Evaluation of an ensemble based 4D Var assimilation
C Robinson, Yin Yang, Dominique Heitz, Etienne Mémin

To cite this version:

HAL Id: hal-01455229
https://hal.archives-ouvertes.fr/hal-01455229
Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Aims and model

- Objective:
 - Compare En4DVar with a classic 4DVar method

Incremental 4DVar vs En4DVar assimilation techniques

- Incremental 4DVar assimilation
 - Cost function using static covariance matrices \mathbb{B} and \mathbb{R}
 - Adjoint equation determined by TAPENADE

- En4DVar assimilation
 - Cost function using flow dependent background error covariance matrix within the context of the preconditioning techniques $\delta X_b = B^{1/2} Z_b$.

Minimization performed with LBFGS algorithm: limited memory quasi Newton method

Results

- Synthetic data

Background initial condition
- Exact initial condition
- $L = 25cm$
- $W = 10cm$
- $H = 2cm$
- $H_2 = 2cm$
- $H_4 = 2cm$
- $U(x, y, t_0) = \psi(x, y)$
- $U(x, L, t_0) = 0$
- $V(x, y, t_0) = 0$

En4DVar leads to better
- Higher truncation mode
- More computation time
- Lower truncation mode
- More computation time

- Experimental data

We only possess the height observations given by the depth sensor (Kinect sensor)

Conclusions

- Sensibly, the same computational time cost, En4DVar yields better results than the classic 4DVar assimilation when we have only height observations.
- En4DVar is easy to implement for any given model. We gain a lot of time with the parallelization computing technique. En4DVar implemented with only one outer loop iteration and needs about 100 iterations for the optimization. Requires a lot of memory.
- 4DVar requires the tangent and adjoint operators. The assimilation converges with 3 outer loop iterations and requires less inner loop iterations for the optimization.

Evaluation of an ensemble based 4D Var assimilation
C. Robinson, Y. Yang, D. Heitz, E. Mémín
Irstea, UR TERE, Rennes, France