Modular composition via complex roots

Abstract : Modular composition is the problem to compute the composition of two univariate polynomials modulo a third one. For polynomials with coefficients in a finite field, Kedlaya and Umans proved in 2008 that the theoretical complexity for performing this task could be made arbitrarily close to linear. Unfortunately, beyond its major theoretical impact, this result has not led to practically faster implementations yet. In this paper, we explore the particular case when the ground field is the field of computable complex numbers. Ultimately, when the precision becomes sufficiently large, we show that modular compositions may be performed in softly linear time.
Type de document :
Pré-publication, Document de travail
2017


https://hal.archives-ouvertes.fr/hal-01455731
Contributeur : Joris Van Der Hoeven <>
Soumis le : vendredi 3 février 2017 - 17:37:46
Dernière modification le : samedi 18 février 2017 - 01:14:17

Fichier

zcomp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01455731, version 1

Citation

Joris Van Der Hoeven, Grégoire Lecerf. Modular composition via complex roots. 2017. <hal-01455731>

Partager

Métriques

Consultations de
la notice

66

Téléchargements du document

13