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 
Abstract—A new methodology of statistical modeling of the far 

field (FF) radiated by antennas undergoing random disturbances 
is presented. Firstly, the radiated FF is transformed into a par-
simonious form using the Spherical Modes Expansion Method 
(SMEM); then a surrogate model relating the parsimonious field 
with the input random parameters is constructed using the Poly-
nomial Chaos Expansion Method (PCEM). The combination of 
the SMEM and the PCEM allows to develop a compact and pre-
cise model with a minimized experimental design cost. The ob-
tained model is computationally costless for generating statistical 
samples of disturbed antennas easily usable as surrogate models 
in various types of analyses. In order to demonstrate its perfor-
mance, the proposed methodology is validated with a deformable 
canonical antenna – a dipole undergoing three independent ran-
dom deformations (stretching, bending and torsion), deriving a 
compact and precise surrogate model.  
 

Index Terms— Antennas, antenna surrogate model, statistical 
antenna modeling, spherical harmonics, polynomial chaos. 

I. INTRODUCTION 

OWADAYS antennas are increasingly used in complex 
and fluctuating environment where random disturbances 
from the nearby surroundings can have non-negligible 

impact on antennas performance. Besides, antennas may be 
also subject to other strong randomness due to their intrinsic 
variability. This is the case for wearable, deformable or recon-
figurable antennas [1], which are rapidly emerging in the 
communication and medical fields. Therefore, quantitatively 
characterize the performance of antennas undergoing random 
disturbances is of significant importance.  

In the past few years, efforts have been made to interpret 
random effects on antenna global performance indicators 
(GPIs) such as the total efficiency, bandwidth, resonance fre-
quency, radiation patterns [2][4], etc., or on diffuse channels [5]. 
To our knowledge, it is the first time a methodology is proposed 
for modeling statistically the FF radiated by antennas in un-
certain configurations or environments. Such overall statistical 
modeling provides a complete and efficient substitute for 
simulated (with EM solvers) or real antennas: any FF antenna 
response in the considered fluctuating conditions can be com-
puted with a negligible computational cost. This kind of sur-
rogate model can be useful for various types of analyses beyond 
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GPI-related ones, such as combined modeling approaches, e.g. 
hybrid statistical antenna and directional channel models 
analyses [6] (joint antenna/channel analyses can be driven with 
a low computational cost) or complete antenna models plugged 
in asymptotic simulators (e.g. ray tracing), etc., notably when 
the knowledge of both polarization and phase is mandatory 
(e.g. for MIMO systems). The only real drawback of the pro-
posed method compared to the statistical modeling of specific 
GPIs is an increased complexity of the modeling. 

In this letter, we present a methodology for the overall 
modeling of “variable antennas”, in which the procedure is split 
into two steps. The first one is to achieve a parsimonious but 
complete representation of the radiated FF, and the second 
consist in developing a statistical model which can quantify the 
effects of antennas random variability on their radiation prop-
erties. Several techniques such as the Spherical Mode Expan-
sion Method (SMEM) [7], the Singularity expansion method 
[8], [9], and the Fourier series expansion [10] can be used to 
efficiently represent the field. The underlying common princi-
ple is to represent the EMF in a more suitable space in order to 
achieve a considerable compression of information, prior to 
consider randomness effects with an achievable statistical 
approach. The SMEM was chosen for its efficiency as regards 
parsimony, in particular for small to moderate size antennas 
(for terminals, sensors, RFID tags, etc.). The Polynomial Chaos 
Expansion Method (PCEM) was chosen for its efficiency to 
model stochastic multivariate input/output problems, and its 
ability to deduce compact and accurate surrogate models with 
considerably lower Experimental Design (ED) cost than clas-
sical methods such as e.g. Monte Carlo. Once the model is 
available, one can easily generate antennas corresponding to 
any values of the random input parameters.  

II. PROPOSED METHODOLOGY 

A. Parsimony of the EMF with the SMEM 

According to [11], the electromagnetic far field of any pas-
sive antenna can be fully represented by its Antenna Transfer 
Function (ATF) H	(f,	rො	). Based on the Spherical Modes Ex-
pansion theory, the ATF can be expanded as:  
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where p = 2{n(n + 1) + m 1} + s is the condensed global index 
related to the modality s (= 1 or 2), degree n, and order m [7]. In 
the spherical coordinate system, the Vector Spherical Har-
monics (VSHs) ෝ

p
(rො) are orthonormal bases in the space of 

vector spherical functions and Hp(f	) are complex coefficients 
which are obtained by projection Hp(f	)ൌ൏H	(f,	rො	),	ෝp

∗(rො)൐. 
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In practice the SME is truncated to a maximal degree Nmax 
(i.e. to Pmax = 2Nmax (Nmax + 2)) corresponding to the most ener-
getically dominant VSH modes (Nmax ≈ kr0	+		(ඥkr0

3 ), where 

r0 is the radius of the antenna minimal sphere [12]), which is 
rather low for small/moderate size antennas. Moreover, as the 
real and imaginary parts of VSH modes have independent 
contributions to the total energy, we can keep only most dom-
inant real and/or imaginary parts of Hp(f	), as in (2): 
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where q = 2(p  1) + u with u  {1, 2}, q(f ) ＝Reሼ	Hp
(f )	ሽ or 

q(f ) ＝Imሼ	Hp
(f )	ሽ  if u = 1 or 2; “mod(a, n)” means “a 

modulo n” and “    ” is the ceiling round function; Id is the index 
set of the selected most dominant q(f ) such that the collected 
energy reaches a predefined relative threshold Ec_th (e.g. 99 %) 
compared to the total energy corresponding to degree Nmax. Note 
that the cardinal of Id is expected to be much smaller than 2Pmax, 
achieving a sparser field representation which is beneficial for 
improving the model’s compactness. 

By reversing the SME transform we are able to reconstruct 
the ATF from the set of selected dominant q(f ). To evaluate 
the accuracy of the truncated expansion, an error indicator 
named Relative Root Mean Square Error of the Realized Gain 
(RRMSE of Gr) is defined in (3):    
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where Gr
init and Gr

rcs denote respectively the realized gain of the 
initial and reconstructed fields, d is the infinitesimal solid 
angle, m= {(θ, φ) | Gr(θ, φ) ≥ Max

ሺθ, φሻ
ሾGrሺθ,	φሻሿ10 dB}  is the 

main lobe(s) solid angle and reminding that Gr(f, rො)=ǁH (f, rො )ǁ2 
[11]. This indicator is also used to assess the field variations 
due to disturbances, Gr

rcs and Gr
init being replaced by the Gr of 

the fields with and without disturbances. 

B. Polynomial Chaos Expansions (PCE) of VSH coefficients 

The PCE is an efficient method for describing the uncer-
tainty propagation characteristics of an uncertain system. The 
input/output relation representing such system is denoted 
Y	=	(X) , where X	=	(X1,	X2…	XM) is the random vector 
(spanning the input stochastic space) with known Probability 
Density Function (PDF) f

X
 , and Y is a scalar output which can 

be expanded as the weighted sum of polynomials (4) [13]: 
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where α is a multi-index, Φα(X) form a multivariate polynomial 
basis in the Hilbert space LPX

2 (RM,	R)with the inner product 
<u,	v>	=׬ u(x)v(x)f

X
(x)dx

RM , and y
α
 are the PCE coefficients. 

The PCE may also have sparse expression where only desired 
polynomials are conserved, as in (5):  
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where 	⊂	NM is a subset of index of “dominant polynomials” 
of total degree less than a prescribed value.  

The prediction accuracy of the PCEM will be evaluated and 
controlled by the cross-validation indicator known as the 
Leave-One-Out error (eLOO) [14] defined in (6): 
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where  = {x	(1),…, x	(N)}T is the Experimental Design (ED) of 
N realizations of X throughout which the system is 
pre-evaluated, with responses noted as  = {Y	(1),…, Y	(N)}

T
; 

PC\n is the PCE model derived from the whole set ሼ,	ሽ 
except {x	(n), Y	(n)}, and μො

Y
 is the mean of the responses.    

Taking the random disturbances as inputs, and the dominant 
q(f ) as outputs, we can expand each q(f ) into the form of 
(5) to obtain a compact surrogate model (7) for the ATFs: 
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Note that the parameter “f ” is omitted in (7) because it can be 
either set at a fixed value or considered as a component of X. 

There are a variety of methods for estimating the PCE coef-
ficients. Without trying to be exhaustive, we can mention the 
Monte-Carlo (MC), the Quadrature Projection (QP), the Ordi-
nary Least Square Error (OLSE), and the Hybrid Least Angle 
Regression (HLARS) methods [13], etc. Among all these 
methods, the HLARS has the advantage of being more compact 
as it conserves only polynomials of the most “correla-
tion-dependent” importance. Moreover, the HLARS is also 
computationally efficient as thanks to its compact expression, 
the ED can be designed much tighter, reminding that the cost 
for the antennas pre-evaluation is proportional to the cardinal of 
the ED (NED = card(ED)). Additionally, the HLARS can be used 
in an adaptive way in which the PCE is applied iteratively for 
increasing polynomial degrees until the expansion accuracy 
cannot be further improved. In this letter, the adaptive HLARS 
method is adopted to estimate the PCE coefficients [13]. 

C. Statistical Modeling procedure  

The overall modeling of a given antenna undergoing random 
disturbances X comprises the following steps: 

1. Initialize the ED  and the starting value of Ec_th; impose 
the RRMSE threshold (RRMSEth) for the SME truncation 
and the Leave-One-Out error threshold (eLOO_th) for the 
PCE-HLARS algorithm; 

2. Pre-evaluate antenna responses throughout the ED set. 
Precisely, for each value x	(n), n = 1, …, NED, design the 
corresponding antenna, carry out the EM simulations or 
measurements and compute the ATF H (rො, x (n)); 

3. Apply the SMEM to each ATF under the energy threshold 
Ec_th criterion and obtain the dominant index set Id

	(n); 
4. Define the aggregated modes index set ID=⋃ Id

 (n)NED

n=1 ; 
5. Re-expand all ATFs on modes {ෝڿq/2ۀ(rො), q ∈ ID} and ob-

tain corresponding VSH coefficients ሼq,	q	∈	IDሽ. Note 
that the steps 4 - 5 are to guarantee that all expansions are 
based on the same set of modes, whereas the energy cri-
terion Ec_th is still satisfied; 



 

6. Reconstruct the ATFs from the truncated modes {q, 
ෝڿq/2ۀ(rො), q ∈ ID} and assess the error of reconstruction. If 

RRMSE ≤ RRMSEth is satisfied then pass to step 7, oth-
erwise increase Ec_th and go back to the step 3; 

7. Apply the PCE-HLARS method to each q and finally 
get PCE models {q	=	 ∑ y

α
q

α∈q
ΦαሺXሻ, q ∈ ID}; 

8. Assess eLOO . If eLOO ൑	 eLOO_th  is satisfied for all PCE 
models, or if NED exceeds a predefined acceptable value 
NED,max (i.e. too costly to continue) then terminate the 
modeling procedure; otherwise enrich the ED (i.e. 
new=[; 

add
]) and go back to the step 2.  

Eventually, a surrogate model relating quantitatively and 
explicitly the random disturbances X and the ATFs via the 
whole set of polynomial coefficients{y

α
q, α ∈ q, q	∈	ID}is 

established, allowing the ATF generation for any value of X.  

 
Fig. 1.  Dipole undergoing different deformations: (a) original dipole; (b) 
stretched dipole; (c) curved dipole (d) curved and twisted dipole. 

III. APPLICATION TO A DEFORMABLE DIPOLE 

The proposed methodology is, among others, applied to a 
lossless half-wave wire dipole which is a simple and very 
well-known canonical antenna (so an ideal “test antenna”) to 
verify its relevance, and assess its accuracy and robustness. 
Besides, a few results are briefly given for a deformable patch. 

A. Design of the deformable dipole 

The original antenna (Fig. 1 (a)) is designed around 2.3 GHz 
and well matched (|S11| < 10 dB) over a frequency band of 
[2.1, 2.4] GHz. The dipole is assumed to be deformable using 
three independent parameters: stretching (with stretch ratio ), 
bending (with curvature  or bending radius Rb = 1/), and 
torsion (with torsion rate α), see Fig. 1 (b)-(d). We suppose that 
the input parameters (, , α) are  uniformly distributed over 
respectively [1, 1.05], [0, 0.1] mm-1, and [0, 0.1] rad∙mm-1. Fig. 
2 shows the combined effects of disturbances on the reflection 
coefficient |S11| and on the radiation patterns (at f = 2.3 GHz). 
Compared to the original dipole, variations of more than 15 dB 
in |S11| and 13.5 dB in Gr, i.e. 92.6 % in terms of RRMSE are 
observed; these large variations justify to resort to an accurate 
quantitative approach. In the following, the considered fre-
quency is set to f = 2.3 GHz. 

B. Modeling description and results 

The modeling approach described in section II.C is applied 
to the dipole. Firstly, the ED is initialized with 100 samples 
using the Latin-Hypercube-Sampling (LHS) algorithm [15]; the 

desired thresholds RRMSEth and eLOO_th are fixed at 2 % and 4 %; 
the starting value for Ec_th is set at 80 %. Secondly, the 
pre-evaluation of the dipole is carried out in CST® MWS (with 
the FEM solver) to obtain radiation fields which are sampled 
every 5º in both elevation and azimuth. The full truncation 
degree of the SME is set at Nmax = 3 (i.e. Pmax = 30), for which the 
collected energy is proved to be very close to the total energy of 
the EMF in reality. The “Maximin” technique is used for en-
riching the initial ED, the principle of which is to add new 
points sequentially to the ED while maximizing the minimum 
Euclidean distance between the new points and the existing 
ones. At last, we use the UQLab, a toolbox for the uncertainty 
quantification developed by the team of B. Sudret [16], to 
implement the PCE-HLARS algorithm. 

As shown in Fig. 3, while increasing the collected energy 
threshold Ec_th, the RRMSE of the SME decreases gradually but 
meanwhile the number of selected dominant q  increases 
rapidly, which degrades the compactness of the model. The 
RRMSEth is ultimately satisfied with Ec_th = 99.9 %, with 35 (<< 
2Pmax) selected dominant q. Fig. 4 shows the eLOO of the PCE 
models for the selected dominant q. As the mode indexing is 
chosen once, there is no way to guarantee a monotonic decrease 
of the modal energy with the global index q for all samples in 
the ED (as energy dominance can vary from one sample to 
another). It is why eLOO does not increase monotonically with q 
in Fig. 4 (although of course a less energetic mode is more 
sensitive to noise). Finally it can be seen that when NED in-
creases the error decreases for all PCE models and the eLOO_th is 
satisfied for all models for NED = 260, for which we get a sur-
rogate model with about 2000 polynomial coefficients.  

In order to verify its accuracy and robustness, the constructed 
model has been used to generate the most deformed dipole (i.e. 
(, , α) = (1.05, 0.1, 0.1)) and a comparison of radiation pat-
terns between the initial field, the reconstructed field (with 
dominant VSH modes), and the generated field (with the pro-
posed surrogate model) is presented in Fig. 5(a). It is noted that 
the maximal difference in Gr is only 0.7 dB and the RRMSE is 
less than 8 % in this extreme deformation case; furthermore, the 
model has been used to generate dipoles for 500 random values 
of (, , α), which are compared to their simulated (with CST® 
MWS) counterparts, as shown in Fig. 5(b). We see that the 
RRMSE of the generated antennas remains below 2 % for 88 % 
of the cases and the extreme error is still less than 10 %, which 
confirms the accuracy and the robustness of the model. It 
should be noted that there is always a trade-off between the 
model accuracy and the cost to achieve that precision. One can 
choose the most appropriate trade-off according to each prac-
tical needs. Another conclusion we can draw is that the model 
also verifies high parsimony. Compared to the initial antennas 
representation by a huge amount of sampled EMF data (~106), 
the surrogate model requires only a limited number of param-
eters (i.e. ~103), reaching a data compression rate of about 103. 
It is actually much higher as input data (parameters or angle 
variables) can be interpolated as desired. Besides, the modeling 
was applied to other antennas such as e.g. a microstrip-fed 
patch with variable length and substrate curvature, thickness 
and r to show its feasibility for any type of antennas or de-
formations. For NED = 280, a model of ~ 2600 PCE coefficients 
and RRMSE < 15 % was achieved. 



 

  
Fig. 2.  Combined effect of stretching, bending, and torsion (, , α) on the 
dipole: (a) reflection coefficient |S11|; (b) radiation patterns (in E/H plane) at f = 
2.3 GHz. 

 
Fig. 3.  (a) RRMSE of reconstructed fields; (b) number of selected dominant 
q: for different collected energy threshold Ec_th for NED = 100. 

 
Fig. 4.  eLOO of the PCE models for selected dominant q for different ED. 

 
Fig. 5.  (a) Radiation patterns (in E/H plane) of the initial, reconstructed and 
generated fields for the most deformed case at f = 2.3 GHz; (b) RRMSE of 500 
generated dipoles for random values of (, , α). 

IV. CONCLUSION 

The proposed methodology allows to develop compact and 
precise surrogate models of the FF radiated by “random an-
tennas” with a minimized cost. This methodology has been 
applied to the modeling of a deformable dipole to prove its 

feasibility, efficiency and high accuracy. The derived model is 
computationally costless for generating deformable dipoles 
usable as surrogate models in various types of analyses re-
quiring the complete field knowledge (including polarization 
and phase). The proposed modeling methodology is applicable 
to any other types of random disturbances or antennas. Future 
and already on-going work will address more realistic applica-
tions considering e.g. flexible printed antennas for terminals or 
sensors and/or perturbations due to the nearby surrounding 
environment, including the modeling of the frequency behavior 
(S11( f ), etc.).  
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