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Université d’Évry Val d’Essonne
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On a probability space (Ω,A,Q) we consider two filtrations F ⊆

G and a G stopping time θ such that the G predictable processes
coincide with F predictable processes on (0, θ]. In this setup it is well-
known that, for any F semimartingale X, the processXθ− (X stopped
“right before θ”) is a G semimartingale. Given a positive constant T ,
we call θ an invariance time if there exists a probability measure P

equivalent to Q on FT such that, for any (F,P) local martingale X,
Xθ− is a (G,Q) local martingale. We characterize invariance times
in terms of the (F,Q) Azéma supermartingale of θ and we derive a
mild and tractable invariance time sufficiency condition. We discuss
invariance times in mathematical finance and BSDE applications.

1. Introduction. On a probability space (Ω,A,Q) we consider two filtrations F ⊆ G

of sub-σ-algebras of A and a G stopping time θ. We suppose the condition (B) that the
G predictable processes coincide with the F predictable processes on (0, θ]. In this setup it
is well-known that, for any (F,Q) local martingale X, the process Xθ− (X stopped “right
before θ”) is a (G,Q) special semimartingale, whose drift part can be deduced from the
Jeulin and Yor (1978) formula. In this paper, given a positive constant T , we study the
condition (A) that there exists a probability measure P equivalent to Q on FT such that,
for any (F,P) local martingale X, the process Xθ− is a (G,Q) local martingale. If such a
probability measure P exists, we call θ an invariance time and P an invariance measure.

One way of dealing with the above martingale invariance problem (we will propose two
approaches to it in the paper) is to investigate the conditions under which the enlargement
of filtration Jeulin-Yor formula can be compensated by the Girsanov formula of an equiva-
lent change of probability measure. The Jeulin-Yor formula, initially proved by projection
computations, has long been supposed to be affiliated with the Girsanov formula. Yoeurp
(1985) gives a formal proof that the Jeulin-Yor formula can be obtained by the so-called
generalized Girsanov formula (between non absolutely continuous probability measures).
Actually, according to Song (1987, 2013), not only the Jeulin-Yor formula, but most of the
formulas in enlargement of filtration, can be retrieved by the generalized Girsanov formula.
However, the methodologies of the above-mentioned papers are not applicable to the study
of the condition (A), notably because they operate in an enlarged probability space and
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2 S. CRÉPEY AND S. SONG

with a non absolutely continuous probability measure. Hence, a new approach is required
for our problem.

Besides their theoretical interest, invariance times are closely linked to questions raised
from recent mathematical finance developments. Since the occurrence of the global financial
crisis, the theoretical research on random times has seen a vigorous revival in relation with
the field of default risk modeling, viewed under different angles: no arbitrage, pricing and
hedging of credit derivatives, counterparty risk, insider trading, etc.. See Nikeghbali and Yor
(2005a), Jeanblanc and Song (2011, 2013), Aksamit, Choulli, Deng, and Jeanblanc (2013,
2014), Kardaras (2014), Song (2016b), Li and Rutkowski (2014), Fontana, Jeanblanc, and
Song (2014) and Acciaio, Fontana, and Kardaras (2016), among others. Invariance times
yield a class of models of default times for which intensity-based defaultable asset pricing
formulas can be obtained beyond the classical but restrictive “immersion” setup (see Crépey
and Song (2015, 2016)).

Our main results are Theorem 3.1 and Theorems 3.2-3.3, which give necessary and
sufficient conditions, stated in terms of the Azéma supermartingale of θ, for P to be an
invariance measure and θ to be an invariance time, respectively. These theorems are estab-
lished in Sections 3.1 and 3.2 by reduction, a methodology introduced in Song (2016b) for
transferring properties in G into properties in F. However, the ensuing proofs do not directly
explain how a Girsanov drift can compensate a Jeulin-Yor drift. Given the importance of
that matter for the purpose of this work, we provide in Appendix C an alternative proof of
Theorem 3.1 based on that compensation.

The second main contribution of this work is Theorem 3.5. When applied to a de-
faultable asset, a basic no-arbitrage pricing formula explicitly involves the default time θ,
whereas it is only the intensity of θ that can be retrieved, by calibration, from market data.
To tackle this issue, Duffie, Schroder, and Skiadas (1996) have established a defaultable
asset pricing formula stated in terms of the intensity process (assumed to exist) of θ. From
a financial interpretation point of view, their intensity-based formula also shows that credit
risk can be valued as a shift in interest rates. However, the tractability of this formula is
subject to a technical no-jump condition at time θ. In a progressive enlargement of filtration
setup satisfying a restrictive immersion assumption, this no-jump condition is satisfied. Al-
ternatively, Collin-Dufresne et al. (2004) have proposed a reinterpretation of the Duffie et al.
(1996)’s formula exempt from no-jump condition, under the so-called survival measure. As
explained in Section 4.2, Theorem 3.5 provides a connection between the two approaches
by showing that, under mild conditions, the restriction to FT of the survival measure yields
an invariance measure. Theorem 3.5 also provides a tractable invariance time sufficiency
condition.

Several additional results are useful for the establishment of Theorem 3.5. In particular,
according to Theorems 3.2-3.3, the positivity of a tentative Q to P measure change density
on [0, T ], as well as the true martingale property on [0, T ] of the martingale part Q in
the predictable multiplicative decomposition of the Azéma supermartingale S of θ, are
key conditions for θ to be an invariance time. In Theorem 3.4, we characterize the above
positivity by the predictability of the time of first zero of S on the time interval [0, T ].
Theorem 3.6 provides a necessary and sufficient condition for the true martingale property
of Q.

Complementary results are provided for a better understanding of invariance times.
The starting point of this paper is the condition (B), which is discussed in Section 2.1. As
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INVARIANCE TIMES 3

recalled in Section 2.2, the condition (A) appears naturally in the study of counterparty risk.
Theorem 3.7 characterizes in terms of S the local martingales under the invariance measure
P. This characterization plays a key role in Crépey and Song (2015). Section 4 studies
invariance times in several situations, comparing them with the so-called pseudo-stopping
times, the stopping times in Collin-Dufresne et al. (2004) and showing how invariance times
are involved in a variety of applications.

1.1. Basic Notation and Terminology. The real line, half-line and the nonnegative
integers are respectively denoted by R, R+ and N; B(R) and B(R+) are the Borel σ fields on
R and R+; λ is the Lebesgue measure on R+. Unless otherwise stated, a function (or process)
is real-valued; order relationships between random variables (respectively processes) are
meant almost surely (respectively in the indistinguishable sense); a time interval is random.
We do not explicitly mention the domain of definition of a function (or process) when it
is implied by the measurability, e.g. we write “a B(R) measurable function h (or h(x))”
rather than “a B(R) measurable function h defined on R”. For a function h(ω, x) defined
on a product space Ω×E, we usually write h(x) without ω (or ht in the case of a stochastic
process).

We employ the tools and terminology of the general theory of processes and of filtra-
tions as given in the books by Dellacherie and Meyer (1975) and He, Wang, and Yan (1992).
Footnotes are used for referring to comparatively standard results. For any semimartingale
X and any predictable process L integrable with respect to X, the corresponding stochastic
integral is denoted by

∫ ·
0 LtdXt =

∫
(0,·] LtdXt = L �X, with the usual precedence convention

KL � X = (KL) � X if K is another predictable process such that KL is integrable with
respect to X. The stochastic exponential of a semimartingale X is denoted by E(X) (in par-
ticular, E(X)0 = 1). We denote by X̄ = 1

X−

�X (whenever it exists) the so-called stochastic

logarithm of a positive semimartingale X, such that X = X0E(X̄). Given semimartingales
X and X ′, the bracket process [X,X ′] and its predictable counterpart 〈X,X ′〉 are defined
as in He et al. (1992, Definition 8.2). In particular, we use the convention [X,X ′]0 = 0.

For any càdlàg process X, for any random time τ (nonnegative random variable), ∆τX

represents the jump of X at τ. Following Dellacherie and Meyer (1975) and He et al. (1992),
we use the convention that X0− = X0 (hence ∆0X = 0) and we write Xτ and Xτ− for the
process X stopped at τ and before τ , respectively, i.e.

Xτ = X1[0,τ) +Xτ1[τ,+∞), Xτ− = X1[0,τ) +Xτ−1[τ,+∞).(1.1)

We call compensator of a stopping time τ the compensator of the process 1[τ,∞).
1 We say

that a stopping time τ is totally inaccessible (respectively, has an intensity) if it is positive
and if its compensator is continuous (respectively, absolutely continuous) on [0, τ ]. Given
a filtration G = (Gt)t∈R+

and a G stopping time τ, for A in Gτ , we denote by τA the G

stopping time2 1Aτ + 1Ac∞.
We work with semimartingales on a predictable set of interval type I as defined in He

et al. (1992, Sect. VIII.3). In particular, X is a local martingale on I (respectively Y = L �X

on I) means that

Xτn local martingale (respectively Y τn = L � (Xτn))(1.2)

1See He et al. (1992, Definition 5.21) for the notion of compensator of a locally integrable nondecreasing
process.

2Cf. Theorem 3.9 in He et al. (1992).
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4 S. CRÉPEY AND S. SONG

holds for at least one, or equivalently any, nondecreasing sequence of stopping times such
that ∪[0, τn] = I. The existence of such a sequence is ensured by He et al. (1992, Theorem
8.18 3)). From a computational point of view, stochastic calculus on predictable intervals
reduces to standard stochastic calculus on R+ for each of the processes stopped at τn. But
a process L can be integrable with respect to X on I without being locally integrable on
R+ if the stochastic integrals Y τn explode as n → ∞.

Given a filtration G and a probability measureQ, we denote by SI(G,Q) andMI(G,Q)
the respective sets of (G,Q) semimartingales and local martingales on a predictable interval
I (or R+, when no interval I is mentioned in the notation). The G predictable and optional
σ fields are denoted by P(G) and O(G).

Throughout the paper, Ω is a space equipped with a σ field A, Q is a probability
measure on A, G = (Gt)t∈R+

is a filtration of sub σ fields of A, θ is a G stopping time and
F = (Ft)t∈R+

is a subfiltration of G. Both filtrations F and G are supposed to satisfy the
usual conditions. Regarding the filtration F, we have to deal with two probability measures
Q and P. Accordingly, letters of the family “q” and “p” are respectively used for (F,Q) and
(F,P) local martingales. By default E refers to the Q expectation, whereas the P expectation
is denoted by EP.

2. Preliminaries.

2.1. The Condition (B). We consider the following:

Condition (B). For any G predictable process L, there exists an F predictable process L′,
called the F predictable reduction3 of L, such that 1(0,θ]L = 1(0,θ]L

′.

Remark 2.1 The equality 1(0,θ]L = 1(0,θ]L
′ is in the sense of indistinguishability. But, as

F satisfies the usual conditions, we can find a version of L′ such that the equality holds
everywhere.4

The condition (B) corresponds to a relaxation of the classical progressive enlargement
of filtration setup, where the bigger filtration G is given as the progressive enlargement by θ

of a reference filtration F. As compared with this classical case, the possibility to use a bigger
filtration G in the condition (B) is material, for instance, in the dynamic Marshall-Olkin
copula model of Crépey and Song (2016) (see Section 4.4 below).

As an immediate consequence of the condition (B), we have:5

{0 < θ < ∞} ∩ Gθ− = {0 < θ < ∞} ∩ Fθ−,

where we recall6 that

Gθ− = G0 ∨ σ {B ∩ {t < θ}, B ∈ Gt, t ∈ R+} , Fθ− = F0 ∨ σ {A ∩ {t < θ}, A ∈ Ft, t ∈ R+} .

But we can say more. We introduce the right-continuous7 filtration F = (F t)t∈R+
, where

(2.1) F t =
{
B ∈ A : ∃A ∈ Ft, B ∩ {t < θ} = A ∩ {t < θ}

}

3Also known as pre-default process of L in the credit risk literature (see e.g. Bielecki, Jeanblanc, and
Rutkowski (2009)).

4Cf. He et al. (1992, Theorem 4.26)) and Lemma 2.2 2).
5Cf. He et al. (1992, Corollary 3.23 2)).
6Cf. He et al. (1992, Definition 3.3, equation (3.3)).
7And complete under our assumption that F satisfies the usual conditions.
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(see Dellacherie et al. (1992, Chapitre XX, n◦75)).

Lemma 2.1 F, G and θ satisfy the condition (B) if and only if G is a subfiltration of F.

Proof. Suppose the condition (B). For any t ∈ R+ and B ∈ Gt, 1B1(t,∞) is a G pre-
dictable process, having a bounded F predictable reduction K such that 1(0,θ]1B1(t,∞) =
1(0,θ]K1(t,∞). Then 1B1{t<s≤θ} = Ks1{t<s≤θ}, hence

lim inf
s↓t

1B1{t<s≤θ} = lim inf
s↓t

Ks1{t<s≤θ}.

But lim infs↓t 1B1{t<s≤θ} = 1B1{t<θ} and lim infs↓tKs1{t<s≤θ} = (lim infs↓tKs)1{t<θ},

which proves B ∈ F t. Conversely (cf. Lemma 1 in Jeulin and Yor (1978)), suppose that G is a
subfiltration of F. For any t > 0, for any B ∈ Gt, let A ∈ Ft satisfy B∩{t < θ} = A∩{t < θ},
so that

1(0,θ]1B1(t,∞) = 1(0,θ]1A1(t,∞).

Note that 1A1(t,∞) is an F predictable process. For any B ∈ G0, 1(0,θ]1B1{0} = 0, which is
an F predictable process. Since the processes 1B1(t,∞) (t > 0, B ∈ Gt) and 1B1{0} (B ∈ G0)
generate the G predictable σ-algebra,8 this proves the condition (B).

The condition (B) is assumed everywhere in the sequel of the paper. Let o· and
p· denote the (F,Q) optional and predictable projections and let 〈·, ·〉 and [·, ·] denote the
(F,Q) optional and predictable brackets. We introduce, denoted by straight capital letters,
a number of processes related to θ. We write J = 1[0,θ), hence J− = 1{0<θ}1[0,θ]. The
fundamental tool to work with the condition (B) is the Azéma supermartingale S = oJ of θ,
i.e. St = Q(θ > t

∣∣Ft), t ∈ R+, with canonical Doob-Meyer decomposition S = S0 + Q− D,

where Q is an (F,Q) martingale starting from 0 while D is the (F,Q) dual predictable
projection of 1{0<θ}1[θ,∞). The most classical properties of S useful for this work are recalled
in Section A.

The proofs of the progressive of enlargement results in Jeulin and Yor (1978) or
Chapitre XX in Dellacherie, Maisonneuve, and Meyer (1992) only require that G is a sub-
filtration of F. Hence, in view of Lemma 2.1, all these results hold under the condition (B).
The next lemma gathers the main ones that we need in the sequel.

Lemma 2.2 1) For any G stopping time τ , there exists an F stopping time τ ′, which we
call the F reduction of τ , such that {τ < θ} = {τ ′ < θ} ⊆ {τ = τ ′}.

2) Let (E, E) be a measurable space. Any P(G) ⊗ E (respectively O(G) ⊗ E) measurable
function gt(ω, x) admits a P(F) ⊗ E (respectively O(F) ⊗ E) reduction, i.e. a P(F) ⊗ E
(respectively O(F)⊗ E) measurable function g′t(ω, x) such that 1(0,θ]g = 1(0,θ]g

′ (respec-
tively 1[0,θ)g = 1[0,θ)g

′) holds almost everywhere. Moreover, these relations can be made
to hold everywhere by the choice of suitable versions.

3) We have

Q ∈ M(F,Q) =⇒ Qθ− −
J−

S−
� 〈S, Q〉 ∈ M(G,Q).(2.2)

4) For any K ∈ S{S−>0}(F,Q) such that S− �K + [S,K] ∈ M{S−>0}(F,Q), we have Kθ− ∈
M(G,Q).

8Cf. Theorem 3.21 in He et al. (1992).
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6 S. CRÉPEY AND S. SONG

Conversely, for any M ∈ M(G,Q) with ∆θM = 0 on {θ < ∞}, any F optional reduction
M ′ of M is in S{S−>0}(F,Q), 1{S−>0}M

′
− is an F predictable reduction of M− and

S− �M ′ + [S,M ′] ∈ M{S−>0}(F,Q).
5) The Azéma supermartingale S admits the predictable multiplicative decomposition S =

S0QD, for the finite variation predictable factor D = E(−1{S−>0}
1
S−

� D) and the local
martingale factor Q defined by the pointwise limit

Q = lim
n→∞

E(
1
pS

� Q)ζn ,(2.3)

where (ζn)n∈N is the sequence that appears in (A.8). In particular, on the random set
{pS > 0}, we have Q = E( 1

pS
�Q), D = E(− 1

S−
� D) and

E(
1
pS

� D)E(−
1

S−
� D) = 1.(2.4)

If ST is positive, then Q = E( 1
pS

� Q) > 0 holds on [0, T ].

Proof. 1) is proven in Chapitre XX, n◦75 a) of Dellacherie et al. (1992); 3) is proven in
Chapitre XX, n◦77 b) of Dellacherie et al. (1992); 4) is proven in Song (2016b, Lemmas 6.5
and 6.8).

5) is proven in Song (2016b, Lemmas 3.9 and 3.10). Specifically, (2.4) is Song (2016b,
Lemma 3.9). In (2.3) the limits exist and the local martingale property of E( 1

pS
�Q)ζn passes

to the limit Q by virtue of Song (2016b, Lemma 3.10). Note that 1
S−

�D (resp. 1
pS
�Q) is well

defined on {S− > 0}, by (A.7) (resp. on {pS > 0}, by (A.8)).
Regarding 2), we first consider the question for processes, i.e. without the measurable

space (E, E). Let χ be a bounded G∞ measurable random variable and Y be the (càdlàg) G
martingale with terminal variable χ. By a classical result9 (see e.g. Dellacherie et al. (1992,
Chapitre XX n◦75 (75.2))), for every t ∈ R+, we have the almost sure identity

JtYt = JtE[χ|Gt] =
Jt

St
E[Jtχ|Ft] = JtXt,

where

Xt =
o(Jχ)t
St

1{St>0}.

By Dellacherie and Meyer (1975, Chapitre VI n◦47), the process o(Jχ) is càdlàg, so that,
actually, JX = JY holds in the indistinguishable sense. This proves the existence of an F

optional reduction for the G martingale Y .
Let C denote the class of all the bounded B(R+)⊗G∞ measurable functions L such that

G·oL admits an F optional reduction, where G·o· denotes the (G,Q) optional projection. We
can verify that C is a functional monotone class in the sense of the monotone class theorem
1.4 in He et al. (1992). It results from above that C contains all the random variables
1(a,b]χ, where a, b ∈ R+ and χ is a bounded G∞ measurable random variable. Therefore, by
the monotone class theorem, C contains all the bounded B(R+) ⊗ G∞-measurable random
variables. In particular, every bounded G optional process admits an F optional reduction.
By taking limits, the result is extended to general G optional processes.

9Known as the key lemma in the credit risk literature (see e.g. Bielecki et al. (2009, Lemma 3.1.2)).
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Since F satisfies the usual conditions, any evanescent measurable process is F pre-
dictable (Theorem 4.26 in He et al. (1992)). For any G optional process L with F optional
reduction K, there exists a negligible set O such that J−K = J−L holds everywhere out-
side O. Therefore, defining K̃ = K − (K − L)1O, the process K̃ is F optional and satisfies
J−K̃ = J−L everywhere.

We have thus proved the optional version of the part 2) of the lemma in the case of
processes. A standard reasoning by monotone class theorem proves the result in the presence
of the measurable space (E, E).

The predictable version of the part 2) of the lemma can be proved similarly. In fact,
the predictable version for processes (i.e. without the measurable space (E, E)) is precisely
the condition (B) (cf. the remark 2.1).

Recall the respective F predictable and optional Girsanov formulas10 involving the den-
sity process q of the measure change from the probability measure Q to some Q absolutely
continuous probability measure P:

Q bounded in M(F,Q) =⇒ Q−
1

q−
� 〈q,Q〉 ∈ M(F,P),(2.5)

respectively

P ∈ M(F,P) ⇐⇒ P ∈ S{q−>0}(F,Q) and q− � P + [q, P ] ∈ M{q−>0}(F,Q).(2.6)

Observe that the Jeulin-Yor formula (2.2) and Lemma 2.2 4) are formal analogs, in the
field of progressive enlargement of filtration, of these respective Girsanov measure change
formulas, the Azéma supermartingale S playing the role of the measure change density q.
Starting from the so-called generalized Girsanov formulas (between possibly non absolutely
continuous probability measures) and representing the Azéma supermartingale S as a “gen-
eralized density”, these formal analogies can be turned into proofs of the corresponding
enlargement of filtration formulas (see Yoeurp (1985) and Song (1987, 2013)).

Note that the classical formulation of the Jeulin-Yor formula is stated in terms of Qθ,

instead of Qθ− in (2.2), as

Q ∈ M(F,Q) =⇒ Qθ −
J−

S−
� (〈S, Q〉+B) ∈ M(G,Q),(2.7)

where B is the (F,Q) dual predictable projection of the process ∆θQ1{θ≤·} (cf. Jeulin and
Yor (1978, Theorem 1 and Lemma 4 b))). However, as visible in the proof of Theorem 1
in Jeulin and Yor (1978), the bracket 〈S, Q〉 in the Jeulin-Yor formula (2.2) is intrinsically
linked with Qθ−, rather than with Qθ.

The next result shows that F predictable and optional reductions of G predictable and
optional processes are uniquely defined on the random intervals {S− > 0} (which contains
θ on {0 < θ < ∞}, cf. (A.11)) and {S > 0}, respectively.

Lemma 2.3 Two F predictable (respectively optional) processes K and K̃ undistinguishable
on [0, θ] (respectively [0, θ)) are undistinguishable on {S− > 0} (respectively {S > 0}).

10Cf. He et al. (1992, Theorem 12.18).
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8 S. CRÉPEY AND S. SONG

Proof. Otherwise, the predictable section theorem11 (considering the predictable case
in the lemma) would imply the existence of an F predictable stopping time σ such that
E[1

Kσ 6=K̃σ
Sσ−1{σ<∞}] > 0, in contradiction with

E

[
1
Kσ 6=K̃σ

Sσ−1{σ<∞}

]
= E

[
1
K 6=K̃

S− � (1{σ>0}1[σ,+∞))
]

= E

[
1
K 6=K̃

J− � (1{σ>0}1[σ,+∞))

]
= E

[
1
Kσ 6=K̃σ

Jσ−1{σ<∞}

]
= 0.

The optional version of the lemma can be proven similarly.

For the (first) proof of Theorem 3.1 below, we need a refined comparison of the random
intervals {pS > 0} and {S− > 0}. Let

ς = inf{s > 0;Ss = 0}, η = inf{s > 0; pSs = 0, Ss− > 0}.(2.8)

Lemma 2.4 We have

η = inf{s > 0;Ss− = ∆sD > 0} = inf{s ∈ {S− > 0}; E(−
1

S−
� D)s = 0}.(2.9)

Moreover, we have η ≥ ς, η = ς on {η < ∞} and

(2.10) {S− > 0} \ {pS > 0} = [η].

In particular, η is F predictable.

Proof. The first equality in (2.9) results from (A.2). The stochastic exponential E(− 1
S−

�D)

vanishes at t in {S− > 0} if and only if

∆t

(
−

1

S−
� D

)
=

−1

St−
∆tD = −1, i.e. St− = ∆tD.

Hence,

inf{s ∈ {S− > 0}; E(−
1

S−
� D)s = 0} = inf{s ∈ {S− > 0};Ss− = ∆sD}

= inf{s ∈ {S− > 0};Ss− = ∆sD > 0} = inf{s > 0;Ss− = ∆sD > 0} = η,

which proves the second equality in (2.9). The remainder of the lemma is the consequence
of Lemma 3.2 (cf. also Lemmas 3.3 and 3.6) in Song (2016b).

Lemma 2.5 We have 1{pS=0} � Q = 0.

Proof. By (A.2), we have S− ≥ pS. Hence

1{pS=0} �Q = 1(ς,∞) �Q+ 1(0,ς]1{S−=0} � Q+ 1{pS=0,S−>0} �Q

= 1(ς,∞) �Q+ 1{Sς−=0}∆ςQ1[ς,∞) +∆ηQ1[ς,∞),

by Lemma 2.4. The first term is null because Q is constant on (ς,∞) (cf. (A.10)). The
second term is null because of Song (2016b, Lemmas 3.4 and 3.7). The third term is null
because (cf. (A.2) and Lemma 2.4) 1{η<∞}∆ηQ = 1{η<∞}1{Sς−>0,pSς=0}(Sς −

pSς) = 0.

11Cf. He et al. (1992, Theorem 4.8).
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INVARIANCE TIMES 9

2.2. Toward the Condition (A): Counterparty Risk BSDEs Motivation. This section,
for motivation mainly, can be skipped at no harm from the point of the theoretical devel-
opments of Section 3. More on applications will be delivered in Section 4. We consider:

- An exposure at default, or “recovery” of a bank upon the default of its counterparty,
of the form 1{θ<T}Gθ, where T > 0 is some maturity, θ represents the default time
of the counterparty and G is a G predictable process (for simplicity of presentation
here, see however the comment following (2.12)),

- A P(G)⊗ B(R) funding cost coefficient gt(ω, x) of the bank.

Assuming θ endowed with an intensity γ, the counterparty risk backward stochastic dif-
ferential equation (BSDE), which prices the exposure at default Gθ at θ (if < T ) and the
funding costs g until θ ∧ T , can be formulated as the following BSDE for some process Z

in S(G,Q):

(2.11)





ZT−1{T≤θ} = 0,

Zθ∧T− +
∫ ·∧θ∧T
0 (gs(Zs−) + (Gs − Zs−)γs) ds ∈ M(G,Q).

For the sake of conciseness, we present the counterparty risk BSDE under this slightly
unusual appearance, which is the equation (3.8) in Crépey and Song (2015, Theorem 3.1),
because this formulation is the most convenient for the discussion that follows. Moreover,
we only state the problem in its most basic form here. To be in line with applications, the
assumptions in Crépey and Song (2015) cover more general BSDEs with

G = Gt(x, u), g = gt(x, u),(2.12)

where the additional argument u corresponds to integrands in a stochastic integral repre-
sentation of the martingale part of Z. In particular, dependencies of G as of (2.12), where
the dependency in t is not necessarily of predictable type, make the corresponding form of
(2.11) a nonstandard BSDE.

In essence, the Duffie et al. (1996)’s approach to (2.11) would consist in forgetting
about θ there (or “sending θ to infinity”), which results in a simpler equation “without
θ”, where θ is only indirectly represented through its intensity γ. One then tentatively sets
Z = Z̃θ−, where Z̃ is a solution Z̃ to the simpler equation without θ. However, this only
yields a solution Z to (2.11) if Z̃ does not jump at θ. In the basic reduced-form setup
discussed in Section 2.2.1 below, this no-jump condition is satisfied. But, apart from this
restrictive situation, the no-jump condition is unverifiable and it does not hold in general.

One way out of this is to introduce a “reduced BSDE”, given a smaller filtration F

such that the condition (B) is satisfied. For any càdlàg process X on R+ (or any predictable
set of interval type), we write

X = X +
(
g′·(X−) + (G′ −X−)γ

′
)
� λ.(2.13)

Observe that, assuming the BSDE (2.11) has a solution Z and letting U = Z ′ denote an F
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10 S. CRÉPEY AND S. SONG

optional reduction of Z, the martingale term in the BSDE (2.11) satisfies

Zθ∧T−
t +

∫ t∧θ∧T

0

(
gs(Zs−) + (Gs − Zs−)

)
γsds

= U θ∧T−
t +

∫ t∧θ∧T

0

(
g′s(Us−) + (G′

s − Us−)γ
′
s

)
ds

= U
θ∧T−
t = (U

T−
)θ−t .

(2.14)

This suggests to solve the BSDE (2.11) with Lemma 2.2 4). Namely, we consider the
following BSDE for some process U in S{S−>0}(F,Q):

(2.15) UT−ST− = 0, S− � U
T−

+ [S, U
T−

] ∈ M{S−>0}(F,Q).

Based on Lemma 2.2 4), the following result is proved in Crépey and Song (2015).

Proposition 2.1 The BSDEs (2.11) and (2.15) are equivalent, in the following sense:
- If Z is a solution to the BSDE (2.11), then U = Z ′ is a solution to the BSDE (2.15);
- Conversely, if U is a solution to the BSDE (2.15), then Z = U θ− is a solution to the
BSDE (2.11).

In (2.15), θ is only indirectly represented, through γ′ in U (cf. (2.13)). In this sense, passing
from (2.11) to (2.15) removes θ from the equation. However, beyond the simple case where S
is continuous and nonincreasing so that [S, ·] = 0, this comes at the expense of an additional
bracket in the martingale condition of (2.15).

To untie the Gordian knot that we are facing here, let us suppose for a moment the
condition (A) stated in the beginning of Section 3 below, for some invariance measure P.
Under this condition, in view of (2.14), any solution U in S{S−>0}(F,P) to

(2.16) UT−ST− = 0, U
T−

∈ M{S−>0}(F,P)

yields a solution Z = U θ− to (2.11) (since Sθ− > 0, cf. (A.11)).
As compared with (2.11), this approach allows getting rid of θ in the equation and it

no longer comes at the expense of a more complicated martingale condition. In fact, the
martingale condition in (2.16) is essentially the same as the one in (2.11), modulo reduction.
From this point of view, the condition (A) and the related invariance measure P appear as
“deus ex machina” for dealing with (2.11). See Section 4.3 for a concrete application.

However, such an approach postulating the condition (A) raises two important issues:

1. How strong is the condition (A)?
2. Do we have equivalence, under the condition (A), between (2.16) and (2.11), and not

only (2.16) implies (2.11)? (for instance, for the application mentioned in Section 4.3
below, one really needs the equivalence).

These two questions were our initial motivation for the introduction and study of the con-
dition (A). Regarding the first one, a complete characterization of the condition (A) and
a mild sufficiency condition for it are established as Theorems 3.2-3.3 and Theorem 3.5,
respectively. The second question is given a positive answer in Crépey and Song (2015,
Theorems 3.1 and 4.3), based on Theorem 3.7 below regarding local martingales under an
invariance measure P.

imsart-aop ver. 2014/10/16 file: invariance-FINAL.tex date: February 3, 2017



INVARIANCE TIMES 11

2.2.1. Basic reduced-form setup. The immersion property, first introduced under the
name of (H) hypothesis in Brémaud and Yor (1978, page 284), means that all F local
martingales are G local martingales. In the historically much considered case of a Brownian
filtration F (see e.g. Mansuy and Yor (2006)), the immersion property implies that S is a

finite variation and predictable process. In this case, “U
T−

∈ M{S−>0}(F,Q)” suffices to
ensure the more involved martingale condition in (2.15), by Yoeurp’s lemma.12 Accordingly,
people tend to identify immersion as the “easy” case where an enlargement of filtration
approach without measure change is successful for dealing with pricing equations such as
(2.11) (see the comments before Section 3 in Duffie et al. (1996) or in Collin-Dufresne et al.
(2004, page 1379) and see the comments following (3.22) and (H.3) or the remarks following
Proposition 6.1 in Bielecki and Rutkowski (2001)). However, on the one hand, immersion
is unnecessarily strong for that purpose, because whatever happens after θ is irrelevant
here. On the other hand, even in the Brownian case, immersion is not enough to grant the
converse implication from (2.11) to (2.15). In fact, the key property granting the equivalence
between (2.11) and (2.15), including in models with jumps, is not immersion, but rather the
property that S is continuous and nonincreasing (see the comments following Proposition
2.1), which corresponds to the case of a pseudo-stopping time avoiding F stopping times
(cf. Section 4.1). In the sequel we call “basic reduced-form setup”, by contrast with the
“extended reduced-form setup” provided by the invariance times of this paper, the case
where S has no martingale component (i.e. Q = 0), θ has an intensity (hence S = S0 +D is
continuous, by Lemma A.1) and G is F progressively enlarged by θ. The simplest situation
of this kind is the Cox process framework (see Bielecki et al. (2009, Chapter 3)), in which
case immersion holds, but this does not necessarily need to be the case even in a basic
reduced-form setup.

3. Invariance Measures and Invariance Times. For a given triplet (F,G, θ) sat-
isfying the condition (B), for a given positive constant T , we introduce the following:

Condition (A). There exists a probability measure P equivalent to Q on FT such that, for
any (F,P) local martingale P , P θ− is a (G,Q) local martingale on [0, T ], i.e.

P ∈ M(F,P) =⇒ P θ− ∈ M[0,T ](G,Q).

If this condition is satisfied, we call the random time θ an invariance time and the related
probability measure P an invariance measure.

If θ is G predictable and F = G, then P = Q is an invariance measure. But we are
mostly interested in the case where θ has a nontrivial totally inaccessible part and θ is not an
F stopping time. The possibility to change the measure in the condition (A) is material, for
instance, in the dynamic Gaussian copula model of Crépey and Song (2016) (see Section 4.4
below).

To the best of our knowledge, the condition (A) has not been considered before in
the probabilistic literature. In relation with it, one may think of the density hypothesis of
Jacod (1987), initially formulated in a setup of initial enlargement and reconsidered in a
progressive enlargement setup in Jeanblanc and Le Cam (2009), under which there exists
a measure change to a probability that makes the reference filtration F and the random

12See He et al. (1992, Exercise 9.4 1)).
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12 S. CRÉPEY AND S. SONG

time θ independent. However, under an invariance measure P, F and θ do not need to be
independent. The spirit of invariance times is not to extend the case of independence by a
measure change.

Stopping before θ in the condition (A), rather than at θ in the case of pseudo-stopping
times (cf. Section 4.1), appears naturally in the motivating application of Section 2.2. On
top of that, there are (at least) two reasons for stopping before θ rather than at θ in the
condition (A). First, in view of the optional version of Lemmas 2.2 2) (under the condition
(B) which is assumed throughout the paper), P θ− is determined by the information of F,
which is not the case of P θ. Second, as explained after the equation (2.7), the bracket 〈S, Q〉
in the Jeulin-Yor formula (2.2) is intrinsically linked with Qθ−, rather than with Qθ.

This section is a theoretical study of the condition (A). Sections 3.1 and 3.2 establish
the invariance measure and invariance time characterizations of Theorems 3.1 and 3.2-3.3.
Section 3.3 studies the positivity of the stochastic exponential E(1{pS>0}

1
pS
�Q) that appears

as the tentative density process of the measure change in Theorem 3.2. Section 3.4 is about
the true martingale property of the multiplicative martingale part Q of S, which, under the
condition (A), will be seen in Theorems 3.2-3.3 to coincide with E(1{pS>0}

1
pS

� Q) on [0, T ].
Section 3.5 yields a characterization of local martingales under an invariance measure.

3.1. Azéma Supermartingale Characterization of Invariance Measures. The condition
(A) is an existence condition for invariance measures. Before characterizing this existence,
we consider in this section the conditions for a given probability measure P, equivalent to
Q on FT , to be an invariance measure.

Given a probability measure P equivalent to Q on FT , we denote by q the (F,Q)

martingale of the density functions dP
dQ

∣∣∣
Ft∧T

, t ∈ R+. We also introduce p = 1
q
and the

stochastic logarithms p̄ and q̄ such that

p = p0E(p̄), q = q0E(q̄), p̄0 = q̄0 = 0.(3.1)

In particular, p and p̄ (respectively q and q̄) are (F,P) (respectively (F,Q)) local martingales
on [0, T ].

Lemma 3.1 We consider a probability measure P equivalent to Q on FT with the notation
introduced in (3.1). The two conditions that follow are equivalent:

q = q0E(
1
pS

�Q) on {pS > 0} ∩ [0, T ],(3.2)
pS � q̄ = Q on [0, T ].(3.3)

If they hold, then 1{pS>0}
1
pS

is (F,Q) integrable with respect to Q on [0, T ].

Proof. Recalling (1.2) regarding the notion of a stochastic integral on the predictable
interval I = {pS > 0} ∩ [0, T ], we can interpret (3.2) by its versions stopped at each of the
ζn, where (ζn)n∈N is the sequence that appears in (A.8). Therefore, given the relationship
between the stochastic exponential and the stochastic logarithm, (3.2) is equivalent to

1(0,ζn∧T ] � q̄ = 1(0,ζn∧T ]
1
pS

�Q, ∀n ∈ N,(3.4)

which in turn is equivalent to

pS1(0,ζn∧T ] � q̄ = 1(0,ζn∧T ] � Q, ∀n ∈ N.
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INVARIANCE TIMES 13

In virtue of the dominated convergence theorem for stochastic integrals,13 this is equivalent
to

pS � q̄ = pS1{pS>0} � q̄ = 1{pS>0} �Q on [0, T ],

which is equivalent to (3.3) because of Lemma 2.5. The first part of the lemma is proved.
The second part holds because 1{pS>0}

1
pS

is (F,Q) integrable with respect to pS � q̄ on [0, T ].

A similar reasoning can be used for proving the following result.

Lemma 3.2 The process 1{pS>0}
1
pS

is (F,Q) integrable with respect to Q on [0, T ] if and
only if the multiplicative martingale part Q of S as of (2.3) is a Doléans-Dade exponential
on [0, T ], in which case the identity Q = E(1{pS>0}

1
pS

�Q) holds on [0, T ].

Proof. By (2.3), we have

1[0,ζn]
1
pS

�Q = 1[0,ζn]1{Q−>0}
1

Q−
�Q, ∀n ∈ N.

Hence, by He et al. (1992, Theorem 9.2), if 1{Q−>0}
1

Q−

�Q exists on [0, T ], then the process

1{pS>0}
1
pS

is (F,Q) integrable with respect to Q on [0, T ]. In addition, by the dominated
convergence theorem for stochastic integrals, we have on [0, T ] :

1{pS>0}
1
pS

� Q = 1{pS>0}1{Q−>0}
1

Q−
�Q = 1{Q−>0}

1

Q−
�Q,

as supp(d[Q,Q]) ⊆ {pS > 0}, by (2.3) and Lemma 2.5.
Conversely, suppose that 1{pS>0}

1
pS

is (F,Q) integrable with respect to Q on [0, T ].
Then, on [0, T ], we have by (2.3) the pointwise limits

Q = lim
n→∞

E(
1
pS

� Q)ζn = lim
n→∞

E(1{pS>0}
1
pS

�Q)ζn = E(1{pS>0}
1
pS

�Q),

by stochastic dominated convergence.

Theorem 3.1 below relates the conditions introduced in Lemma 3.1 to the invariance measure
property. The proof that follows is based on a reduction of all the computations from
G to F. The basic idea is to make use of Lemma 2.2 4) for establishing an equivalence
between the invariance measure property and an SDE (3.6) for the process p. Being based
on this reduction methodology, this proof does not directly explain how a Girsanov drift
can compensate a Jeulin-Yor drift. Given the importance of that matter for the purpose
of this paper, we provide in Section C an alternative proof of Theorem 3.1 based on this
compensation.

Theorem 3.1 A probability measure P equivalent to Q on FT is an invariance measure if
and only if (3.2) (i.e. (3.3)) holds.

Proof. The invariance measure property for P is equivalent to

(P θ−)T = (P T )θ− ∈ M(G,Q), ∀P ∈ M[0,T ](F,P).

13Cf. He et al. (1992, Theorem 9.30).
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14 S. CRÉPEY AND S. SONG

By Lemma 2.2 4), this holds if and only if

S− � P T + [S, P T ] ∈ M{S−>0}(F,Q), ∀P ∈ M[0,T ](F,P).

We proceed to transform this property into an SDE (3.6) for p. The integration by parts
formula and the Doob-Meyer decomposition of S yield

P TS = P T
− � S+ S− � P T + [P T ,S] = P T

− �Q− P T
− � D+ S− � P T + [P T ,S].

Hence, the preceding property is equivalent to

P TS+ P T
− � D ∈ M{S−>0}(F,Q), ∀P ∈ M[0,T ](F,P).(3.5)

Note that M[0,T ](F,P) = {Qp; Q ∈ M[0,T ](F,Q)}.14 For any Q ∈ M[0,T ](F,Q), an applica-

tion of the integration by parts formula to QT (pT− � D) yields

QT (pTS+ pT− � D) = (Qp)TS+ (Qp)T− � D+ (pT− � D) �QT + [QT , pT− � D].

In the right hand side, by Yoeurp’s lemma,15 the bracket [QT , pT− � D] is in M(F,Q), as is
also (pT− � D) �QT . Hence, (3.5) is equivalent to

QT (pTS+ pT− � D) ∈ M{S−>0}(F,Q), ∀Q ∈ M[0,T ](F,Q).

By Lemma B.1, this in turn is equivalent to

pTS+ pT− � D = p0S0 on {S− > 0} ∩ [0, T ].(3.6)

Noting that pS + p− � D = pS + (pS)−
1
S−

� D, we recognize in (3.6) the linear SDE for the

stochastic exponential of (− 1
S−

�D) with the initial condition p0S0 on {S− > 0} ∩ [0, T ], i.e.

(3.6) is equivalent to

pS = p0S0E(−
1

S−
� D) on {S− > 0} ∩ [0, T ].(3.7)

Recall {S− > 0} \ {pS > 0} = [η] (cf. (2.10) and (2.8)). Actually, the identity (3.7) is
equivalent to the analogous identity on the smaller set {pS > 0}∩ [0, T ]. To understand why,
note that, if η is finite, then Sη = 0, whereas (2.9) yields E(− 1

S−
� D)η = 0, so that one has

the trivial equality

(pS)η = p0S0E(−
1

S−
� D)η = 0.

Hence, the identity (3.7) is equivalent to

(3.8) pS = p0S0E(−
1
S−

� D) on {pS > 0} ∩ [0, T ],

i.e., in view of Lemma 2.2 5), to

pS0E(−
1

S−
� D)E(

1
pS

� Q) = p0S0E(−
1

S−
� D) on {pS > 0} ∩ [0, T ],

which is equivalent to (3.2), because S0E(−
1
S−

� D) is positive on {pS > 0}, by (2.10).

14Cf. He et al. (1992, Theorem 12.12).
15See He et al. (1992, Exercise 9.4 1)).
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3.2. Azéma Supermartingale Characterization of Invariance Times. In this section
we provide two (closely related) Azéma supermartingale characterizations of the condition
(A). Given Theorem 3.1, which designates E(1{pS>0}

1
pS
�Q) as the tentative F density process

of dP
dQ

for some invariance measure P, all needs be done for verifying the condition (A) is to

check the positivity and true martingale property of E(1{pS>0}
1
pS

� Q).

Theorem 3.2 The condition (A) holds if and only if

{
1{pS>0}

1
pS

is (F,Q) integrable with respect to Q on [0, T ] and

E(1{pS>0}
1
pS

� Q) is a positive (F,Q) true martingale on [0, T ].
(3.9)

If this is satisfied, then an invariance measure P is defined by the Q density E(1{pS>0}
1
pS
�Q)T

on FT and any invariance measure P is such that

qT = q0E(1{pS>0}
1
pS

�Q)TE(1{pS=0} � q̄)T .(3.10)

Proof. Suppose the existence of an invariance measure P. By Theorem 3.1, the F density
process q of dP

dQ
satisfies (3.2). By Lemma 3.1, the F predictable process 1{pS>0}

1
pS

is (F,Q)
integrable with respect to Q on [0, T ].

In order to show that the process Q = E(1{pS>0}
1
pS

� Q) (cf. Lemma 3.2) is a positive
(F,Q) true martingale on [0, T ], it is enough to represent it as the (F,Q) conditional expec-
tation process of a positive and Q integrable FT measurable random variable. By (3.2) and
(A.8), for any n ∈ N and t ∈ [0, T ], we have

q0E(1{pS>0}
1
pS

� Q)ζn∧Tt = q0E(
1
pS

� Q)ζn∧Tt

= q
ζn∧T
t = E[qζn∧T |Ft] = E

[
E[qT |Fζn∧T ]

∣∣∣Ft

]
.

(3.11)

On the one hand, noting that Q = 1+Q−1{pS>0}
1
pS
�Q, the dominated convergence theorem

for stochastic integrals yields

limn→∞Qζn∧T = 1 + limn→∞ 1(0,ζn∧T ] �Q
= 1 + limn→∞ 1(0,ζn∧T ]Q−1{pS>0}

1
pS

� Q = 1 +Q−1{pS>0}
1
pS

�Q = Q.

On the other hand,

lim
n→∞

E[qT |Fζn∧T ] = E
[
qT

∣∣ ∨n∈N (Fζn∧T )
]
holds in L1.

Hence, for t ∈ [0, T ], we obtain by passing to the limit in (3.11)

(3.12) E(1{pS>0}
1
pS

�Q)t = E

[
E
[qT
q0

| ∨n∈N Fζn∧T

] ∣∣∣Ft

]
,

where E
[
qT
q0

∣∣ ∨n∈N Fζn∧T

]
is a positive and Q integrable FT measurable random variable.

As a consequence, the process E(1{pS>0}
1
pS

� Q) is a positive (F,Q) uniformly integrable
martingale on [0, T ], which proves (3.9).

Conversely, supposing (3.9), we can define a probability measure P by an F density
process of dP

dQ
given as q = E(1{pS>0}

1
pS
�Q) on [0, T ], hence q̄ = 1{pS>0}

1
pS
�Q on [0, T ]. Given
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Lemma 2.5, this establishes (3.3). By Theorem 3.1, P is therefore an invariance measure,
which proves the condition (A).

Assuming the condition (A), (3.10) is the consequence of (3.3) (which implies 1{pS>0}q̄ =

1{pS>0}
1
pS
�Q) and of the formula E(q̄) = E(1{pS>0}q̄)E(1{pS=0}q̄) (cf. Jacod (1979, Proposi-

tion 6.4)).

In view of Lemma 3.2, Theorem 3.2 can be restated in the following form.

Theorem 3.3 The condition (A) holds if and only if the multiplicative martingale part
Q of S as of (2.3) is a positive (F,Q) true martingale on [0, T ]. In this case we have
Q = E(1{pS>0}

1
pS

�Q) on [0, T ].

In what follows we examine in the light of Theorems 3.1 and 3.2-3.3 the extreme cases
where F = G or P = Q in the condition (A).

Proposition 3.1 1) Q itself is an invariance measure for all T > 0 if and only if Q = 0.
2) If F = G and θ is totally inaccessible with Q(θ ≤ T ) positive, then the condition (A)

cannot hold on [0, T ].

Proof. 1) In the case where P = Q, we have q = q0 on [0, T ], i.e. q̄ = 0 on [0, T ]. Hence,
in view of Theorem 3.1 and of (3.3), P is an invariance measure for all T > 0 if and only if
Q = 0 on [0, T ].

2) In the case where F = G and θ is totally inaccessible, we have by (A.2) and Lemma A.1:

S = J, D is continuous, pS = J− and Q = J+ D− 1.

Hence, using the stochastic exponential formula,16

E(1{pS>0}
1
pS

�Q)t = E(Q)t = eQt

∏

s≤t

(1 + ∆sQ)e
−∆sQ = eJt+Dt−1Jt = eDtJt,

which vanishes at θ on {θ ≤ T}. Therefore, in view of Theorem 3.2, the condition (A)
cannot hold on [0, T ] unless Q(θ ≤ T ) = 0.

Example 3.1 Let G be the augmentation of the natural filtration of the jump process at
an exponential time θ relative to some probability measure Q.

For F = G (so that the condition (B) holds trivially), Proposition 3.1 2) shows that
the condition (A) does not hold. This can also be recovered directly from the definitions.
In fact, for any probability measure P equivalent to Q on FT , each (F,P) local martingale
P has to be an (F,P) stochastic integral with respect to the compensated jump process of
θ (cf. He et al. (1992, Theorem 13.20)). Thus, the process P θ− is absolutely continuous,
hence it is not a (G,Q) local martingale on [0, T ] unless it is constant on [0, T ]. Therefore,
P is not an invariance measure for F = G.

For F trivial, any G predictable process coincides with a Borel function before θ, so that
the condition (B) is satisfied. The constants are the only (F = {∅,Ω},Q) local martingales,
so that Q itself is an invariance measure and the condition (A) is satisfied. Consistent with
this conclusion in regard of Theorem 3.2, S is deterministic (equal to the survival function
of θ), Q = 0 and q = 1, hence (3.2) is satisfied.

In conclusion, an exponential time θ in its own filtration G is an invariance time for F
trivial but not for F = G.

16See e.g. He et al. (1992, Theorem 9.39).
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3.3. Positivity of E(1{pS>0}
1
pS

�Q) on [0, T ]. The positivity condition of E(1{pS>0}
1
pS

�

Q) on [0, T ] is a key element in the characterization of Theorem 3.2. There exist general
results on the positivity of a stochastic exponential.17 But, for our proof of Theorem 3.5
below, we need a different characterization. In this section we show that the positivity of
E(1{pS>0}

1
pS

� Q) (assuming that 1{pS>0}
1
pS

is (F,Q) integrable with respect to Q on [0, T ])
can be characterized in terms of the time ς of first zero of S (cf. (A.5)). Specifically, the
positivity of E(1{pS>0}

1
pS

� Q) reduces to the predictability of the F stopping time ς{ς≤T}.

Lemma 3.3 Let σ be an F predictable stopping time. Then, on the set {σ < ∞}, we have
pSσ = 0 if and only if σ ≥ ς.

Proof. By definition of the predictable projection and by nonnegativity of S, on the set
{σ < ∞}, it holds:

pSσ = 0 ⇐⇒ E[Sσ|Fσ−] = 0 ⇐⇒ Sσ = 0 ⇐⇒ σ ≥ ς.

Lemma 3.4 The F stopping times ς{ς<∞,Sς−=0} and ς{ς<∞,pSς=0} are predictable.

Proof. The assertion regarding ς{ς<∞,Sς−=0} comes from the proof of Theorem 9.41 in He
et al. (1992). For ς{ς<∞,pSς=0}, it suffices to note that

ς{ς<∞,pSς=0} = ς{ς<∞,Sς−=0} ∧ ς{ς<∞,Sς−>0,pSς=0} = ς{ς<∞,Sς−=0} ∧ η,

where η is the F predictable time introduced in Lemma 2.4.

Theorem 3.4 Assuming that 1{pS>0}
1
pS

is (F,Q) integrable with respect to Q on [0, T ], the
following conditions are equivalent to each other:

(i) E(1{pS>0}
1
pS

�Q) > 0 on [0, T ],
(ii) pSς = 0 on {ς ≤ T},
(iii) ς{ς≤T} is a predictable stopping time.

Proof. Note that

1{pSt>0}∆t

( 1
pS

� Q

)
= 1{pSt>0}

1
pSt

∆tQ = 1{pSt>0}

( St
pSt

− 1
)
, ∀t ∈ [0, T ],

where (A.2) was used in the last equality. Hence, E(1{pS>0}
1
pS
�Q) is positive on [0, T ] if and

only if

(3.13) 1{pSt>0}

( St
pSt

− 1
)
> −1, ∀t ∈ [0, T ].

Recalling (A.10) and (A.9), the only way (3.13) can break down is if ς ≤ T and pSς > 0,
which shows the equivalence between (i) and (ii).

To prove the equivalence between (ii) and (iii), let ξ = ς{ς<∞,pSς=0}, which is predictable
by Lemma 3.4. If

(3.14) pSς = 0 on {ς ≤ T},

then
ς{ς≤T} = (ς{ς<∞,pSς=0}){ς≤T} = ξ{ς≤T}

17Cf. He et al. (1992, Lemma 9.40).
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18 S. CRÉPEY AND S. SONG

and
{ς ≤ T} = {ς{ς<∞,pSς=0} ≤ T} = {ξ ≤ T}

is Fξ− measurable. Hence, by He et al. (1992, Theorem 3.29 7)), ς{ς≤T} = ξ{ς≤T} is pre-
dictable. Conversely, if ς{ς≤T} is predictable, as ς{ς≤T} ≥ ς, the condition (3.14) holds by
Lemma 3.3.

In particular, if ST is positive almost surely, then ς{ς≤T} = ∞, which is a predictable

stopping time. Therefore E( 1
pS

�Q) is positive on [0, T ], consistently with the last statement
in Lemma 2.2 5).

Example 3.2 Consider F = G and θ given as a totally inaccessible stopping time such that
Q(θ ≤ T ) > 0. Then ς = θ, so that the stopping time ς{ς≤T} is not predictable. Accordingly,

as seen in the proof of Proposition 3.1, E(1{pS>0}
1
pS

� Q) vanishes at θ on {θ ≤ T}.

3.4. True Martingale Property of Q. The second key ingredient in the characteriza-
tion of Theorem 3.2 is the (F,Q) true martingale property of E(1{pS>0}

1
pS

� Q) on [0, T ]
(on top of its positivity). Regarding the true martingale property of a Doléans-Dade ex-
ponential, one immediately thinks of Novikov-Kazamaki type conditions (see Larsson and
Ruf (2014) for a survey). However, under the condition (B), the true martingale property
of E(1{pS>0}

1
pS

� Q) or, more precisely, of the multiplicative martingale part Q of S as of
(2.3) (cf. Theorems 3.2-3.3), can be better studied by means of Azéma supermartingale
computations. Note that, in the case of any nonnegative (F,Q) local martingale (hence
supermartingale) Q, the (F,Q) true martingale property of Q on [0, T ] is equivalent to
EQT = EQ0.

The following example shows that there exists times θ for which Q is not a true
martingale.

Example 3.3 Let X be the inverse of a three dimensional (F,Q) Bessel process18 starting
from 1. Define X∗

t = sup0≤s≤tXs, for t ≥ 0, and let θ = sup{t ≥ 0 : Xt = X∗
t }. According

to Nikeghbali and Yor (2006), S = X
X∗ is the Azéma supermartingale of θ. We have Q = X,

which is not an (F,Q) true martingale on any non empty interval [0, T ].

Our ensuing study of the true martingale property of Q on [0, T ] is based on the
following properties. Note that E( 1

pS
� D) is well-defined on the set {pS > 0} and, since

θ ∈ {S− > 0} on {0 < θ < ∞} (cf. (A.11)), we have [0, θ) ⊆ {pS > 0}.

Lemma 3.5 1) The (F,Q) optional projection of the process E( 1
pS

� D)1[0,θ) is equal to the

process E( 1
pS

� D)S1{pS>0} = S0E(
1
pS

� Q)1{pS>0} = S0Q1{pS>0}.

2) The process E( 1
pS

� D)1[0,θ) is a (G,Q) local martingale on {pS > 0}.

3) If the family of the random variables E( 1
pS
�D)σ1{σ<θ}, for any F stopping time σ such that

[0, σ] ⊆ {pS > 0} ∩ [0, T ], is Q uniformly integrable, then Q is an (F,Q) true martingale
on [0, T ].

Proof. 1) Let σ be any F stopping time and χ be any bounded Fσ measurable random

18Cf. , Revuz and Yor (1999, Chapter V, Exercice (2.13)).
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variable. We have (using [0, θ) ⊆ {pS > 0})

E[χE(
1
pS

� D)σ1{σ<θ}] = E[χE(
1
pS

� D)σ1{σ<θ}1{σ∈{pS>0}}]

= E[χE(
1
pS

� D)σSσ1{σ∈{pS>0}}1{σ<∞}].

(3.15)

Hence, the (F,Q) optional projection of the process E( 1
pS

� D)1[0,θ) is equal to the process

E( 1
pS

� D)S1{pS>0}. Moreover, by Lemma 2.2 5), on {pS > 0}, we have

E(
1
pS

� D) S = E(
1
pS

� D) S0E(−
1

S−
� D)E(

1
pS

�Q) = S0E(
1
pS

� Q) = S0Q.

2) Note that S0E(
1
pS

� Q) is an (F,Q) local martingale on {pS > 0}. Let σ be a finite F

stopping time such that [0, σ] ⊆ {pS > 0} and S0E(
1
pS
�Q)σ is an (F,Q) uniformly integrable

martingale. Consider any G stopping time τ . Recalling that τ ′ is an F stopping time such
that τ ∧ θ = τ ′ ∧ θ (cf. Lemma 2.2 1)), we have

E[E(
1
pS

� D)τ∧σ1{τ∧σ<θ}] = E[E(
1
pS

� D)τ ′∧σ1{τ ′∧σ<θ}]

= E[E(
1
pS

� D)τ ′∧σSτ ′∧σ] = E[S0E(
1
pS

� Q)τ ′∧σ] = E[S0],

(3.16)

where part 1) was used in the second line. As a consequence, according to He et al. (1992,
Theorem 4.40), (E( 1

pS
� D)1[0,θ))

σ is a (G,Q) uniformly integrable martingale, which proves
the second assertion of the lemma.

3) By virtue of de la Vallée-Poussin theorem, there exists a nonnegative increasing convex
function φ such that

lim
t→∞

φ(t)

t
= ∞ and sup

σ
E[φ(E(

1
pS

� D)σ1{σ<θ})] < ∞,

where σ runs over the family of F stopping times such that [0, σ] ⊆ {pS > 0} ∩ [0, T ].
Applying the part 1) of the lemma and Jensen’s inequality, we obtain

sup
σ

E[φ(S0Qσ1{pSσ>0})] < ∞.

Hence, another application of the de la Vallée-Poussin theorem yields that S0Q is a mar-
tingale of class (D) on the set {pS > 0} ∩ [0, T ]. In view of (2.3), we have

Q = lim
n→∞

E(1{pS>0}
1
pS

� Q)ζn .

As ζn ∈ {pS > 0} for every n ∈ N (cf. (A.8)), then, on the one hand, the family of random
variables {S0E(1{pS>0}

1
pS

� Q)ζn∧T , n ∈ N} is uniformly integrable and, on the other hand,

S0E(1{pS>0}
1
pS

� Q)ζn∧T is a uniformly integrable martingale, for every n ∈ N. These two
properties imply the two following equalities

E[S0QT ] = lim
n→∞

E[S0E(1{pS>0}
1
pS

�Q)ζn∧T ] = E[S0],
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which proves that the nonnegative (F,Q) local martingale S0Q is an (F,Q) true martingale
on [0, T ]. We now write, for any 0 ≤ t ≤ T ,

S0E[QT |Ft] = E[S0QT |Ft] = S0Qt.

As Q = 1 on {S0 = 0}, we have in turn

E[QT |Ft] = E[QT |Ft]1{S0>0} + E[QT |Ft]1{S0=0}

= Qt1{S0>0} + 1{S0=0} = Qt,

which finishes the demonstration.

We now state a sufficient condition for the true martingale property of Q.

Theorem 3.5 If E[E(1{pS>0}
1
pS
�D)θ∧T ] < ∞, then Q is an (F,Q) true martingale on [0, T ].

Assuming ST positive, then θ is an invariance time. Assuming further θ positive, then the
nonnegative (G,Q) local martingale E(1{pS>0}

1
pS
�D)1[0,θ) (by Lemma 3.5 2) is a (G,Q) true

martingale on [0, T ], and an invariance measure P is provided by the restriction to FT of
the probability measure S with E(1{pS>0}

1
pS

� D)1[0,θ) as G density process of dS
dQ

.

Proof. If E[E(1{pS>0}
1
pS

� D)θ∧T ] < ∞, then the nonnegative (F,Q) local martingale E( 1
pS

�

D)1[0,θ) is a (G,Q) martingale of class (D) on {pS > 0} ∩ [0, T ]. The (F,Q) true martin-
gale property of Q on [0, T ] is then the consequence of Lemma 3.5 3). If, in addition, the
positivity of ST is assumed, then (A.10) implies that T < ς and [0, T ] ⊆ {pS > 0}, so that
Q = E( 1

pS
� Q) > 0 holds on [0, T ], by Lemma 2.2 5). Hence, Lemma 3.2 and Theorems

3.2-3.3 imply that θ is an invariance time. Assuming further θ positive, i.e. S0 = 1, Lemma
3.5 1) implies that the (F,Q) optional projection of the G density process of dS

dQ
is Q. But,

in view of Theorems 3.2-3.3, Q is the F density process of dP
dQ

for some invariance measure
P, which is therefore the restriction to FT of the probability measure S.

On top of the above sufficient condition for the true martingale property of Q on [0, T ],
we now look for a necessary and sufficient condition. According to He et al. (1992, Theorem
8.18) and Jacod (1979, Lemme 1.37), the first two conditions can always be made to hold in
what follows. Hence, only the third one is really material for the true martingale property.

Theorem 3.6 Suppose ST positive. Then, the (F,Q) true martingale property of Q on [0, T ]
holds if and only if there exists a nondecreasing sequence of F stopping times (σn)n∈N such
that

- ∪n[0, σn] = [0, T ],
- E( 1

pS
� D)σn is bounded, for any n ∈ N,

- The family of random variables (DT −Dσn)E(
1
pS
�D)σn , n ∈ N, is Q uniformly integrable.

In this case, the condition (A) is satisfied.

Proof. By the argument used at the end of the proof of Lemma 3.5, the (F,Q) true
martingale property of Q on [0, T ] is equivalent to E[S0QT ] = E[S0].

Let there be given a nondecreasing sequence of F stopping times (σn)n∈N satisfying
the first two conditions in the above.

On the one hand, by Lemma 2.2 5) (having assumed ST > 0), we have

E[S0QT ] = E[S0E(
1
pS

�Q)T ] = E[E(
1
pS

� D)TST ] = lim
n→∞

E[E(
1
pS

� D)σnST ],
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by the monotone convergence theorem.
On the other hand, we have [0, σn] ⊆ [0, T ] ⊆ {S > 0} ⊆ {pS > 0} (as ST > 0), so that,

for any n ∈ N, S0E(
1
pS
�Q)σn is a well-defined (F,Q) local martingale. Actually, S0E(

1
pS
�Q)σn

is a bounded martingale because, by Lemma 2.2 5), it is equal to E( 1
pS

� D)σnSσn , which is
bounded by assumption. As a consequence,

E[S0] = E[S0E(
1
pS

� Q)σn ] = E[E(
1
pS

� D)σnSσn ].(3.17)

Hence, Q is an (F,Q) true martingale on [0, T ] if and only if

lim
n→∞

(
E[E(

1
pS

� D)σnSσn ]− E[E(
1
pS

� D)σnST ]
)
= 0.

But, by definition of S, we have

E[E(
1
pS

� D)σnSσn ]− E[E(
1
pS

� D)σnST ] = E[E(
1
pS

� D)σn1{σn<θ≤T}]= E[(DT − Dσn)E(
1
pS

� D)σn ],

by definition of D as (F,Q) dual predictable projection of 1{0<θ}1[θ,∞).
19

Hence, the true martingale property of Q on [0, T ] is equivalent to the L1 convergence
to zero of the sequence of random variables (DT −Dσn)E(

1
pS
�D)σn . Now, as ST > 0, we have

E( 1
pS

� D)T < ∞. The random variables (DT − Dσn)E(
1
pS

� D)σn converge in probability to
zero. Therefore, their L1 convergence to zero is equivalent to their uniform integrability,20

which concludes the proof of the equivalence stated in the theorem.
Moreover, having assumed ST positive, Lemma 2.2 5) implies that Q = E( 1

pS
� Q) > 0

holds on [0, T ]. Hence, the condition (A) reduces to the (F,Q) true martingale property of
Q on [0, T ], by Theorems 3.2-3.3.

As shown in Lemma A.1, whenever θ has a (G,Q) intensity γ, we have D = γ′S−.λ and
E( 1

pS
�D) = eγ

′
�λ on [0, T ] (assuming ST > 0). Hence, in this case, Theorem 3.6 reduces to a

condition on γ.

Remark 3.1 In the case ST > 0, Theorem 3.5 can be deduced from Theorem 3.6. In fact,
given a sequence (σn)n∈N (which exists) satisfying the first two conditions in Theorem 3.6,
we have the inequalities

(DT − Dσn)E(
1
pS

� D)σn ≤

∫ T

σn

E(
1
pS

� D)sdDs ≤

∫ T

0
E(

1
pS

� D)sdDs.(3.18)

Since D is the (F,Q) dual predictable projection of 1{θ>0}1[θ,∞), we have

E[E(
1
pS

� D)θ∧T ] = E[1{θ=0}] + E[

∫ T

0
E(

1
pS

� D)sdDs] + E[E(
1
pS

� D)T1{T≤θ}].

Hence, the assumption of Theorem 3.5 implies that E[
∫ T

0 E( 1
pS

� D)sdDs] is finite. As a con-
sequence in view of (3.18), the sequence of random variables (DT − Dσn)E(

1
pS

� D)σn tends
to zero in L1, by the dominated convergence theorem. One can then apply Theorem 3.6 to
deduce that Q is an (F,Q) true martingale on [0, T ], as concluded in Theorem 3.5.

19Cf. He et al. (1992, Theorem 5.26 2)).
20Cf. He et al. (1992, Theorem 1.11).

imsart-aop ver. 2014/10/16 file: invariance-FINAL.tex date: February 3, 2017
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3.5. Local Martingales Under an Invariance Measure. In this section we characterize
the local martingales under an invariance measure P.

On top of the theoretical interest, the following result is the key for the demonstration
of the equivalence in Crépey and Song (2015) between the counterparty risk “full” (G,Q)
BSDE (2.11) and the “reduced” (F,P) BSDE (2.16) (cf. Section 2.2).

Theorem 3.7 Assume the condition (A), with an invariance measure P.

1) A process P is in M{pS>0}∩[0,T ](F,P) if and only if pS�P+[Q, P ] is in M{pS>0}∩[0,T ](F,Q).
2) If D is continuous, then pS = S− and the previous condition becomes

S−�P + [S, P ] ∈ M{S−>0}∩[0,T ](F,Q).(3.19)

In addition, we have

{S > 0} = {pS > 0} = {S− > 0} = [0, ς),(3.20)

where ς is the time of first zero of S (cf. (A.8)).

Proof. 1) On {pS > 0} ∩ [0, T ], we have

qP = P−�q + q−�P + [q, P ]
= P−�q + q−�P + q−

1
pS
�[Q, P ],

where the second equality comes from the formula (3.10) in Theorem 3.2. Hence, P is in
M{pS>0}∩[0,T ](F,P), i.e. qP is in M{pS>0}∩[0,T ](F,Q),21 if and only if q−�P + q−

1
pS
�[Q, P ] is

in M{pS>0}∩[0,T ](F,Q).
Consider the sequence (ζn)n∈N introduced in (A.8). Let (σn)n∈N be a nondecreasing

sequence of F stopping times tending to infinity and reducing q− and its inverse to bounded
processes on [0, T ]. By definition of a local martingale on a predictable interval (cf. (1.2)),
the above condition on P can be stated as

q−�P
ζn∧σn + q−

1
pS
�[Q, P ]ζn∧σn ∈ M[0,T ](F,Q), ∀n ∈ N.

As pS and q− are bounded away from 0 on [0, ζn ∧ σn], this is equivalent to

pS�P ζn∧σn + [Q, P ]ζn∧σn ∈ M[0,T ](F,Q), ∀n ∈ N,

i.e.
pS�P + [Q, P ] ∈ M{pS>0}∩[0,T ](F,Q).

2) In the case where D is continuous, we have [D, ·] = 0 and pS = S− (cf. (A.3)), so that
the condition in part 1) is rewritten as (3.19). In order to establish (3.20), in view of (A.9),
all we need is showing {S− > 0} ⊆ [0, ς). Toward this aim, we apply the local martingale
characterization (3.19) to P = 1{0<ςn=ς<C}1[ς,∞), where (ςn)n∈N is the sequence defined in
(A.5) and C is a positive constant. Namely, we compute

S−�P + [S, P ] = Sς−1{0<ςn=ς<C}1[ς,∞) +∆ςS1{0<ςn=ς<C}1[ς,∞) = 0

21Cf. He et al. (1992, Theorem 12.12).
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(since Sς = 0). Hence, P satisfies (3.19), so that it is a bounded (F,P) martingale on
{S− > 0} ∩ [0, T ]. Noting that P0 = 0 and

Pςn∧T = 1{0<ςn=ς<C}1{ςn∧T≥ς} = 1{0<ςn=ς<C,ς≤T},

we conclude that
0 = EP[Pςn∧T ] = P[0 < ςn = ς < C, ς ≤ T ],

for every positive constant C. As a consequence, we have P[0 < ςn = ς ≤ T ] = 0. Thus
ςn < ς holds whenever ς ≤ T , under P as under Q. Hence, in view of (A.7):

- On {S0 > 0, ς ≤ T}, we have

{S− > 0} = ∪n[0, ςn] ⊆ [0, ς),

- On {S0 = 0}, we have
{S− > 0} = ∅ = [0, ς).

In both cases, we have {S− > 0} ⊆ [0, ς), which finishes the demonstration.

4. Invariance Times in Different Situations. In this section we review a variety
of situations involving invariance times.

4.1. Comparison with Pseudo-Stopping Times. In this section we study the connec-
tion between invariance times and pseudo-stopping times as of Nikeghbali and Yor (2005a).
In addition we assess the materiality of stopping before θ as opposed to at θ in the condition
(A).

Consider a (0,+∞)-valued random time θ. By Nikeghbali and Yor (2005a), it is an
(F,Q) pseudo-stopping time if and only if Qθ is a local martingale for any (F,Q) local
martingale Q. Clearly, if a pseudo-stopping time θ avoids the F stopping times, then it is
an invariance time satisfying the condition (A) for any positive constant T, with invariance
measure P = Q. It is also shown in Nikeghbali and Yor (2005a, Theorem 1 (3)) that θ is a
pseudo-stopping time if and only if A∞ = 1, i.e. if and only if S = 1− A, where A denotes
the F dual optional projection of 1[θ,∞). By contrast, Proposition 3.1 2) shows that Q itself
is an invariance measure for any positive constant T if and only if S = 1 − D (noting that
S0 = 1 here, as θ > 0). Both conditions coincide if and only if A = D. We recall that in the
case where S0 = 1 and D is continuous (i.e., in our setup, whenever θ is a (G,Q) totally
inaccessible stopping time), then A = D if and only if θ avoids the F stopping times. Hence,
in the case where S0 = 1 and D is continuous, there are two “orthogonal” cases:

- If θ has the avoidance property, then θ is a pseudo-stopping time if and only if Q itself
is an invariance measure;

- If θ is a pseudo-stopping time without the avoidance property, then Q itself cannot be
an invariance measure. This is due to the fact that a pseudo-stopping time is defined
in terms of stopping at θ, whereas invariance is defined in terms of stopping before θ.

Moreover, by comparison with pseudo-stopping times that are defined with respect
to the fixed probability measure Q, the additional flexibility of invariance times lies in the
possibility to consider the martingale property under a changed measure P. In fact, the
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24 S. CRÉPEY AND S. SONG

pseudo-stopping time condition is very restrictive. By contrast Theorem 3.5 shows that
invariance times are the rule rather the exception. Actually, the spirit of invariance times
is not to define one more fancy class of random times, but rather to show that a reduction
of filtration methodology can be useful very broadly, much beyond the basic reduced-form
setup of Section 2.2.1.

The following examples provides more insight on the relationship between pseudo-
stopping times and invariance times.

Example 4.1 Fix a filtration F satisfying the usual conditions. For i = 1, 2, let σi > 0 be
a finite F stopping time with bounded and continuous compensator vi. Assuming σ2 > T ,
define θ = 1Aσ1 + 1Acσ2, for some random event A independent of F∞ such that α =
Q(A) ∈ (0, 1). Let G be the progressive enlargement of F with θ. Hence, θ intersects the F

stopping times σi. By independence of A, on [0, T ], we have

S = 1[0,σ1)α+ 1[0,σ2)(1− α),

D = αv1 + (1− α)v2,

Q = α(1[0,σ1) + v1) + (1− α)(1[0,σ2) + v2).

Hence, since σ2 > T, we have S and in turn pS ≥ 1− α > 0 on [0, T ], so that

E(
1
pS

� D) = e
1
pS
�D ≤ e

1

1−α
D

is bounded on [0, T ]. Therefore the conditions of Theorem 3.5 are fulfilled and θ is an
invariance time. In addition, for every bounded F optional process K, by independence of
A, we have

E[Kθ] = E[1AKσ1
+ 1AcKσ2

] = E[αKσ1
+ (1− α)Kσ2

],

hence
A = (1[θ,∞))

o = α1[σ1,∞) + (1− α)1[σ2,∞).

As the σi are finite, it follows that A∞ = 1 and θ is a pseudo-stopping time.

Example 4.2 To obtain an invariance time θ intersecting F stopping times without being
a pseudo-stopping time, we set

θ = 1A1
σ1 + 1A2

σ2 + 1A3
σ3,

where σ1 and σ2 are as in the example 4.1 and where the finite random time σ3 > 0 is
not an F pseudo-stopping time, for a partition Ai, i = 1, 2, 3, independent of F∞ and of σ3.
Assuming αi = Q(Ai) > 0, we have

A = (1[θ,∞))
o = α11[σ1,∞) + α21[σ2,∞) + α3(1[σ3,∞))

o,

where (1[σ3,∞))
o
∞ 6= 1, hence A∞ 6= 1, with positive Q probability. Hence, θ is not a pseudo-

stopping time. But the Azéma supermartingale of θ is given by

S = 1[0,σ1)α1 + 1[0,σ2)α2 +
o(1[0,σ3))α3 ≥ α2 on [0, T ],

so that θ is an invariance time, by the same arguments as in the example 4.1.
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4.2. Connection with the Survival Measure. In the financial context of defaultable
asset pricing, for deriving an intensity-based pricing formula exempt from the no-jump
condition in Duffie et al. (1996), an alternative to the reduction of filtration approach of
this paper is to work purely in the filtration G, but to switch from the risk-neutral measure
Q to some nonequivalent pricing measure.

To establish the connection between the two frameworks, let us postulate a G stopping
time θ in an enlargement setup satisfying the condition (B) (as everywhere in this paper),
with a (G,Q) intensity γ and ST > 0, so that E( 1

pS
�D) = E( 1

S−
�D) = eγ

′
�λ holds on [0, T ], by

Lemma A.1. Assuming further that eγ�λθ∧T is Q integrable (this is the basic assumption in
Collin-Dufresne et al. (2004)), then all the conditions of Theorem 3.5 are satisfied. Hence,
by application of this theorem, we conclude that θ is an invariance time, that the process
eγ�λ1[0,θ) is a (G,Q) true martingale on [0, T ] and that an invariance measure P is provided

by the restriction to FT of the “survival measure” S with eγ�λ1[0,θ) as G density process of
dS
dQ

(the “survival measure” idea and terminology were first introduced and used for different
purposes in Schönbucher (1999, 2004)).

Put differently, if the default time θ in Collin-Dufresne et al. (2004) also satisfies the
condition (B), then the condition (A) is satisfied and the restriction to FT of the survival
measure S is an invariance measure. This establishes the connection between the notions of
invariance and survival measures. In particular, this shows that, even though S and Q are
not equivalent (not even in a basic reduced-form setup as of Section 2.2.1), their restrictions
to FT are equivalent.

Assuming that eγ�λθ∧T is Q integrable, Collin-Dufresne et al. (2004) obtain an intensity-
based (G,S) pricing formula exempt from the no-jump condition in Duffie et al. (1996). A
no-arbitrage interpretation of the survival measure S is given in Fisher, Pulido, and Ruf
(2015), who use it to model financial assets that may potentially lose value relative to each
other at time θ.

4.3. BSDEs of Counterparty Risk. Invariance times make the filtration reduction
technique particularly efficient for dealing with BSDEs with random terminal time (this
was actually our initial motivation for the introduction of invariance times, cf. Section 2.2).
For instance, in the two-part paper by Bichuch, Capponi, and Sturm (2015), where F is a
Brownian filtration and G is F progressively enlarged by the default times of a bank and
its counterparty, the analysis can be drastically simplified by converting, by an application
of Crépey and Song (2015, Theorem 4.3), their main jump BSDE (17) (or likewise (18)) in
Part I, formulated with respect to the enlarged filtration G on the time interval [0, θ ∧ T ],
into a continuous BSDE with respect to the reference filtration F on the time interval [0, T ].
The two BSDEs are equivalent but the continuous one is of course much simpler to study.
The related PDE also becomes continuous. Without jumps, the proofs of all the technical
results in their work, i.e. the BSDE well-posedness and comparison theorems A.2 and A.3
in part I and the PDE unique viscosity solution theorem 3.2 in part II (or rather their con-
tinuous analogues), become a matter of referring to standard continuous BSDE and PDE
results.

The reformulation of the “full” (G,Q) BSDE (2.11) as the “reduced” (F,P) BSDE
(2.16) can also represent a significant improvement with numerical solutions in view. In the
above example, it implies that standard numerical schemes without jumps can be used for
solving the problem (cf. Bichuch, Capponi, and Sturm (2015, Remark 3.4 in Part II)).
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4.4. Dynamic Copulas. A singular point in the field of counterparty risk is when the
underlying contracts are credit derivatives, due to the extreme wrong-way risk effects that
occur, in the form of frailty and contagion, between the credit risk of the counterparty
and the credit risk of the underlying market (credit in this case) exposure. In models of
“instantaneous contagion” where the counterparty and the reference credit entities may
default at the same time, wrong-way risk may take the extreme form of an instantaneous
gap risk, which is not only a surge in the value of credit protection, but also credit protection
cash flows that fail to be paid to the bank by the defaulted counterparty at time θ.

To embed such credit frailty and contagion effects in their models, market practitioners
use (static) copulas for the default times of the reference entities. In the case of counterparty
risk on credit derivatives, one needs to model the default time of the counterparty jointly
with these, i.e. one needs a model for (θ0, θ1, . . . , θn), where θ0 = θ corresponds to the default
time of the counterparty of a bank involved in credit derivatives on reference entities with
the respective default times θi, i = 1, . . . , n. Moreover, as the counterparty risk and funding
valuation adjustments are in fact options on these, one needs to make the model dynamic in
some way. One possibility is to use “dynamic copula models” resulting from the introduction
of a suitable filtration on top of a static copula model. Related references in the literature
include the seminal working paper by Schönbucher and Schubert (2001) as well as, among
others, Brigo, Capponi, and Pallavicini (2014, Section 3), Bo and Capponi (2015), Lee and
Capriotti (2015) or Crépey and Song (2016) (cf. also Kusuoka and Nakashima (2012) and
Bielecki et al. (2009, Section 7.3)).

Now, in order to understand the nature of the credit dependence in a dynamic copula
model, one would like to address the following question: Given a stopping time θ relative
to the full model filtration G, when and how can one separate the information that comes
from θ from a “market filtration” F, such that, for consistency and tractability, some kind of
local martingale invariance property holds between F and G? Invariance times are precisely
designed in this spirit. Specifically, it is shown in Crépey and Song (2016) that:

- In the context of the dynamic Gaussian copula model, the condition (A) is achieved by
θ = θ0, for a suitable P 6= Q and for G given as the progressive enlargement of F by θ.

This model can be used as a “wrong-way risk model” of counterparty risk embedded
in credit derivatives, where the default intensities of the surviving reference names
and therefore the value of credit protection spike, as an effect of P 6= Q, at the default
time of the counterparty;

- In the context of the dynamic Marshall-Olkin copula (or “common-shock” model,
where the credit dependence stems from the possibility of simultaneous defaults), the
condition (A) is achieved by θ = θ0, for P = Q but G greater than the progressive
enlargement of F by θ, reflecting various possible joint default scenarios that may
prompt the default of the counterparty. This model can be used as a “gap risk model”
of counterparty risk embedded in credit derivatives, where promised cash-flows fail to
be paid at the counterparty default time θ in joint default scenarios.

(cf. Figure 7 in Crépey and Song (2016, preprint version)).

4.4.1. An Open Problem. A subfiltration F satisfying the condition (B) is considered
as given everywhere in this paper. As an open problem related to invariance times, there
is the question of finding a subfiltration F of a given full model filtration G such that the
condition (B) (before considering (A)) is satisfied. Suitable subfiltrations F can be worked-
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out on a case-by-case basis in the above dynamic copula models. But, beyond a necessary
condition which is derived in Song (2016b, Sect. 9), we have no constructive methodology
to offer in this regard.

Conclusion. From the enlargement of filtration literature of the seventies, two facts
were known. First, the study of progressive enlargement of a filtration with a random time
θ is “easy” before θ. Second, the Jeulin-Yor formulas for the semimartingale decomposition,
in a progressively enlarged filtration, of martingales in a smaller filtration F, are similar to
the Girsanov measure change formulas, but the Jeulin-Yor and Girsanov formulas are not
equivalent to each other, mainly due to integrability reasons at time θ.

In this paper we characterize the random times θ such that the local martingale prop-
erty is preserved for a process stopped before θ under filtration enlargement and equivalent
change of measure. The corresponding random times, called invariance times, make the
filtration reduction technique particularly efficient for dealing with BSDEs with random
terminal time.

More broadly, this paper is a contribution to two parallel progressive enlargement
of filtration literatures, depending on whether a predictable or optional point of view is
considered:

- Ends of sets: predictable in Azéma (1972) versus optional in Jeulin and Yor (1978);
- Multiplicative decompositions of the Azéma supermartingale S of θ: predictable in
Jacod (1979) and Song (2016b) versus optional in Kardaras (2015);

- Representations of S under the form X
X∗ , for some positive local martingale X and

X∗ = sup0≤s≤·Xs, following Nikeghbali and Yor (2006) (cf. the example 3.3): for hon-
est times avoiding F (optional) stopping times in Kardaras (2014) versus F predictable
stopping times in Acciaio and Penner (2014) (and for general honest times in Song
(2016a));

- Deflators: predictable in Song (2016b) versus optional in Aksamit et al. (2013) or
Acciaio et al. (2016);

- Local martingale invariance properties: for processes stopped before θ, based on the
dual predictable projection D of θ, regarding the invariance times of this paper, versus
processes stopped at θ, based on the optional projection A of θ (and without measure
change), in the case of pseudo-stopping times in Nikeghbali and Yor (2005b).

From an application point of view, the relevance of stopping at θ (as for the study of no
arbitrage for an insider observing θ in Aksamit et al. (2013) or Acciaio et al. (2016)) or
before θ (as for pricing counterparty risk) depends on the problem at hand. At the technical
level, the best approach to deal with the process Xθ− (as in the present paper) is to make
use of the predictable multiplicative decomposition of the Azéma supermartingale and more
generally of the reduction of filtration methodology. By contrast, the consideration of Xθ

leads naturally to optional computations.
As far as the pricing of defaultable securities is concerned, the (F,P) (or “extended

reduced-form”) approach based on this paper sheds light on the relation between three
streams of mathematical finance literature, namely the (G,Q) seminal approach by Duffie
et al. (1996), the nowadays standard (F,Q) approach in a basic reduced-form setup and the
(G,S) survival measure approach of Collin-Dufresne et al. (2004).
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APPENDIX A: ABOUT THE AZÉMA SUPERMARTINGALE

This section recapitulates the most classical properties of the Azéma supermartingale
S = oJ of a random time θ, where J = 1[0,θ), with canonical Doob-Meyer decomposition
S = S0 + Q − D (cf. Section 2.1). For more information, see Jeulin (1980) and Jeulin and
Yor (1978).

We have

p(J−) = S− on (0,∞)(A.1)

(see Jeulin (1980, page 63)) and

pS = Q− − D = S−∆Q = S− −∆D ≤ S−.(A.2)

In particular, if D is continuous, then

pS = S−.(A.3)

The (G,Q) compensator v of θ satisfies

v =

∫ ·∧θ

0

1

Ss−
dDs(A.4)

(see Jeulin (1980, Remark 4.5)).

Lemma A.1 The G stopping time θ is (G,Q) totally inaccessible if and only if S0 = 1 and

D is continuous (so that E(± 1
S−

�D) = e
± 1

S−
�D

holds on {S− > 0}). In the special case where

θ has a (G,Q) intensity γ, then 1(0,θ]
1
S−

�D = γ �λ and D = γ′S− �λ hold on R+ (where γ′

denotes an F predictable reduction of γ), hence 1
S−

�D = γ′�λ holds on {S− > 0} .

Proof. By definition in this paper (cf. Section 1.1), θ is (G,Q) totally inaccessible if and
only if S0 = 1 and the (G,Q) compensator v of θ is continuous on [0, θ]. In view of (A.4),
this happens if and only if S0 = 1 and ∆D = 0 on [0, θ) or, equivalently by the predictable
version of Lemma 2.3, if ∆D = 0 on {S− > 0}, i.e. if D is continuous on R+ (cf. Song (2016b,
Lemma 3.7)). If θ has an intensity γ, then (A.4) and Lemma A.1 show that 1(0,θ]

1
S−

�D = γ �λ

and D = γ′S− � λ.

Define

ς = inf{s > 0;Ss = 0}, ςn = inf

{
s > 0;Ss ≤

1

n

}
(n > 0).(A.5)

Then,

ς = inf{s > 0;Ss− = 0}(A.6)

(since S is a nonnegative supermartingale)22 and

ς = sup
n

ςn, {S− > 0} ∪ [0] = ∪n[0, ςn].(A.7)

22Cf. n◦17 Chapitre VI in Dellacherie and Meyer (1975).
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Likewise, {pS > 0} is a predictable interval and, according to Jacod (1979, (6.24) and (6.28)),
there exists a nondecreasing sequence (ζn)n∈N of F stopping times such that

{pS > 0} ∪ [0] = ∪n[0, ζn] and
1
pS

is bounded on (0, ζn] for every n.(A.8)

The following relations hold:

[0, ς) ={S > 0} ⊆ {pS > 0} ⊆ {S− > 0},(A.9)

whereas, on (ς,∞),

S = S− = pS = 0, D and Q are constant.(A.10)

We have

Sθ− > 0 on {0 < θ < ∞}(A.11)

(cf. Yor (1978, page 63) and see also Song (2016b, Lemma 3.7)).

APPENDIX B: EQUIVALENT CHANGES OF PROBABILITY MEASURES

The following folklore result of local martingales plays an important role in the paper.

Lemma B.1 Let U be a stopping time. Let X be a local martingale on [0, U ] such that, for
any locally bounded local martingale Y on [0, U ], X is orthogonal to Y , i.e. [X,Y ] is a local
martingale on [0, U ]. Then X = X0 on [0, U ].

Proof. Suppose without loss of generality that X is uniformly integrable. For any stopping
time σ > 0, let ǫ denote the sign of ∆σX. First assuming σ > 0 totally inaccessible, let u
be the compensator of ǫ1[σ,∞), so that (ǫ1[σ,∞) − u) is a locally bounded local martingale.
By the assumed orthogonality, as u is continuous (cf. He et al. (1992, Corollary 5.28)), the
process |∆σX|1[σ,∞) = [X, ǫ1[σ,∞) − u] must be a local martingale on [0, U ]. It is therefore
null. Likewise, for any predictable stopping time σ > 0 and bounded random variable χ

such that E[χ|Fσ−] = 0 (denoting the filtration by F = (Ft)t∈R+
), χ1[σ,∞) is a bounded

martingale and the orthogonality assumption implies that ∆σXχ1[σ,∞) is a martingale on
[0, U ]. Considering χ = ǫ1{σ<∞} − E[ǫ1{σ<∞}|Fσ−], we have

E[|∆σX|1{σ<∞}] = E[∆σXχ1{σ<∞}] = 0,

because E[ǫ1{σ<∞}|Fσ−] is Fσ− measurable and E[∆σX|Fσ−] = 0, by the predictability of
σ. In conclusion, the local martingale X is continuous at any predictable or totally inacces-
sible stopping time. Hence X is a continuous local martingale on [0, U ]. As a consequence,
by the orthogonality assumption applied to X itself, [X,X] is a continuous local martingale
on [0, U ]. Therefore [X,X] = [X,X]0 = 0 on [0, U ] and the lemma is proved.

In the rest of this section we derive measure change results of independent interest
(unrelated to enlargement of filtration), used for our second proof of Theorem 3.1 in Sec-
tion C. Given a probability measure P equivalent to the probability measure Q on FT ,

we use the notation p, p̄, q, q̄ introduced in (3.1). The (F,P) predictable bracket is denoted
by 〈·, ·〉P, whereas the (F,Q) predictable bracket is denoted as before by 〈·, ·〉 (of course,
when one argument is continuous, the two brackets coincide and we typically write 〈·, ·〉).
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The continuous and purely discontinuous parts (starting from 0) of a local martingale are
denoted by ·c and ·d.

There are two forms of the Girsanov theorem.23 The optional bracket Girsanov formula
states that, for any P in M(F,P),

(B.1) P − q � [p, P ]

is in M[0,T ](F,Q). The predictable bracket Girsanov formula states that, if P in M(F,P) is
such that [p, P ] is (F,P) locally integrable,24 then

Q(P ) := P − q− � 〈p, P 〉P = P − 〈p̄, P 〉P(B.2)

is in M[0,T ](F,Q). Lemmas B.2 and B.3 study the class of (F,Q) local martingales issued
from predictable bracket Girsanov transforms.

Lemma B.2 Let Q be an (F,Q) uniformly integrable martingale such that Q0 = 0 and, for
any bounded (F,P) martingale P starting from 0, Q(P )Q is an (F,Q) local martingale on
[0, T ]. Then Q = 0 on [0, T ].

Proof. For any bounded (F,P) martingale P starting from 0 and any F stopping time
σ ≤ T reducing the involved processes to integrability, we have

0 = E[Q(P )σQσ] = EP[(P − q− � 〈p, P 〉P)σQσpσ]

= EP[[Qp,P ]σ −Q− � 〈p, P 〉Pσ ] = EP[[Qp −Q− � p, P ]σ],
(B.3)

where the (F,P) martingale properties of P σ and (Qp)σ were used to pass to the second
line, in combination with the following predictable projection formula:25

EP[q− � 〈p, P 〉PσQσpσ] = EP[p·P(Qσpσ)q− � 〈p, P 〉Pσ ] = EP[Q− � 〈p, P 〉Pσ],

where ·p·P denotes the (F,P) predictable dual projection.
Hence, according to He et al. (1992, Theorem 4.40), [Qp−Q− � p, P ] is in M[0,T ](F,P).

Since this must hold for every bounded P in M[0,T ](F,P), Lemma B.1 implies

0 = Q0p0 = Qp−Q− � p = Qp− (Qp)− � (q− � p) on [0, T ].(B.4)

Consequently, Qp = Q0p0E(q− � p) = 0 (having assumed Q0 = 0).

Lemma B.3 For any (F,P) local martingale P starting from 0 such that [p, P ] is (F,P)
locally integrable, Q(P c) and Q(P d) are a continuous (F,Q) martingale and a purely dis-
continuous (F,Q) martingale on [0, T ], respectively. Hence, Q(P c) = (Q(P ))c and Q(P d) =
(Q(P ))d hold on [0, T ].

Proof. The predictable bracket Girsanov formula (B.2) shows that Q(P c) is a continuous
local martingale on [0, T ]. Regarding Q(P d), it is enough to prove that, for any continuous
(F,Q) martingale Q starting from 0, Q(P d)Q is in M[0,T ](F,Q). 26

23Cf. (2.6) and (2.5) and see He et al. (1992, Theorem 12.18).
24Cf. He et al. (1992, Theorem 12.13).
25Cf. He et al. (1992, Remark 5.3 and Theorem 5.26).
26Cf. He et al. (1992, Theorem 7.34).
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In fact, for any F stopping time σ ≤ T reducing the concerned processes to integrability,
as in the proof of Lemma B.2, we can write:

E[Q(P d)σQσ] = EP[[Qp −Q− � p, P d]σ],

where, by the integration by parts formula on [0, T ],

[Qp−Q− � p, P d] = [p− �Q+ [Q, p], P d] = 0,

because p− �Q+ [Q, p] is continuous, like Q. By He et al. (1992, Theorem 4.40), this proves
that Q(P d)Q is in M[0,T ](F,Q).

Lemma B.4 We have the following relationships between the measure change density pro-
cesses q, p and their stochastic logarithms q̄, p̄ :

q̄c = −Q(p̄c), ∆q̄d = −q∆p on [0, T ] .(B.5)

Proof. Note that, for any bounded F predictable process K and F predictable stopping
time σ ≤ T ,

E[Kσqσ∆σp] = EP[Kσ∆σp] = 0.

As a consequence, by Theorem 7.42 in He et al. (1992), there exists an (F,Q) purely dis-
continuous local martingale q on [0, T ] such that

∆sq = qs∆sp.(B.6)

By Lemma 3.4 in Karatzas and Kardaras (2007), we have the following relationship
between q̄ and p̄:

q̄ = −p̄+ 〈p̄c, p̄c〉+
∑

s≤·

(∆sp̄)
2

1 + ∆sp̄
.(B.7)

Moreover, on [0, T ], we have

∆tq =
∆tp

pt
=

pt−∆tp̄

pt− +∆tp
=

∆tp̄

1 + ∆tp̄
, hence [q, p̄d] =

∑

s≤·

(∆sp̄)
2

1 + ∆sp̄
.(B.8)

Using (B.7) and (B.8), we obtain

q̄ = −p̄+ 〈p̄c, p̄c〉+ [q, p̄d] = −p̄c + 〈p̄c, p̄c〉 − p̄d + [q, p̄d] = −Q(p̄c)− p̄d + [q, p̄d]

on [0, T ] (cf. (B.2)). As a consequence together with Lemma B.3, we have q̄c = −Q(p̄c). In
addition, by (B.7),

∆tq̄
d = ∆tq̄ = −∆tp̄+

(∆tp̄)
2

1 + ∆tp̄
= −

∆tp̄

1 + ∆tp̄
= −∆tq,

by the first part in (B.8). Since q̄d and (−q) are both (F,Q) purely discontinuous local
martingales, they coincide on [0, T ], by Corollary 7.23 in He et al. (1992). In view of (B.6),
this proves that ∆q̄d = −q∆p.
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APPENDIX C: CHARACTERIZATION OF INVARIANCE MEASURES VIA THE
GIRSANOV AND JEULIN-YOR FORMULAS

In this section, we combine the measure change lemmas B.2 through B.4 (still using the
notation introduced in Section B) with enlargement of filtration computations for obtaining
our second proof of Theorem 3.1. The goal is to relate the invariance measure property to
(3.3). Passing from (F,P) to (F,Q) creates a Girsanov’s drift while passing from (F,Q) to
(G,Q), in combination with stopping before θ, creates a Jeulin-Yor’s drift. Therefore, to
have the invariance probability property, the two drifts must cancel out each other. The
projection methodology, a classical approach systematically used in Jeulin (1980), can then
be used then to transform this cancellation condition in the filtration G into a cancellation
condition in the filtration F, which, with the help of Lemmas B.2 through B.4, will be seen
to be equivalent to (3.3).

Recall J = 1[0,θ). For any P ∈ M(F,P), the Girsanov formula (B.1) says that P − q �

[p, P ] ∈ M[0,T ](F,Q). The Jeulin-Yor formula (2.2) applied to Q = P − q � [p, P ] then yields
that

(P − q � [p, P ])θ− − J−
1
S−

� 〈Q, P − q � [p, P ]〉

= P θ− −
(
Jq � [p, P ] + J−

1
S−

� 〈Q, P − q � [p, P ]〉
)
∈ M[0,T ](G,Q).

Therefore the invariance measure property that the first term P θ− in the right-hand-side is
in M[0,T ](G,Q) is equivalent to the condition that the second term (in parentheses) is in
M[0,T ](G,Q), for any P ∈ M(F,P). In other words, we conclude from the above that P is
an invariance measure if and only if, for any P ∈ M(F,P),

(C.1) Jq � [p, P ] + J−
1

S−
� 〈Q, P − q � [p, P ]〉 ∈ M[0,T ](G,Q).

In the next steps, we derive, by projection, an F counterpart of the condition (C.1).
For doing so, we need an expression of the condition (C.1) in the form of expectations. In
fact, (C.1) is equivalent to

∃ a nondecreasing sequence of G stopping times (τn)n∈N tending to

infinity such that, ∀ bounded G predictable process L and n ∈ N,

E[LJq � [p, P ]τn∧T + LJ−
1

S−
� 〈Q, P − q � [p, P ]〉τn∧T ] = 0.

(C.2)

By Lemma 2.2 1), the nondecreasing sequence of G stopping times (τn)n∈N is associated
by reduction with a nondecreasing sequence of F stopping times (σn)n∈N such that, for every
n ∈ N, θ ∧ σn = θ ∧ τn. We have necessarily ∪n∈N[0, σn] ⊇ [0, θ]. By Jeulin (1980, Lemma
(4,3)), {p(1(θ,∞)) = 1} is the largest F predictable set contained in (θ,∞). As a consequence,
{p(1(θ,∞)) = 1} ⊇ (R+ × Ω) \ (∪n∈N[0, σn]) or, equivalently

(C.3) {0} ∪ {S− > 0} = {0} ∪ {1− S− < 1} = {p(1(θ,∞)) < 1} ⊆ ∪n∈N[0, σn].

Conversely, if (C.3) holds for a nondecreasing sequence of F stopping times (σn)n∈N, then,
in view of (A.11), the nondecreasing sequence of G stopping times τn = (σn){σn<θ} tends
to infinity. In addition, by the condition (B), the bounded G predictable processes L are
associated with the bounded F predictable processes K through the reduction identity
K1(0,θ] = L1(0,θ].
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Through these correspondences and the projection identities o(J) = S and p(J−) = S−

on (0,∞), (C.2) can be rewritten in terms of F stopping times and adapted processes, as

∃ a nondecreasing sequence of F stopping times (σn)n∈N satisfying

(C.3) such that, ∀ bounded F predictable process K and n ∈ N,

E[KSq � [p, P ]σn∧T +K � 〈Q, P − q � [p, P ]〉σn∧T
] = 0.

(C.4)

We are now transferred into the filtration F. To establish the desired connection with
(3.3), we interpret (C.4) as a local martingale condition in F. In fact, (C.4) is equivalent to
the following F counterpart of (C.1):

Sq � [p, P ] + 〈Q, P − q � [p, P ]〉 ∈ M{S−>0}∩[0,T ](F,Q),(C.5)

which is equivalent to

Sq � [p, P ] + [Q, P − q � [p, P ]] ∈ M{S−>0}∩[0,T ](F,Q).(C.6)

Operating separately on the continuous parts P c and the purely discontinuous parts P d of
the (F,P) local martingales P, we conclude that P is an invariance measure if and only if,
for any P ∈ M(F,P),

(C.7)





Sq � 〈pc, P c〉+ 〈Qc, P c − q � 〈p, P c〉〉 ∈ M{S−>0}∩[0,T ](F,Q),

Sq � [pd, P d] + [Qd, P d − q � [p, P d]] ∈ M{S−>0}∩[0,T ](F,Q).

We are now in a position to deduce the equivalent condition (3.3). Using the identities
pS = S−∆Q and q̄c = −Q(p̄c) (cf. (A.2) and Lemma B.4), by continuity, we have

Sq � 〈pc, P c〉+ 〈Qc, P c − q � 〈p, P c〉〉 = pS � 〈p̄c, P c〉+ 〈Qc, P c − q � 〈p, P c〉〉
= pS � 〈Q(p̄c),Q(P c)〉+ 〈Qc,Q(P c)〉 = 〈−pS � q̄c + Qc,Q(P c)〉.

Hence, the first line in (C.7) means that

〈−pS � q̄c + Qc,Q(P c)〉 ∈ M{S−>0}∩[0,T ](F,Q).

This holding for all the (F,P) local martingales P, including the bounded ones for which

〈−pS � q̄c + Qc,Q(P c)〉 = 〈−pS � q̄c + Qc,Q(P )〉

(cf. Lemma B.3), is equivalent by Lemma B.2 to

(C.8) −pS � q̄c + Qc = 0 on {S− > 0} ∩ [0, T ].

Likewise, we have

Sq � [pd, P d] + [Qd, P d − q � [p, P d]] =
∑

(Sq∆p∆P +∆Q(∆P − q∆p∆P ))
=

∑(
(S−∆Q

)
q∆p∆P +∆Q∆P ) = −pS � [q̄d, P ] + [Qd, P ] = [−pS � q̄d + Qd, P ],

where the identities pS = S−∆Q and ∆q̄d = −q∆p (cf. (A.2) and Lemma B.4) are used in
the next-to-last equality. Hence, the second line in (C.7) means that

[−pS � q̄d +Qd, P ] ∈ M{S−>0}∩[0,T ](F,Q).
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For P bounded (so that the predictable bracket Girsanov formula (B.2) is applicable), in
view of Yoeurp’s lemma, this means that

[−pS � q̄d +Qd,Q(P )] ∈ M{S−>0}∩[0,T ](F,Q).

Using Lemma B.2, we conclude that the second line in (C.7) holds for all the (F,P) local
martingales P (including the bounded ones) if and only if

(C.9) −pS � q̄d + Qd = 0 on {S− > 0} ∩ [0, T ].

By Lemma 2.5, Q is constant on {S− = 0} ⊆ {pS = 0}. Hence, (C.8) and (C.9) are
respectively the continuous and purely discontinuous parts of (3.3), so that Theorem 3.1 is
proved.

C.1. A By-Product. Inspecting the above proof of Theorem 3.1, we see that the
implication from the invariance measure property to (3.3), which is based on Lemma B.2,
only makes use of the bounded (F,P) martingales. We can therefore introduce a seemingly
weaker condition.

Condition (A’). There exists a probability measure P equivalent to Q on FT such that,
for any bounded (F,P) martingale P , P θ− is a (G,Q) local martingale on [0, T ].

Corollary C.1 The condition (A) is equivalent to the condition (A′).
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