Evaluation of an ensemble based 4D Var assimilation
C Robinson, Yin Yang, Dominique Heitz, Etienne Mémin

To cite this version:

HAL Id: hal-01455229
https://hal.archives-ouvertes.fr/hal-01455229
Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Aims and model

- Objective:
 - Compare En4DVar with a classic 4DVar method

Incremental 4DVar vs En4DVar assimilation techniques

- Incremental 4DVar assimilation
 - Cost function using static covariance matrices B and R
 \[J(\delta X_0) = \frac{1}{2} \sum_{i=1}^{N} ||\delta X_0||_2^2 + \frac{1}{2} \sum_{i=1}^{N} ||E(\delta^3 X^0) + \partial_Z E(\delta^2 X_0) - Y||_R^2, \]
 - Adjoint equation determined by TAPENADE
 \[-\partial_t \lambda + (\partial_t X_0^2) \lambda = \sum_{i=1}^{N} (\partial_t X_0^2)^R (Y - E(X^0))/||Y - E(X^0)||_R, \]
 - We deduce the gradient
 \[\nabla J(\delta X_0) = \lambda(\delta b) \]

- En4DVar assimilation
 - Cost function using flow dependent background error covariance matrix within the context of the preconditioning techniques $\delta X_0 = B^{1/2} Z_0$.
 \[J(\delta Z_0) = \frac{1}{2} \sum_{i=1}^{N} ||\delta Z_0||_2^2 + \frac{1}{2} \sum_{i=1}^{N} ||E(\delta^3 X^0) + \partial_Z E(\delta^2 X_0) - Y||_R^2, \]
 - where the $B^{1/2}$ matrix estimated from the difference between each ensemble member and ensemble mean
 \[B^{1/2} = \frac{1}{\sqrt{N-1}}(X_0^1 - \bar{X}_0, ..., X_0^N - \bar{X}_0) \]
 - We estimate the evolution of the $B^{1/2}$ matrix from the evolution of the ensemble fields in observation space
 \[\partial_t E(\delta^2 X_0) B^{1/2} = \frac{1}{\sqrt{N-1}}(H X_0^1 - H \bar{X}_0, ..., H X_0^N - H \bar{X}_0) \]
 - Localization technique used to eliminate sampling error in state space
 \[P_0^1 = (C_1^1, B_1^1, ..., C_N^1, B_N^1) \]

Minimization performed with LBFGS algorithm: limited memory quasi Newton method

Results

- Synthetic data
 - Background initial condition
 - Exact initial condition
 \[L = 25cm \]
 \[W = 10cm \]
 \[H_0 = 2cm \]
 \[H_f = 2cm \]
 \[H_s = 2cm \]
 \[H_L = 7cm \]
 \[U(x, y, t_0) = \delta(x, y) \]
 \[U(L, t_0) = 0 \]
 \[U(x, y, t_0) = 0 \]
 \[V(x, y, t_0) = 0 \]

- We only possess the height observations given by the depth sensor (Kinect sensor)

Conclusions

- Sensibly the same computational time cost, En4DVar yields better results than the classic 4DVar assimilation when we have only height observations
- En4DVar is easy to implement for any given model. We gain a lot of time with the parallelization computing technique. En4DVar implemented with only one outer loop iteration and needs about 100 iterations for the optimization. Requires a lot of memory.
- 4DVar requires the tangent and adjoint operators. The assimilation converges with 3 outer loop iterations and requires less inner loop iterations for the optimization.

Figure: From left to right: free surface height obtained by the kinect, 4DVar and En4DVar at t=0.06s

Figure: From left to right: free surface height obtained by the kinect, 4DVar and En4DVar at t=0.06s