set D = Diag
(

d1
d21+λ

, . . . , dr
d2r+λ

)
. With this notation, we have the rela-

tion:

X ′V −1 = QDP ′. (1)

Using formula (8) of the main manuscript, we easily have

X ′V −1Xβ =

r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β. (2)

As a consequence, since Σ = E (xnew x
′
new), we have the relationship

A1 =

r∑
s=1

d2
s

d2
s + λ

β′ Σ Q(s)Q(s)′β. (3)

By definition,

A2 = σ2
eE
(∥∥x′newX ′V −1

∥∥2
)
.

According to formula (1), we have∥∥x′newX ′V −1
∥∥2

= x′newX
′V −1

(
X ′V −1

)′
xnew

= x′newQDP
′PDQ′xnew

= x′newQD
2
Q′xnew.
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Furthermore, we have

QD
2
Q′ =

r∑
s=1

d2
s

(d2
s + λ)2

Q(s)Q(s)′.

Since Q(s)Q(s)′ is an idempotent matrix, we obtain

∥∥x′newX ′V −1
∥∥2

=

r∑
s=1

d2
s

(d2
s + λ)2

x′newQ
(s)Q(s)′xnew

=

r∑
s=1

d2
s

(d2
s + λ)2

x′newQ
(s)Q(s)′Q(s)Q(s)′xnew

=

r∑
s=1

d2
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′xnew

∥∥∥2

.

Finally,

A2 =

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)
.

By definition,

A3 = β′X ′V −1XVar (xnew)X ′V −1Xβ.

Then, according to formula (2),

A3 =

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
Σ

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)
.

2. Proof of Theorem 2 of the main manuscript

Let us define Â1 in the following way:

Â1 =

r∑
s=1

d2
s

d2
s + λ

β′ Σ̂ Q(s)Q(s)′β,

where Σ̂ := X ′X/n is the empirical covariance matrix.
Then, using the SVD decomposition X = PDQ′, we obtain

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

β′ X ′X Q(s)Q(s)′β

=
1

n

r∑
s=1

d2
s

d2
s + λ

β′ QD2Q′ Q(s)Q(s)′β

=
1

n

r∑
s=1

d2
s

d2
s + λ

β′

(
r∑

u=1

d2
uQ

(u)Q(u)′

)
Q(s)Q(s)′β.

2



Since Q′Q = Ir, we further deduce

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

β′ d2
sQ

(s)Q(s)′ Q(s)Q(s)′β

=
1

n

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

A natural estimation of A2 is

Â2 =
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

n∑
i=1

∥∥∥Q(s)Q(s)′xi

∥∥∥2

=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XQ(s)Q(s)′Q(s)Q(s)′X ′

)
=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XQ(s)Q(s)′X ′

)
=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
PDQ′Q(s)Q(s)′QDP ′

)
.

Note that
DQ′Q(s) = dses,

where es denotes the s-th vector of the canonical basis of Rr.

Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

Tr (Pese
′
sP
′)

=
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

Tr (P ′Pese
′
s)

=
1

n

r∑
s=1

d4
s

(d2
s + λ)2

.

Let us consider the following estimation of A3:

Â3 =

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
Σ̂

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)

=
1

n

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
X ′X

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)

=
1

n

(
X

r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′ (
X

r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)
.

3



Note that

XQ(s)Q(s)′β = PDQ′Q(s)Q(s)′β = dsPesQ
(s)′β = dsP

(s)Q(s)′β.

As a consequence,

r∑
s=1

d2
s

d2
s + λ

XQ(s)Q(s)′β =

r∑
s=1

d3
s

d2
s + λ

P (s)Q(s)′β.

Last, we obtain

Â3 =
1

n

(
r∑
`=1

d3
`

d2
` + λ

β′Q(`)P (`)′

)(
r∑
s=1

d3
s

d2
s + λ

P (s)Q(s)′β

)

=
1

n

r∑
`=1

d3
`

d2
` + λ

r∑
s=1

d3
s

d2
s + λ

β′Q(`)P (`)′P (s)Q(s)′β

=
1

n

r∑
`=1

d6
`

(d2
` + λ)2

β′Q(`)Q(`)′β

=
1

n

r∑
`=1

d6
`

(d2
` + λ)2

∥∥∥Q(`)Q(`)′β
∥∥∥2

.

Finally, let us consider the following estimation of A4:

Â4 = β′Σ̂β =
1

n
β′X ′Xβ.

We have

Â4 =
1

n
β′QD2Q′β =

1

n

r∑
s=1

d2
sβ
′Q(s)Q(s)′β

=
1

n

r∑
s=1

d2
sβ
′Q(s)Q(s)′Q(s)Q(s)′β =

1

n

r∑
s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

3. Proof of Lemma 1 of the main manuscript

Â1 =
1

n

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

=
1

n

r∑
s=1

(
d3
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥)(ds ∥∥∥Q(s)Q(s)′β

∥∥∥)

≤ 1

n

(
r∑
s=1

d6
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′β
∥∥∥2
)1/2( r∑

s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2
)1/2

= Â
1/2
3 Â

1/2
4 ,

4



using the Cauchy-Schwartz inequality. Since Â2 ≥ 0, we obtain

ρ̂g ≤
Â1

Â
1/2
3 Â

1/2
4

≤ 1.

In order to obtain the lower bound, we just have to notice that

‖QQ′β‖2 =

r∑
s=1

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

Then,

nÂ1 =
r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

≥ ‖QQ′β‖2 min
s

d4
s

d2
s + λ

nÂ3 =

r∑
s=1

d6
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′β
∥∥∥2

≤ ‖QQ′β‖2 max
s

d6
s

(d2
s + λ)2

nÂ4 =

r∑
s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2

≤ ‖QQ′β‖2 max
s
d2
s.

Since
d4s

(d2s+λ)2 is bounded by one, we have nÂ2 = σ2
e

r∑
s=1

d4s
(d2s+λ)2 ≤ σ2

er. As a

consequence,

ρ̂g ≥
‖QQ′β‖2 mins

d4s
d2s+λ√

σ2
e r + ‖QQ′β‖2 maxs

d6s
(d2s+λ)2

√
‖QQ′β‖2 maxs d2

s

.

4. Proof of Lemma 2 of the main manuscript

Using Theorem 2 of the main manuscript, we have:

nÂ1 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d4
s

d2
s + Csd2

s

n2τ

r
+
∑
s∈Ω3

d4
s

λ

n2τ

r
.

According to our conditions (C3) and (C4),

∑
s∈Ω3

d4
s

λ

n2τ

r
= o(1).

Then,

nÂ1 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

1 + Cs

n2τ

r
. (4)
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We have ∑
s∈Ω2

d2
s

1 + Cs

n2τ

r
≤
∑
s∈Ω2

d2
s

n2τ

r
≤ n2τ

r
#Ω2C̃λ,

with C̃ > 0.
Since #Ω2 = O(1) by (C6) and λn

2τ

r = o(1), we have

∑
s∈Ω2

d2
s

n2τ

r
= o(1) (5)

and thus
∑
s∈Ω2

d2s
1+Cs

n2τ

r = o(1). Therefore

nÂ1 ∼
∑
s∈Ω1

d2
s

n2τ

r
. (6)

In the same way, using condition (C3), we have

nÂ2 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
.

Let us now focus on the quantity Â3.

nÂ3 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

(1 + Cs)2

n2τ

r
+
∑
s∈Ω3

d6
s

λ2

n2τ

r
.

Since
∑
s∈Ω3

d6
s ≤

∑
s∈Ω3

d2
s

∑
s∈Ω3

d4
s, we have

∑
s∈Ω3

d6
s = o(λ3) (cf. (C2) and

(C3)). Then, according to (C4),
∑
s∈Ω3

d6s
λ2

n2τ

r = o(1). This yields

nÂ2 + nÂ3 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
+
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

(1 + Cs)2

n2τ

r
.

We further have ∑
s∈Ω2

d2
s

(1 + Cs)2

n2τ

r
≤
∑
s∈Ω2

d2
s

n2τ

r
.

Using the previous relation (5), we have
∑
s∈Ω2

d2s
(1+Cs)2

n2τ

r = o(1). As a

result,

nÂ2 + nÂ3 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
+
∑
s∈Ω1

d2
s

n2τ

r
.

Then, conditions (C1), (C5) and (C6) ensure that

nÂ2 + nÂ3 ∼
∑
s∈Ω1

d2
s

n2τ

r
. (7)

6



Last,

nÂ4 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

n2τ

r
+
∑
s∈Ω3

d2
s

n2τ

r
.

According to conditions (C4) and (C2),
∑
s∈Ω3

d2
s
n2τ

r = o(1). Using again the
relation (5) we deduce

nÂ4 ∼
∑
s∈Ω1

d2
s

n2τ

r
. (8)

To conclude, using formulae (6), (7) and (8), we have ρ̂g → 1.

5. Proof of Lemma 3 of the main manuscript

5.1. The projected signal belongs only to Span
{
Q(1)

}
Using Theorem 2, we have:

ρ̂g =

d31
d21+λ

∥∥Q(1)Q(1)′β
∥∥(

σ2
e

r∑
s=1

d4s
(d2s+λ)2 +

d61
(d21+λ)2

∥∥Q(1)Q(1)′β
∥∥2
)1/2

. (9)

From Lemma 1 and the fact that
r∑
s=1

d4s
(d2s+λ)2 ≤ r ≤ n, we deduce that

1 ≥ ρ̂g ≥
d31

d21+λ

∥∥Q(1)Q(1)′β
∥∥(

σ2
en+

d61
(d21+λ)2

∥∥Q(1)Q(1)′β
∥∥2
)1/2

. (10)

Using further the fact that d2
1 ∼ nψ and λ = o(d2

1), we obtain

d6
1

(d2
1 + λ)2

∥∥∥Q(1)Q(1)′β
∥∥∥2

∼ n2τ+ψ ,
d3

1

d2
1 + λ

∥∥∥Q(1)Q(1)′β
∥∥∥ ∼ nτ+ψ/2.

If 2τ + ψ > 1, then

d31
d21+λ

∥∥Q(1)Q(1)′β
∥∥(

σ2
en+

d61
(d21+λ)2

∥∥Q(1)Q(1)′β
∥∥2
)1/2

−→ 1.

Finally, according to formula (10), ρ̂g → 1.
Let us now consider the case 2τ +ψ < 1. Then, it is obvious from expression

(9) that
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+ψ

)
entails ρ̂g → 1.

In contrast, if n2τ+ψ = o
(∑r

s=1
d4s

(d2s+λ)2

)
then ρ̂g → 0.

7



5.2. The projected signal belongs only to Span
{
Q(r)

}
Using again Theorem 2, we have:

ρ̂g =

d3r
d2r+λ

∥∥Q(r)Q(r)′β
∥∥(

σ2
e

r∑
s=1

d4s
(d2s+λ)2 +

d6r
(d2r+λ)2

∥∥Q(r)Q(r)′β
∥∥2
)1/2

. (11)

Recall that d2
r ∼ nη with η < ψ ≤ 1. If we suppose moreover that λ ∼ Cnκ+η

with κ > max(0,−η) and C > 0, then we have

d3
r

d2
r + λ

=
dr

1 + λ/d2
r

∼ 1

C
nη/2−κ

d3
r

d2
r + λ

∥∥∥Q(r)Q(r)′β
∥∥∥ ∼ 1

C
nτ+η/2−κ.

It is obvious that ρ̂g → 0 when τ + η/2 − κ < 0. Indeed, since d2
1 = o(n),

in the denominator we have asymptotically σ2
e

d41
(d21+λ)2

∼ σ2
e , which is bounded

away from 0.
If τ + η/2 − κ > 0, then we have to separate two different cases. If∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+η−2κ

)
, then ρ̂g → 1.

In contrast, if n2τ+η−2κ = o
(∑r

s=1
d4s

(d2s+λ)2

)
, then ρ̂g → 0.

6. Proof of Theorem 3 of the main manuscript

Let us consider the following natural estimator of A1:

Ǎ1 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

β′ X ′newXnew Q
(s)Q(s)′β.

We have

Ǎ1 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

β′ ZF 2Z ′ Q(s)Q(s)′β

=
1

nnew

r∑
s=1

d2
s

d2
s + λ

β′
rnew∑
α=1

f2
αZ

(α)Z(α)′Q(s)Q(s)′β.

Further, a natural estimator of A2 is

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XnewQ

(s)Q(s)′Q(s)Q(s)′X ′new

)
=

σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
WFZ ′Q(s)Q(s)′ZFW ′

)
.

8



We can easily see that

Tr
(
WFZ ′Q(s)Q(s)′ZFW ′

)
=

nnew∑
i=1

(
rnew∑
α=1

fαQ
(s)′Z(α)W

(α)
i

)2

,

which gives

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

nnew∑
i=1

(
rnew∑
α=1

fαQ
(s)′Z(α)W

(α)
i

)2

.

A natural estimator of A3 is:

Ǎ3 =
1

nnew

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
X ′newXnew

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)

=
1

nnew

(
r∑
s=1

d2
s

d2
s + λ

XnewQ
(s)Q(s)′β

)′ ( r∑
s=1

d2
s

d2
s + λ

XnewQ
(s)Q(s)′β

)
.

Using the fact that

XnewQ
(s) = WFZ ′Q(s) =

rnew∑
α=1

fαQ
(s)′Z(α)W (α),

we deduce

r∑
s=1

d2
s

d2
s + λ

XnewQ
(s)Q(s)′β =

r∑
s=1

d2
s

d2
s + λ

rnew∑
α=1

fαQ
(s)′Z(α)Q(s)′βW (α).

Consequently,

Ǎ3 =
1

nnew

r∑
s=1

r∑
`=1

d2
s d

2
`

(d2
s + λ)(d2

` + λ)

rnew∑
α=1

fαQ
(s)′Z(α)Q(s)′βW (α)′

rnew∑
ϑ=1

fϑQ
(`)′Z(ϑ)Q(`)′βW (ϑ)

=
1

nnew

r∑
s=1

d2
s

d2
s + λ

Q(s)′β

r∑
`=1

d2
`

d2
` + λ

Q(`)′β

rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s), Z(α)Z(α)′Q(`) > .

7. Extra lemmas

Lemma 1 (Bounds on ρ̌g). Under the same assumptions as in Theorem 3 of
the main manuscript, we always have

B1

(B2 +B3)
1/2

B
1/2
4

≤ ρ̌g ≤ ρoracleg ,

9



where

B1 = min
1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α < ZZ ′β , QQ′β >,

B2 = σ2
e r rnew max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

s,α

∥∥∥Q(s)′Z(α)W (α)
∥∥∥2

,

B3 = max
1≤s≤r

d4
s

(d2
s + λ)2

‖QQ′β‖2 max
1≤α≤rnew

f2
α r2,

B4 = ‖ZZ ′β‖2 max
1≤α≤rnew

f2
α.

Note that it is possible to replace B2 by the quantity

σ2
e rnew

r∑
s=1

d2
s

(d2
s + λ)2

max
1≤α≤rnew

(
f2
α < Q(s), Z(α) >2

)
,

entailing a second lower bound for ρ̌g.

Proof. To begin with, let us focus on the upper bound. First, we have to notice
that we have the relationship

Ǎ1 =
1

nnew

rnew∑
α=1

< fαZ
(α)Z(α)′β ,

r∑
s=1

d2
s

d2
s + λ

fαZ
(α)Z(α)′Q(s)Q(s)′β > .

Then, applying two times the Cauchy-Schwartz inequality, we obtain

Ǎ1 ≤
1

nnew

rnew∑
α=1

(∥∥∥fαZ(α)Z(α)′β
∥∥∥ ∥∥∥∥∥

r∑
s=1

d2
s

d2
s + λ

fαZ
(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
)

≤ 1

nnew

(
rnew∑
α=1

∥∥∥fαZ(α)Z(α)′β
∥∥∥2
)1/2

rnew∑
α=1

∥∥∥∥∥
r∑
s=1

d2
s

d2
s + λ

fαZ
(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
2
1/2

= Ǎ
1/2
4

1
√
nnew

rnew∑
α=1

f2
α

∥∥∥∥∥
r∑
s=1

d2
s

d2
s + λ

Z(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
2
1/2

.

We have

rnew∑
α=1

f2
α

∥∥∥∥∥
r∑
s=1

d2
s

d2
s + λ

Z(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
2

=

rnew∑
α=1

f2
α

(
r∑
s=1

d2
s

d2
s + λ

β′Q(s)Q(s)′Z(α)Z(α)′

)(
r∑
`=1

d2
`

d2
` + λ

Z(α)Z(α)′Q(`)Q(`)′β

)

=

r∑
s=1

d2
s

d2
s + λ

β′Q(s)
r∑
`=1

d2
`

d2
` + λ

β′Q(`)
rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s) , Z(α)Z(α)′Q(`) >

= nnewǍ3.

10



Thus

Ǎ1 ≤ Ǎ1/2
4 Ǎ

1/2
3 .

Since Ǎ2 ≥ 0, we finally obtain

ρ̌g ≤
Ǎ1

Ǎ
1/2
4 Ǎ

1/2
3

≤ 1.

Let us now move on to the lower bound. We have the relationship:

Ǎ2 ≤
σ2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α

 r∑
s=1

∥∥∥∥∥
rnew∑
α=1

Q(s)′Z(α)W (α)

∥∥∥∥∥
2


≤ r σ2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

1≤s≤r

∥∥∥∥∥
rnew∑
α=1

Q(s)′Z(α)W (α)

∥∥∥∥∥
2

≤ r σ2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

1≤s≤r

rnew∑
α=1

∥∥∥Q(s)′Z(α)W (α)
∥∥∥2

≤ r rnew σ
2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

s,α

∥∥∥Q(s)′Z(α)W (α)
∥∥∥2

.

Coming back to the expression of Ǎ2, we also have:

Ǎ2 ≤
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

max
α

(
f2
α < Q(s), Z(α) >2

) nnew∑
i=1

(
rnew∑
ω=1

W
(ω)
i

)2

.

We can notice that
∑nnew
i=1

(∑rnew
ω=1 W

(ω)
i

)2

= Tr(WW ′) = Tr(W ′W ) = rnew.

As a consequence, another bound is the following

Ǎ2 ≤
σ2
e rnew
nnew

r∑
s=1

d2
s

(d2
s + λ)2

max
1≤α≤rnew

(
f2
α < Q(s), Z(α) >2

)
.

On the other hand, we have

Ǎ1 ≥ min
1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α

r∑
s=1

(
rnew∑
α=1

β′ Z(α) Z(α)′Q(s)Q(s)′β

)

=
1

nnew
min

1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α β′ Z Z ′QQ′β

=
1

nnew
min

1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α < Z Z ′β , QQ′β > .
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Last,

Ǎ3 ≤
1

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

max
1≤s≤r

∥∥∥Q(s)Q(s)′β
∥∥∥2

max
1≤α≤rnew

f2
α

r∑
s=1

r∑
`=1

rnew∑
α=1

Q(s)′Z(α)Z(α)′Q(`)

=
1

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

max
1≤s≤r

∥∥∥Q(s)Q(s)′β
∥∥∥2

max
1≤α≤rnew

f2
α

r∑
s=1

r∑
`=1

Q(s)′ZZ ′Q(`)

≤ 1

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

max
1≤s≤r

∥∥∥Q(s)Q(s)′β
∥∥∥2

max
1≤α≤rnew

f2
α

×
{
r max

1≤s≤r

∥∥∥ZZ ′Q(s)
∥∥∥2

+ r(r − 1) max
s 6=`

< ZZ ′Q(s), ZZ ′Q(`) >

}
.

Since ZZ ′ is an idempotent matrix and Q(s)′Q(s) = 1 for all 1 ≤ s ≤ r, we have∥∥∥ZZ ′Q(s)
∥∥∥2

≤ 1.

Besides, according to Cauchy-Schwartz inequality,

|< ZZ ′Q(s), ZZ ′Q(`) >|≤
∥∥∥ZZ ′Q(s)

∥∥∥∥∥∥ZZ ′Q(`)
∥∥∥ ≤ 1.

Finally, since QQ′ is an idempotent matrix, and putting together all the
above considerations, we obtain

Ǎ3 ≤
r2

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

‖QQ′β‖2 max
1≤α≤rnew

f2
α.

We can now easily deduce the bounds given in the statement.

Lemma 2. Let us consider same assumptions as in Theorem 1 of the main
manuscript. Then, the quantity ρ̃g defined in Section 5 of the main manuscript
has the following expression

ρ̃g =
Ã1(

Ã2 + Ã3

)1/2 (
Ã4

)1/2
,

where

Ã1 =

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ Q(σ(s))Q(σ(s))′β , Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)

Ã3 =

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
Σ

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
, Ã4 = A4.

Proof. After replacing the quantity X ′V −1 by X ′V −1P̃ P̃ ′, formula (5) of Rabier
et al. (2016) becomes

ρg =
β′ Var (xnew)X ′V −1P̃ P̃ ′Xβ(

σ2
eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)

+ β′X ′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′Xβ

)1/2

σG

.
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As a result, let us define

Ã1 := β′ Var (xnew)X ′V −1P̃ P̃ ′Xβ , Ã2 := σ2
eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)
,

Ã3 := β′X ′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′Xβ , Ã4 := A4.

Using the fact that X ′V −1 = QDP ′ and Σ = E (xnew x
′
new), we have

Ã1 = β′ ΣX ′V −1P̃ P̃ ′Xβ

= β′ ΣQDP ′P̃ P̃ ′Xβ.

After some simple algebra, we obtain

QDP ′P̃ =

(
dσ(1)

d2
σ(1) + λ

Q(σ(1)), . . . ,
dσ(r̃)

d2
σ(r̃) + λ

Q(σ(r̃))

)
. (12)

Then,

Ã1 = β′ Σ

(
r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′

)(
r∑
s=1

dsP
(s)Q(s)′

)
β

= β′ Σ

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)

=

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ Q(σ(s))Q(σ(s))′β.

Let us now consider Ã2. We have∥∥∥x′newX ′V −1P̃ P̃ ′
∥∥∥2

= x′newX
′V −1P̃ P̃ ′P̃ P̃ ′(X ′V −1)′xnew

= x′newQDP
′P̃ P̃ ′PDQ′xnew.

According to formula (12), we obtain

QDP ′P̃ P̃ ′PDQ′ =

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Q(σ(s))Q(σ(s))′

and

x′newQDP
′P̃ P̃ ′PDQ′xnew =

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

x′newQ
(σ(s))Q(σ(s))′xnew

=

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2

.
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The last equality comes from the fact that Q(σ(s))Q(σ(s))′ is an idempotent
matrix. To conclude, we have

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)
.

Furthermore, recall that

Ã3 = β′X ′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′Xβ.

Since the expression of X ′V −1P̃ P̃ ′Xβ is also present in Ã1, we easily obtain

Ã3 =

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
Σ

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
.

8. Proof of Lemma 4 of the main manuscript

To begin with, let us recall the expression for Ã1 given in Lemma 2 above:

Ã1 =

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ Q(σ(s))Q(σ(s))′β.

We consider the following natural estimation ˆ̃A1 for Ã1:

ˆ̃A1 :=

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ̂ Q(σ(s))Q(σ(s))′β,

where Σ̂ = X ′X/n is the empirical covariance matrix.
We have

ˆ̃A1 =
1

n

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ̂ Q(σ(s))Q(σ(s))′β

=
1

n

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′QD2Q′ Q(σ(s))Q(σ(s))′β.

It is easy to see that

QD2Q′ Q(σ(s)) = d2
σ(s)Q

(σ(s)).

Therefore,

ˆ̃A1 =
1

n

r̃∑
s=1

d4
σ(s)

d2
σ(s) + λ

β′Q(σ(s))Q(σ(s))′β =
1

n

r̃∑
s=1

d4
σ(s)

d2
σ(s) + λ

∥∥∥Q(σ(s))Q(σ(s))′β
∥∥∥2

.
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Let us recall the expression for Ã2 given previously:

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)
.

A natural estimation of Ã2 is

ˆ̃A2 :=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

n∑
i=1

∥∥∥Q(σ(s))Q(σ(s))′xi

∥∥∥2

=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
XQ(σ(s))Q(σ(s))′Q(σ(s))Q(σ(s))′X ′

)
=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
XQ(σ(s))Q(σ(s))′X ′

)
=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
PDQ′Q(σ(s))Q(σ(s))′QDP ′

)
.

Note that
DQ′Q(σ(s)) = dσ(s)eσ(s),

where eσ(s) denotes the σ(s)-th vector of the canonical basis of Rr. As a result,

ˆ̃A2 =
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

Tr
(
Peσ(s)e

′
σ(s)P

′
)

=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

Tr
(
P ′Peσ(s)e

′
σ(s)

)
=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

.

An estimation for the quantity Ã3 is the following

ˆ̃A3 :=

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
Σ̂

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
.

We have the following relations

ˆ̃A3 =
1

n

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
X ′X

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)

=
1

n

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

XQ(σ(s))Q(σ(s))′β

)′( r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

XQ(σ(s))Q(σ(s))′β

)
.
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Since X = PDQ′, we have

XQ(σ(s))Q(σ(s))′β = dσ(s)Peσ(s)Q
(σ(s))′β = dσ(s)P

(σ(s))Q(σ(s))′β

and thus

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

XQ(σ(s))Q(σ(s))′β =

r̃∑
s=1

d3
σ(s)

d2
σ(s) + λ

P (σ(s))Q(σ(s))′β.

Last, we obtain

ˆ̃A3 =
1

n

(
r̃∑
`=1

d3
σ(`)

d2
σ(`) + λ

β′Q(σ(`))P (σ(`))′

)(
r̃∑
s=1

d3
σ(s)

d2
σ(s) + λ

P (σ(s))Q(σ(s))′β

)

=
1

n

r̃∑
`=1

d3
σ(`)

d2
σ(`) + λ

r̃∑
s=1

d3
σ(s)

d2
σ(s) + λ

β′Q(σ(`))P (σ(`))′P (σ(s))Q(σ(s))′β

=
1

n

r̃∑
`=1

d6
σ(`)

(d2
σ(`) + λ)2

β′Q(σ(`))Q(σ(`))′β

=
1

n

r̃∑
`=1

d6
σ(`)

(d2
σ(`) + λ)2

∥∥∥Q(σ(`))Q(σ(`))′β
∥∥∥2

.

9. Proof of Lemma 6 of the main manuscript

To simplify notations, let us put

u := ˆ̃A1, δ1 := Â1 − ˆ̃A1,

v := ˆ̃A2 + ˆ̃A3, δ2 := Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3).

With these notations the condition ˆ̃ρg ≥ ρ̂g reads

u+ δ1√
v + δ2

≤ u√
v
,

which is further equivalent to

δ2u
2 − 2uδ1v − δ2

1v ≥ 0.

The discriminant in the u variable equals ∆ = 4δ2
1v(v+ δ2) and is positive. The

above second order inequation is thus satisfied for∣∣∣∣u− δ1
δ2
v

∣∣∣∣ ≥ δ1
δ2

√
v(v + δ2).

Note that the case

u ≤ δ1
δ2
v − δ1

δ2

√
v(v + δ2) < 0
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is not possible, since u ≥ 0. The only possible case is therefore

u ≥ δ1
δ2
v +

δ1
δ2

√
v(v + δ2),

which further gives the desired statement when dividing by δ1 6= 0.

10. Proof of Corollary 1 of the main manuscript

Proof of 1.

Let us denote R :=
Ĉov

(
Ỹnew, Ynew

)
Ĉov

(
~Ynew, Ynew

) and b :=
Var

(
Ỹnew

)
Var

(
~Ynew

) . Then the condi-

tion on the estimated covariances and variances writes

R ≥ b

(
1 +

√
1 +

1

b

)
,

which is equivalent to ˆ̃ρg ≥ ρ̂g by Lemma 6 of the main manuscript. Moreover,
if the above condition is satisfied, we deduce that

ˆ̃ρg
ρ̂g

=
R√
b
≥
√
b+
√

1 + b ≥ 1,

hence ˆ̃ρg ≥ ~̂ρg.

Proof of 2.
When interchanging Ỹnew and ~Ynew, the previously shown result implies that
~̂ρg ≥ ρ̂g if and only if

1

R
≥ 1

b

(
1 +
√

1 + b
)
,

and in this case we also have ~̂ρg ≥ ˆ̃ρg.

But
b

1 +
√

1 + b
=
√

1 + b − 1, and hence the above condition is equivalent

to R ≤
√

1 + b− 1, which is exactly the condition in the statement.

Proof of 3.
This result follows directly from the two previous points.
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11. Proof of Lemma 7 of the main manuscript

Using Lemma 6 of the main manuscript and proceeding in the same way as
in the proof of Lemma 2 of the main manuscript, we obtain

n ˆ̃A1 ∼
∑
s∈Ω̃1

d2
s

n2τ

r
,

n ˆ̃A2 + n
˜̂
A3 ∼

∑
s∈Ω̃1

d2
s

n2τ

r
,

n ˆ̃A4 = nÂ4 ∼
∑
s∈Ω1

d2
s

n2τ

r
,

and the stated result follows.

12. Extra results

Lemma 3. Let us consider same hypotheses as in Theorem 3 of the main
manuscript. Then, a natural estimator of the quantity ρ̃g is the following:

ˇ̃ρg :=
ˇ̃A1(

ˇ̃A2 + ˇ̃A3

)1/2 ( ˇ̃A4

)1/2
,

where

ˇ̃A1 =
1

nnew

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

(
rnew∑
α=1

f2
α < Z(α)Z(α)′β,Q(σ(s))Q(σ(s))′β >

)
,

ˇ̃A2 =
σ2
e

nnew

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

nnew∑
i=1

(
rnew∑
α=1

fα Q
(σ(s))′Z(α)W

(α)
i

)2

,

ˇ̃A3 =
1

nnew

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))′β

r̃∑
`=1

d2
σ(`)

d2
σ(`) + λ

Q(σ(`))′β

(
rnew∑
α=1

f2
α < Z(α)Z(α)′Q(σ(s)), Z(α)Z(α)′Q(σ(`)) >

)
,

ˇ̃A4 = Ǎ4.

Proof. In the same way as before, we consider the estimators ˇ̃A1, ˇ̃A2 and ˇ̃A3,
of Ã1, Ã2 and Ã3, respectively:

ˇ̃A1 :=
1

nnew

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ X ′newXnew Q
(σ(s))Q(σ(s))′β,

ˇ̃A2 :=
σ2
e

nnew

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
XnewQ

(σ(s))Q(σ(s))′Q(σ(s))Q(σ(s))′X ′new

)
,

ˇ̃A3 =
1

nnew

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
X ′newXnew

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
.
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After some easy computations we can deduce the stated formulas.

Lemma 4. Let us consider same hypotheses as in Theorem 3 of the main
manuscript. Then we always have

B̃1(
B̃2 + B̃3

)1/2

B̃
1/2
4

≤ ˇ̃ρg ≤ ρoracleg ,

where

B̃1 = min
1≤s≤r̃

d2
σ(s)

d2
σ(s) + λ

min f2
α < ZZ ′β , Q̃Q̃′β >,

B̃2 = σ2
e r̃ rnew max

1≤s≤r̃

d2
σ(s)

(d2
σ(s) + λ)2

max f2
α max

1≤s≤r̃,α

∥∥∥Q(σ(s))′Z(α)W (α)
∥∥∥2

,

B̃3 = max
1≤s≤r̃

d4
σ(s)

(d2
σ(s) + λ)2

∥∥∥Q̃Q̃′β∥∥∥2

max f2
α r̃2,

B̃4 = B4.

The proof relies heavily on the proof of Lemma 4 of the main manuscript,

provided that we consider the expressions of ˇ̃A1, ˇ̃A2, ˇ̃A3 given in Lemma 3
above.

13. Extra comments on Section 3 of the main manuscript

13.1. About the conditions

In the manuscript, we assume

d2
1 ∼ nψ, with 0 < ψ ≤ 1,

d2
r ∼ nη, with η ≤ ψ ≤ 1 and η and ψ not depending on n.

Recall that un ∼ vn means that un
vn
−→ 1 when n → ∞. Besides, we also

consider that

‖QQ′β‖2 ∼ n2τ , with τ < η and τ not depending on n.

These conditions are largely inspired from Shao and Deng (2012). However,
we are mentioning the exact order of each term, since our goal in this section
is to study the behavior of the quantity ρ̂g, which is a ratio. For instance,

Condition C2 of Shao and Deng (2012) imposes ‖QQ′β‖2 = O(n2τ ) and is
somewhat more general than ours. On the other hand, in their Theorem 3,
Shao and Deng (2012) suppose d2

1 = O(n), whereas Fan and Lv (2008) assume
(in condition 4) d2

1 = O(nυ) with υ ≥ 0. Therefore, our condition on d2
1 can be

viewed as a compromise between the conditions considered in these two papers.
Note that all the results in the present paper remain valid even if ψ > 1. Last,
our condition on d2

r is inspired from condition C1 of Shao and Deng (2012).
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13.2. About the tuning parameter λ

The setting λ → ∞ when p → ∞ is somewhat classical in genomics. The
heritability h2 of a quantitative character is only approximately known by ge-
neticists, and it is well known that the Ridge regression can be interpreted in
a Bayesian framework, assuming same variance on each regressor. As a conse-
quence, in order to obtain an estimated value of λ, the signal (linked to h2) is
generally spread out accross all the regressors. This leads to a tuning parame-
ter which diverges to +∞ and the β̂k’s are more and more shrinked when the
number of regressors increases (see for instance our section on the regularization
parameter in Rabier et al. (2016)).

13.3. About the extra conditions

Let us also give a few comments regarding the conditions (C1-C2-C3-C4-
C5-C6). Under (C2), the squared L2 norm of the vector containing the largest
singular values ds for s ∈ Ω1 may diverge to +∞ at a rate slower than λ.
According to (C3), the squared L2 norm of the vector whose components are the
square of the smallest singular values may diverge to +∞ at a rate slower than
λ2. Condition (C4) assumes that the ratio r/n2τ diverges faster to +∞ than
the tuning parameter λ. Last, (C5) and (C6) impose that the number of large
singular values and the number of intermediate singular values are bounded. In
other words, when p > n, the rank r ≤ n of the matrix X will diverge to +∞ if
and only if the number of small singular values tends to +∞.
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Table 1: Comparison among different estimators of the phenotypic accuracy as a function of
the number of siblings in the TRN sample (TRN and TST samples based on the same number
of generations). The chromosome is of length 1M and 2 QTLs are located at 3cM and 80cM
with effects +1 and −2, respectively (n = 500, nnew = 100, σ2

e = 1). Emp. Acc. refers to the
empirical phenotypic accuracy. The standard errors for the estimates are given in brackets.

Nb Markers Nb generations Nb Siblings Emp. Acc. ρ̂ph(β) ρ̌ph(β)

100

30
0 0.6967 (0.0049) 0.6969 (0.0001) 0.6915 (0.0015)

100 0.6941 (0.0049) 0.6890 (0.0001) 0.6772 (0.0018)

50
0 0.6804 (0.0049) 0.6765 (0.0001) 0.6731 (0.0015)

100 0.6868 (0.0054) 0.6572 (0.0001) 0.6806 (0.0017)

70
0 0.6708 (0.0055) 0.6717 (0.0001) 0.6654 (0.0017)

100 0.6708 (0.0056) 0.6717 (0.0001) 0.6654 (0.0017)

1,000

30
0 0.7015 (0.0047) 0.7155 (0.0001) 0.6889 (0.0017)

100 0.6735 (0.0052) 0.6739 (0.0001) 0.6549 (0.0024)

50
0 0.6683 (0.0053) 0.6597 (0.0001) 0.6576 (0.0021)

100 0.6305 (0.0054) 0.6064 (0.0002) 0.6213 (0.0027)

70
0 0.6713 (0.0059) 0.685 (0.0001) 0.6642 (0.0023)

100 0.6471 (0.0056) 0.6712 (0.0002) 0.6395 (0.0020)

2,000

30
0 0.6977 (0.0056) 0.6933 (0.0001) 0.6881 (0.0016)

100 0.6858 (0.0170) 0.7053 (0.0013) 0.6857 (0.00170)

50
0 0.6316 (0.0060) 0.6254 (0.0001) 0.6264 (0.0025)

100 0.6665 (0.0054) 0.6913 (0.0001) 0.6625 (0.0019)

70
0 0.4174 (0.0078) 0.4600 (0.0004) 0.4095 (0.0041)

100 0.6665 (0.0053) 0.6913 (0.0001) 0.6625 (0.0019)
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Table 2: Comparison among different estimators of the phenotypic accuracy, in presence of
a mixture of major genes and small QTLs (50 generations, n = 500, nnew = 100, σ2

e = 1).
Three scenarios considered (a) 2 large QTLs with effects +0.5 and −0.6, 98 small QTLs
with the same effect +0.07, (b) 2 large QTLs with effects +1 and −0.7, 98 small QTLs with
the same effect +0.1, (c) 2 large QTLs with effects +2 and −2, 98 small QTLs with the
same effect +0.1. The chromosome is of length 1M and the large QTLs are located at 3cM
and 80cM, whereas the small QTLs are located every centimorgan (except at 3cM and 80cM).

β̂LASSO, β̂ADLASSO, β̂GPLASSO refer to the LASSO, Adaptative LASSO and Group LASSO
estimators of β, respectively. Emp. Acc. refers to the empirical phenotypic accuracy. The
standard errors for the estimates are given in brackets.

Nb markers Method Scenario (a) Scenario (b) Scenario (c)

100

Emp. Acc. 0.5479 (0.0068) 0.7012 (0.0051) 0.8074 (0.0034)
ρ̂ph(β) 0.5362 (0.0001) 0.6900 (0.0001) 0.8013 (0.0001)

ρ̂ph(β̂LASSO) 0.3792 (0.0050) 0.6096 (0.0027) 0.7614 (0.0014)

ρ̂ph(β̂ADLASSO) 0.5400 (0.0040) 0.6678 (0.0018) 0.8049 (0.0014)

ρ̂ph(β̂GPLASSO) 0.3500 (0.0046) 0.5909 (0.0026) 0.7419 (0.0014)
ρ̌ph(β) 0.5296 (0.0030) 0.6868 (0.0026) 0.7962 (0.0019)

ρ̌ph(β̂LASSO) 0.3628 (0.0055) 0.6016 (0.0038) 0.7550 (0.0026)

ρ̌ph(β̂ADLASSO) 0.5313 (0.0045) 0.6942 (0.0029) 0.7999 (0.0022)

ρ̌ph(β̂GPLASSO) 0.3370 (0.0051) 0.5720 (0.0036) 0.7324 (0.0027)

1,000

Emp. Acc. 0.5867 (0.0072) 0.7374 (0.0048) 0.8307 (0.0032)
ρ̂ph(β) 0.5738 (0.0002) 0.7316 (0.0001) 0.8276 (0.0001)

ρ̂ph(β̂LASSO) 0.4187 (0.0054) 0.6575 (0.0029) 0.7935 (0.0014)

ρ̂ph(β̂ADLASSO) 0.5077 (0.0029) 0.6639 (0.0018) 0.7918 (0.0009)

ρ̂ph(β̂GPLASSO) 0.4127 (0.0050) 0.6526 (0.0034) 0.7843 (0.0021)
ρ̌ph(β) 0.5768 (0.0032) 0.7274 (0.0027) 0.8209 (0.0018)

ρ̌ph(β̂LASSO) 0.4055 (0.0058) 0.6411 (0.0039) 0.7833 (0.0023)

ρ̌ph(β̂ADLASSO) 0.4973 (0.0042) 0.6478 (0.0033) 0.7811 (0.0021)

ρ̌ph(β̂GPLASSO) 0.4036 (0.0052) 0.6401 (0.0033) 0.7773 (0.0021)

2,000

Emp. Acc. 0.5446 (0.0083) 0.7063 (0.0060) 0.8038 (0.0038)
ρ̂ph(β) 0.5502 (0.0001) 0.7132 (0.0001) 0.8029 (0.0001)

ρ̂ph(β̂LASSO) 0.3710 (0.0056) 0.6297 (0.0030) 0.7633 (0.0001)

ρ̂ph(β̂ADLASSO) 0.4867 (0.0026) 0.6445 (0.0015) 0.7594 (0.0001)

ρ̂ph(β̂GPLASSO) 0.3578 (0.0057) 0.6197 (0.0026) 0.7488 (0.0012)
ρ̌ph(β) 0.5378 (0.0033) 0.6972 (0.0029) 0.7937 (0.0021)

ρ̌ph(β̂LASSO) 0.3407 (0.0065) 0.5958 (0.0051) 0.7502 (0.0028)

ρ̌ph(β̂ADLASSO) 0.4627 (0.0047) 0.6190 (0.0040) 0.7525 (0.0022)

ρ̌ph(β̂ADLASSO) 0.3317 (0.0062) 0.5886 (0.0045) 0.7379 (0.0025)
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