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Stability analysis of discrete-time infinite-horizon optimaintrol with
discounted cost

Romain Postoyan, Lucian Busoniu, Dragan Nesi¢, and U@aafouz

Abstract—We analyse the stability of general nonlinear specific cost function considered or the specific algorithm
discrete-time systems controlled by an optimal sequence of ysed, see for instance [2], [7], [34]. Some results existing
inputs that minimizes an infinite-horizon discounted cost.First, local stability in the continuous-time case e.g., [32], ][35

assumptions related to the controllability of the system ad its . .
detectability with respect to the stage cost are made. Unifm Recently, global asymptotic stability guarantees havenbee

semiglobal and practical stability of the closed-loop sysm is Provided in [12] for continuous-time systems. However e t
then established, where the adjustable parameter is the disunt  best of our knowledge, the stability properties in the gaher

factor. Stronger stability properties are thereupon guaranteed by  discrete-time discounted case are not yet understood. Many
gradually strengthening the assumptions. Next, we show thahe acent works consider discounted costs but do not provide

Lyapunov function used to prove stability is continuous unckr L .
additional conditions, implying that stability has a certain amount stability guarantees, see e.g., [1], [9], [10], [14]. Theima

of nominal robustness. The presented approach is flexible an iSsue is the impact of the value ofon the system stability.
we show that robust stability can still be guaranteed when te  The study of a simple linear example will show that, even
sequence of inputs applied to the system is no longer optimal in that case;y needs to be sufficiently close tbto ensure
but near-optimal. We also analyse stability for cost functons stability.

in which the importance of the stage cost increases with time . N -
opposite to discounting. Finally, we exploit stability to cerive Motivated by this insight, we develop a general stability

new relationships between the optimal value functions of te analysis for discounted infinite-horizon optimal contrét.
discounted and undiscounted problems, when the latter is e contrast with the aforementioned references, we defindl-stab

defined. ity using a generic measure as in [15], which allows addngssi
the classical equilibrium point stability as a particulase,
but also set stability. We first make assumptions related to
the controllability of the system and its detectability hwit
Optimal control selects control inputs so as to minimizgespect to the stage cost, which are inspired by [15] where
a cost incurred during the system operation [22]. In thife undiscounted finite-horizon case was considered. Oir ma
paper, we focus on optimal control in discrete time over g@sult then guarantees that the system in closed-loop with a
infinite horizon, with general nonlinear system dynamics asptimal sequence of inputs is uniformly semiglobally analepr
well as general stage costs. In this setting, optimal corgr@ tically stable, where the adjustable parametey.isience, for
very powerful framework [4], able to address decision-mgki any (arbitrarily large) basin of attraction, the systemusiohs
problems not only in control engineering, but also in aitlic injtialized in this basin will converge to any (arbitrariynall)
intelligence, operations research, economics, medi@b&, neighborhood of the target set provideds sufficiently close
We concentrate in particular odiscountedoptimal control, to 1. The analysis is Lyapunov-based and follows similar steps
where the stage costs are weighted by an exponentially @g-in [15]. Nevertheless, the optimization problem is déffe
creasing term*, wherey e (0,1) is the discount factor in this paper, which leads to substantial technical diffes.
and £ is the time step. The discounted setting is popul@fterwards, we gradually strengthen these assumptions+o e
in many areas, such as in dynamic programming [3], [24dure stronger stability properties, namely uniform seotigl
reinforcement learning [8], [36], [37], and planning algloms  asymptotic stability and uniform global exponential sliapi
for optimal control [23]. We also separately address the case of linear systems with
A core practical question is whether the discounted optimgliadratic stage cost. An explicit lower bound on the distoun
control law stabilizes the system. In the adaptive dynamigctor is provided for each of these stability statementse T
programming area, the analysis is usually tailored to thesults are applied to two examples: a linearized model of an
_ o , inverted pendulum and a nonholonomic integrator.
o s work was supporied by he ANR project Computation AIONIIOl 1 endow stability with nominal robustness, it is essential
ystems’, ANR-13-BS03-004-02; by a Program Hubert CuBesacusi co- ,
operation grant, CNCS-UEFISCDI contract no. 781/2014 aahfus France to work with a Lyapunov function that is continuous, see
grant no. 32610SE; by the ‘Agence Universitaire de la Frahoaie’ (AUF) - [21]. With our construction and under our assumptions, the
and the Romanian Institute for Atomic Physics (IFA), profETASSIST continuity of the Lyapunov function is equivalent to the eon
with contract no. 09-AUF; and by the Australian Researchr@dwnder the
Discovery Projects and Future Fellowship schemes. tinuity of the optimal value function. We prove that the datt

R. Postoyan and J. Daafouz are with the Universitt de Lwerai jsindeed continuous under additional regularity condiion
CRAN, UMR 7039 and the CNRS, CRAN, UMR 7039, France,
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{r omai n. post oyan, j anal . daaf ouz }@ni v- 1 or r ai ne. fr . contrast with the_ existing I_|teraFure, we exp!0|t stalilfor
L. Busoniu is with the Department of Automation, Technitidiversity of  this purpose. This is a major difference, which allows us to
Cluj-Napoca, Romanid, uci an. busoni u@ut . utcl uj . r o. derive stronger conclusions in general and to rely on weaker
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neering, the University of Melbourne, Parkville, VIC 301@ustralia, assumptions compared, for example, tO[ ]'[ ]W ere fowe

dnesi c@ni nel b. edu. au. semicontinuity is ensured, or to [6] where concave stagescos



are considered. sequence of inputs is investigated in Section VI. Results
The results mentioned so far are valid when an optimah reverse-discounted optimal control and the relatigpsshi
sequence of inputs is applied to the system. In practicef mbgtween the optimal value functions of the discounted and
algorithms generate onlgearoptimal inputs. We show that the undiscounted problems are presented in Section VII. The
stability and the continuity of the optimal value functioanc proofs are provided in Section VIII and the conclusion isegiv
still be guaranteed when a near-optimal sequence of inputsn Section IX. Finally, technical lemmas are reported in the

used to control the system. appendix.
We also illustrate the generality of our approach by
analysing stability for cost functions in which the stagestco Il. PRELIMINARIES

is multiplied by a term which grows with time; we call LetR := (—w,0), R := R U {=00, w0}, Rag := [0,0)
this scenariaeverse-discountedptimal control. The idea is ] RS i el o
to increase the weight of the stage cost as time grows Zr?o = 1{0,1,2,.. .}, andZop o= {1,2,...}. The nota.t|0n

e S . (%, y) stands fofz™, yT|T, where(z,y) € R™™. A function
applications where the long-term behaviour is more impttrta

than the short-term one. We focus on two scenarios: when the R0 = R is 0f classke if itis continuous, zero at zero
. . ' . Kl I5d strictly increasing, and it is of cla#, if, in addition, it
stage cost is weighted by* with v > 1 or by 1 — ~¥*+1 with

. . o . is unbounded. We say that a continuous functjonR2, —
boih((c):;s)ésumform global asymptotic stability is ensured IR is of classkCk wheny (s. -) andy (-, ) are of classC, for

. . - . . anys > 0. A continuous functiory : R, — Ry is of class
Finally, we exploit stability to quantify the difference -bejﬁﬁ if for eacht € R, x(- t) is of classk, and, for eachs >

ot e muied (. i decreasing o et The Eucicean oo a vectr
P ! FUNG. € R is denoted bylz| and the distance of € R™ to a set

appropriate conditions. This result is relevant as, in msity , _ R" is denoted b —inffle—ul v Let P be
uations, the discount factor is introduced because thenapti ?r_eal square, and g;erArﬁetrlif:l ﬂﬁtrﬁ% ' (?jP) ﬁrf(.j)\ w(P)

control sequence is harder to compute for the undlscountgl% respectively the largest and the smallest eigenvalue. of

E:)Ol?:\emt.hilg ;ﬁlc Teggstisyahs (';yltjilr(r:waalllyvzleulgcggsgl(t)setht:'onThe notatiorl either stands for the identity function frofy.
ping P fo R or for the identity matrix depending on the context.

for y = 1. We prove that th'.s Is indeed the case when the The definitions below can be found in [31]. A function
system controlled by an optimal sequence of inputs for tr}e =

) . . . : R — R is lower semicontinuousat z € R" if
dlsc_ounted.cost is uniformly globally exponentially st&bl liminff(z) i= lm[ inf f(z)] = f(z), whereB(z,) is

Discounting may be seen as complementary to relaxedor 5\0 z€B(7,0)
dynamic programming [25] in the context of stabilizatios]1 the closed ball ofR", centered at of radiusd > 0. We say
While the stage cost is weighted by a constarg (0,1] in that f is lower semicontinuous oX < R"™, when it is lower
the relaxed dynamic programming inequality, in the distedn Semicontinuous at any € X. Note that whery is continuous,
case, it is the optimal value function at the next step whidhis also lower semicontinuous. L&t : R" =3 R™ denote
is multiplied by v € (0,1) in the Bellman equation. As aa set-valued mapping. The outer and inner limits ®f
result, while the two problems share similarities, the anait z € R" are respectively defined amsup S(z) :=
ysis in the discounted case requires different and noatrivi o
analytical tools to study stability, which lead to semigbb
and prac_tical sta_bilit_y in general, as _opposed to global aﬂ%ipfé‘(x) = {u:Va, » % INEN,, un — u
asymptotic stability in relaxed dynamic programming under—z n—%0 neN—»n
similar assumptions [16]. with u,, € S(x,)} where N, is the set of subsequences of

Compared to the preliminary version of this work in [29]Z=0 containing alln > 7 for somen € Z~,. The set-valued
here we do not make any assumption on the undiscounf8gPPingS is continuousat z € R™ when lim 5(z) = S(z),
problem, we relax the assumptions that ensure stability, awhere il_l)% S(z) = limsupS(z) = 1i£n_’i%1f S(x), and it

r—T

we provide sufficient conditions for semiglobal asymptst&- s continuous onX < R" when it is continuous at any
bility and global exponential stability. The continuitya@ysis ;7 < x. |n other words,S is continuous onX when it is
of the optimal value function relies on weaker assumptiones ( poth outer semicontinuouand inner semicontinuousn X,
no longer ask the stage cost to be bounded) and uses stabidifs. pefinition 5.4 in [31]. The image of a sBtunder the
Completely novel elements include: the stability with R€3fnappings is defined byS(V) = U,y S(x). The mapping
optimal sequences of inputs, the analysis of reverse-diged ¢ . pn = R™ is locally boundedwﬁén for anyz € R", for
case and the relationship between the optimal value fumetioygme neighborhoott of z, the setS(V) c R™ is bounded.
of the discounted and undiscounted problems. The case study
where the stage cost is bounded in Section VI in [29] is hot m
reported in this paper. )

The paper is organised as follows. After introducing some Consider the system
preliminaries in Section Il and stating the problem in Satti -
[ll, the main stability results are provided in Section IVhél wk+l) = flalk),ulk) @
continuity of the Lyapunov function for the discounted probwith statex € R™ and inputu € U(z) < R™, wherel{(x) is a
lem is analysed in Section V. Stability using a near-optimalbonempty set of admissible inputs associated to stgtes in

{u :3dx, — z, Ju, — u with u, eS(xn)} and
n—%0 n—on

. PROBLEM STATEMENT



[17], [19] for instance), anch, m € Z~. Let W := {(x,u) : IV. STABILITY
x € R™ andu € U(x)}. Define an infinite-length sequence of
control inputsu = (ug, u1, .. .), in which the control input at
time k € Z> is given byu(k) = u;. We denote the solution
to (1) at thek"-step starting at state and with the input
sequenceu as ¢(k,z,u|i), whereu|y := (ug,...,ux_1) iS
the truncation ofu to the firstk € Z- steps, and we use the
conventiong(0, z,ulg) = = whereul, is the empty set. In
optimal control, the sequence of control inputs is givenhsy t
solution to an optimization problem. In this paper, we cdasi
the cost function

In this section, we first impose conditions on system (1)
and cost function (2), which are related to the controligbil

of the system and its detectability with respect to the stage
cost £. We then present the main stability result, which
relies on Lyapunov analysis. Afterwards, we provide sudfiti
conditions to ensure stronger stability guarantees, and we
illustrate the framework by treating the case of systemé wit
linear dynamics and quadratic stage cost. Finally, we apply
the results to two examples.

ow
Jy(z,u) = Z YEl(o(k, z,ulr), ug), (2) A. Controllability and detectability assumptions

k=0 ) We make the following assumption on system (1) and cost
where/ : W — Ry is the stage costwhich takes non- function (2), which is inspired by [15].
negative values, angl € (0, 1) is thediscount factor

We assume that, for any € R”, there exists (at least) Assumption 1. Leto : R" — R~ be continuous and positive

one infinite-length input sequence, which minimizes (2), &mi-definite.
formalized below. (i) There existsyy € K., such that for anyy € (0,1) and
z e R™, V,(z) <ay(o(z)).
There exist a continuous functio’ : R” — R,
aw,xw € Ko and @y : Ryy — Ry( continuous,
nondecreasing and zero at zero, such that the following

Standing Assumption. For any z € R™ and~ € (0, 1), there .
exists an infinite-length input sequena®(z), called optimal (if)
solution such that

J(z,wi(z)) = if/,(z,u) = V(2), 3) holds for any(z, u) € W
whereV, is the optimal value function O W(z) < aw(o(@))
Conditions on system (1) and cost function (2) to ensure W(f(z.u) —W(z) < —aw(o(z)) + . w)).
the Standing Assumption are available in [19]. Note that the (fe,u)) (=) wlo(@) +xw (e, )26)
sequencar’(z) may be non-unique for a givene R™. 0
The Standing Assumption implies that the set below is
nonempty for anyr € R™ in view of the Bellman equation The generic functiorr : R — Ry, will serve as a state
" a . measure when investigating stability (as in [15]). It can be
Uiw) = argminftle,u) 9V (/)] @) defined as| - | or | - |, when studying the stability of the

. . origin, or | - |4 or |- |4 with 4 € R", when studying the
wherel(} is the optimal feedback law. We can then represent[ability of setA, for example. Item (i) of Assumption 1 is

system (1) subject to an optimal sequence of inputs for tﬁ . X )
cost function (2) as the following difference inclusion réfated to the controllability of system (1). This propeyfor

instance verified wher is uniformly globally exponentially
w(k+1) € F¥ax(k)) = f(xk), U (x(k))) (5) controllable to zero with respect to: R — R, as stated

where f(z, U (z)) is the set{f(x,u) : u e UF(x)} for z € in the next lemma.

R™. Lemma 1. Consider system (1) and suppose tliat uni-
The main objective of this study is to infer (robust) stabili formly globally exponentially controllable to zero withspect

properties of system (5). We will see thatmust, in general, to o : R® — R, i.e. there exist\/ > 0 and X > 0, where\

be appropriately selected to guarantee stability, astifitesd is called thedecrease ratesuch that for anyr € R™ there

by the following simple example. exists an admissible infinite-length control input seqeenc

u(x) verifying £(¢(k, z,u|(x)), ux(z)) < Mo(z)e N for

any k € Z-o. Then, item (i) of Assumption 1 holds with

ay(s) = 245 for any s > 0. O

Example 1. Consider the scalar system(k + 1)
2z(k) + u(k) and the discounted quadratic cost (x,u)

k 2 2 ; ifinita.
Z K (I(k) +ulk) ) wherey € (0,1) andu is an infinite Weaker conditions that guarantee the satisfaction of ii¢gm (

fér?gth sequence of inputs. The optimal solution is given by Assumption 1 can be obtained by following similar lines
the feedback laws = Ko with K* = —2(1+ 2(5y — 1 s in Section Ill of [15] B

! _ _ o Item (ii) of Assumption 1 states a detectability property
+/(57 —1)2 +47) ) , see Section 4.2 in [3]. The origin of & from ¢ (see Definition 1 in [15]), which is satisfied for
of the closed-loop system is uniformly globally expondlgtiaexample whens(-) = |- |?> and {(z,u) = 27Qz + uTGu
stable if and only i2 + K* € (—1, 1), which is equivalent to where@ is a real, symmetric and positive definite matrix and
v € (v*, 1) wherey* = % Hence,y needs to be sufficiently G is a real, symmetric, positive semi-definite matrix. In that
close to 1, otherwise the optimal feedback law does natase, Assumption 1 holds willv = 0, @y =0, yw =1 and
stabilize the origin of the system. O aw = Amn(Q)L



It is important to emphasize that the functiang, W, aw, 15 15
aw andyw in Assumption 1 are independent of the discount s

—N= — =06

factor . CN_1s o

Remark 1. The Standing Assumption and Assumption 1 can

be relaxed to hold only for any € (y,1) wherey € (0,1),

instead of anyy € (0, 1). The forthcoming results apply in this 05
case by constraining to be in (v, 1). O

e

0

. 0 10 20 30 40
B. Main result k k

The next theorem gives Ly:_;\_punov—based properties, fr%. 1. Evolution of¢ for finite-horizon problems (left) and for infinite-
which we then deduce a stability property for system (5) iiorizon discounted problems (right) versus time.

Theorem 2.

Theorem 1. Under Assumption 1, there exist,, @y, ay € Remark 2. The intuition behind Theorem 2 is the following.
K+, T € KK and for anyy € (0, 1) there existsY, : R" —  The controllability and detectability conditions in Assption

R such that the following holds. 1 are used to ensure stability, which is consistent withltssn
(@) Foranyz e R", ay (o(z)) < Y, (z) < ay(o(z)). the undiscounted case for linear systems and quadratiestag
(b) For any z € R", v € F¥(x), Y,(v) — Y,(x) < costs for instance, in which case these conditions are also
—ay (o(x)) + Y(o(z), 1—77), necessary. The fact that< 1 in (2) generates extra difficulties
; — ; .~ as explained after Theorem 1. As a result, the value of the
Eglee)ipressmns @y, 3y, ay, T andY, are provided In discount factor needs to be adjusted according to the désire
stability property. O

FunctionY, is either given by Y, =V, + W or by Y, =
pv (Vy) + pw (W) whereV, and W come from Assumption
1 and py and pyy are suitablefC.-functions, see Table I.
Item (&) of Theorem 1 means th&j is positive definite and

Remark 3. It is interesting to note the analogy with the
results in [15] where the finite horizoV takes the place
of ﬁ in the infinite-horizon discounted problem. Informally,

radially unbounded with respect @, uniformly in . Item duantity 7 can be thought of as an ‘effective horizon of
(b) of Theorem 1 implies that, for any e (0, 1), Y, strictly the discounted problem. Thus, while [15] shows stability fo

decreases along the solutions to system (5) up to a penm‘rb(,jlporizonsN sufficiently Iar_ge o) thqt _it is greater than some
term Y(o(z), 1=2), which can be made arbitrarily small byIower boundN*, we show it fory sufficiently close ta so that

. P! . * ' i
selectingy sufficiently close tol (since e KK). Because of 7 > 7"+ and thus for effective horizons larger thgr_. To
this perturbative term, only uniform semiglobal and preati go further with the analogy, finite-horizon costs and inénit

stability can be guaranteed in general, as formalized in tﬁgr!zon discounted costs can be both interpretedrisite-
following theorem. orizoncosts of the general form

s

Theorem 2. Consider system (5) and suppose Assumption 1 J(z,u) =

holds. Then, there exist$ e KL such that for any, A > 0, i

there existsy* € (0,1) such that fpr anyy € (v*,1) and where&(k) = 1 whenk < N and £(k) = 0 for k > N for
ve{zeR": o(z) < A}, any solutiong(-, ) to system (5) finite-ho(riion problems, and(k) =(7)’“ for infinite-horizon
satisfies discounted problems, see Figure 1 for an illustration. This
o(¢(k,x)) < max{B(o(z),k),6} Vke Zso. @) _unify_ing viewpoint suggests that the methodology in [1@ an
in this paper could be extended for other cost functions of
O the form (8); an example is provided in Section VII-A. Note
that, although our results are inspired from [15], the stii

This theorem means that for any set of initial conditions : S . :
of the form {= € R" : o(z) < A} whereA > 0 can be analysis exhibits important technical differences. Th#éngn

- o equation leads to inequalities in the Lyapunov analysiscivh
arbitrarily large, and for any (arbitrarily smalj)> 0, we can . ) . )
S . are different from those in [15] and which require new
selecty sufficiently close tal such that (7) holds. An estimate - )
. e ' . arguments to conclude about stability. Moreover, in oure;as
of the lower bound ony, i.e. ~*, is available in the proof of L . : o .
: N the continuity of the optimal value function, which is esisén
Theorem 2, namely, givet, A > 0, v* has to be such that .
1 1 1 _ for robustness reasons, turns out to be more involved and to
T(ay cay(A), =) < gy o0y (ay(9)) (see Table ).

Tailored estimates ofy* for specific classes of systems arféqUIre different proof techniques, as we will see in Sectio

provided in the sequel.

g(k)é(¢(kaxau|k)vuk)v (8)

0

/N

Lin principle, we can always tak&, = pyv (V) + pw (W). We have C. Stronger stability guarantees

chosen to separately treat the situation wheye < I, which leads toY, = " .
V., + W, because the construction of the Lyapunov function is easithis We Strengthen below the conditions of Theorem 2 in order

case, which is consistent with [15]. to derive stronger stability guarantees. The followingules



If xw <1 If 3s € R>o, Xw(s) > 5

Y, Vy+ W pv(Vy) + pw (W)
ay aw min {pv (Xﬁvl(%aw)> 7PW(%C“W)}
ay ay + aw pv(av) + pw(aw)
ay(=aw) aw aw (aw)aw
T (81,82) — ay (81)82 (817 32) — qv((l + Sg)av (81))Sgav (81)
oo Ty + 6+ aw pv(2ay +2&) + pw (@w)
7 I pw (20)
? — ~ -1 — ~ -1 — ~ -1
(s1,2) = ((@v +@)0ay’ +n) sz (s1,52) = av ((1+s2) (@v +@&) 007 (s1) +1) ) s2 (@ +8) 0 a3 (s1) +n)
PV PW pv s §oqu(t) dt, pw s = §5qw () dt
-1

v, qw qv = 2xw (2D), qw := %(XW +aw (aﬁ}@xw)))

TABLE |

EXPRESSIONS OF FUNCTIONS USED IIBECTIONSIV AND VI.

ensures the uniform semiglobal asymptotic stability prope where R is real, symmetric, and positive definite argl

of system (5) with respect to a given state measyriee. that is a real matrix such that) = CTC with (A,C) de-
(7) can be guaranteed with= 0. It requires Assumption 1 to tectable. The sequence of optimal inputs is generated by
hold with functionsary, aw, xw, on the one hand, andy,, a unique linear feedback law = K3z where KJ :=

on the other hand, which are respectively upper-bounded and(vB* P, B+R) ! BT P, A and P, is the unique solution to
lower-bounded by linear functions in a neighbourhood of the, = A™ (yP, —+?P,B(yBTP,B+ R)'B"P,)A+Q, see
origin. Section 4.2 in [3]. While the stability of the closed-loostm

. . - can be inferred by checking whether the matdix- BK* is
Corollary 1. Suppose that Assumption 1 is satisfied an§f’ihur for a given value of, it is useful to know a prﬁ)ri a
there existL > 0, ayw = 0, aw,ay > 0 such that '

_ _ _ _ set of values ofy under which stability is preserved. This set

av(s) < ay -s Gwls) < aw s aw(s) = aw s e usuany difficult to determine based on the direct analysi

and xw(s) < s for any s € [0,L]. Then, tt:ere EXISIS ot the eigenvalues ofl + BK, due to the fact that(} is

B € KL such that for anyA > 0, v € (v%,1) with obtained by solving a Riccati equation for eagland is thus
_ 1 a?y, -1 1 nonlinear invy. In contrast, the result below provides an easily

1T max (1 tow (Evﬁw)) T pew(@viEw) @) [ computable, though potentially conservative, lower boand

Ty ((afy 0Ty (A) ; S
andz € {z € R" : o(z) < A}, the solutiong(-, z) to system 7 under which stability is ensured.

(5) satisfiess(¢(k,x)) < B(o(x), k) for all ke Zo. 0 Corollary 3. Consider system (9) and the cost functién
in (2) with ¢ defined in (10). LetS;, S, be real, symmetric,
gositive definite matrices, and, « > 0 such that

When Assumption 1 is verified with lined€.. -functions
and linearayyy, the corollary below states that the stability i

uniform, global and exponential. AT A — So + 51 —wQ ATS,B < 0
Corollary 2. Suppose that Assumption 1 is verified and there BTS,A BTS,B —wR o
existay = 0, ay,ay > 0 such thatwy (s) = @y -s, aw(s) = (11)
aw - s, aw(s) = aw - s and xw(s) = s for any s > 0. Let and

> %. Then, there exisk’, A > 0 such that for any aP < S, (12)
= (7%‘7/1), ‘%? anyz € R™, the solutiong(-, z) to system (5) Where P is the unique solution to the (undiscounted) Riccati
satisfieso (¢(k, z)) < Ko(z)e™>* for all k € Zso. O equationP = Q + A"(P — PB(R + B"PB)~'B"P)A.

Let v* > L, for any v € (7%, 1), the origin of
w [} . .
assumptions and is therefore different for each stabiégult the system in closed-loop with the optimal feedback law

that we state. In the following, we revisit Corollary 2 in the! = 7« is uniformly globally exponentially stable, i.e.

context of linear systems with quadratic costs. Consider tH€r¢ €xistD,u > 0 such that for any initial condition
system x € R", the corresponding solutiog(-, z) verifies|o(k, z)| <

Dl|z|e~#* for any k € Z=q. Furthermore, wher) is sym-
z(k+1) = Az(k)+ Bu(k) (9)  metric and positive definite,* has to be strictly larger than
s / . lf'y'
with z € R”, u € R™, A, B real matrices of appropriateInln {’Y eOD: —Q+5-P> O}' -
dimensions such that the pdif, B) is stabilizable, and the It is always possible to find, S2, w anda such that (11)
cost function is given by (2) with and (12) hold, according to Lemma 4 in the appendix. The
estimate ofy* in Corollary 3 exclusively relies on the matrices
lz,u) = 2TQr+uTRu, (10) A, B, Q andR. To minimize~*, we have to maximizer > 0

It has to be emphasized that the valueydfdepends on the




under (11), (12), which is a convex optimization problena result, the Standing Assumption is guaranteed. Item (ii)
When P is positive definite, i.e. when the pa{,C) is of Assumption 1 is ensured with = 0, oy = 0, and
observable, the bound oyt simplifies as we can tak&, = P, aw = yw = I. The input sequence constructed above ensures
which leads toy* > —%5. The minimum value ofw is thatV,(z) < J,(7,u(z)) < Zo(x) for anyy € (0,1): item
obtained by solvingmin w such thatw > 0 and (11) holds. (i) of Assumption 1 holds wittty, = %H. Consequently, the
That gives0.8090 in Example 1; recall that the true value isuniform global exponential stability property in Corola2 is

% (see Section Ill). The observed conservatism notably comesified wheR ~ € (32,1).
from the proof of Corollary 3 (see Section VIII-F, in partiau

(35)). V. CONTINUITY OF THE LYAPUNOV FUNCTION
The continuity of the Lyapunov functio’, in Theorem
D. Examples 1 with respect to the state would ensure that the stability

1) Linearized inverted pendulunwe discretize exactly the Properties studied in the previous section are robust tdIsma
model of a pendulum linearized at the upper positian0) perturbations, namely-perturbations according ¥421]. We

with sampling periodl’ > 0, which gives have seen in Section IV-B that, is either given by, +W or
by pv (V5) + pw (W). SinceW is assumed to be continuous
et = Az + Bu, (13) in Assumption 1 and so aye, andpw (ask..-functions),Y;,

is continuous with respect toif and only if the optimal value

wherex = , e R?, is the angle between the rod ) . . ) .
v = (@1,1) = g function V, is continuous with respect to. The assumptions

and the vertical axisg, is the anjgular velocityu is the

. B _ made so far do not a priori allow us to assert that
control mp(l;t'A = xp (AT), B = |y exp(Ae(T —5))Be ds, is continuous. In the next theorem, we provide additional

A = 1 and B. — 0 with ¢ > 0 the @ssumptions to guarantee the continuityldf, and thus of
c g K c

0

l m v
acceleration due to gravity, > 0 the length of the rod, .
m > 0 its mass andk > 0 a friction coefficient. The Theorem 3. Sl.Jppos.e the.fpllowmg holds.
stage cost is given by (10) with = CTC, ¢ = [1000 0] (&) Assumption 1 is verified. _
(the pair (4, C) is observable) and? = 1. We apply the (P) f and ¢ are continuous oV and/ : R" = R™ is
results of Corollary 3 forg = 9.81, [ = 1, m = 0.1, continuous and locally bounded d&r*.

k = 0.1 andT = 0.01, and we obtain that the origin of (€) ForanyM >0, the setiz : o(x) < M} is compact.
system (13) is uniformly globally exponentially stable forrhen, for anyA > 0, there existsy* € (0, 1) such that for any
any v € (0.9878,1). A numerical study indicates that they € (¥*,1) the optimal value functioi, in (3) is continuous

critical value for the discount factor, which guaranteedsity, ©On {zeR" : o(z) <A} 0
is approximately0.9063. The difference with the estimated |y (a) of Theorem 3 ensures that the uniform semiglobal

bound is of the or_der 0$%. Interestingly, simulation_results practical stability property (7) holds in view of Theorem 2,
suggest that stability still holds for any > 1; we will g0 \yhich plays a crucial role in the proof. ltem (b) of Theorem

back to that point in Section VII-A. _ 3 states regularity conditions on system (1) and the stage co
2) An_on_holonomlc |nt_egrat0rCon5|der the following non- ;, The |ast part of item (b) of Theorem 3 holds e.g., when
holonomic integrator as in Example 2 of [15] U(x) = U with U compact. Finally, item (c) of Theorem 3
af = @+ means that measueeis radially unbounded, which is the case
. when it is given by the Euclidean distance, or more generally
Ty = T2+ U2 (14)

by the distance to a compact set.
T3 = T3+ Tiuz — TUl, The continuity ofV, with respect tar ensured in Theorem
3 is semiglobal inv, in the sense thay € (y*,1) and v*
. ; depends on the considered region of the state space, which
242 2 ,
The stage cost is defined &, u) = 27 + x5 + 10]zs| + |u| is in agreement with the stability guarantee of Theorem 2.

for z € R* andu € R, which differs from the stage COStThe constanty* in Theorem 3 is the same as in Theorem 2
considered in [15] because of the input-dependent termighat b '

) . . according to the proof of Theorem 3 in Section VIII-G. It is
useful to prove the Standing Assumption of Section Iil. ossible to ensure the continui uniformly with respect
We apply the results of Section V in [19] to ensure th ty o y P

satisfaction of the Standing Assumption. Conditions @))-( 0y in (v ’1.)’ that is whem” € (0,1) 'S.t.he same for all
. . o : " x € R™, provided we strengthen the conditions of Theorem 3.
in this reference are verified (witl¥, = 1 for condition

(5) thanks to the input-dependent term/n We now prove 274 estimate numerically the real lower bound on the discéagtor would
that condition (7) in Section V in [19] holds withX;, = require to compute the optimal solutions, which is numdicaard for this

R™. Let + € R3. we build the input sequenca(x) _ example and is out of the scope of the paper.

' ith 3To apply [21], the set-valued mappin@:f in (5) also has to be such
(uo(®), u1 (z), us(x), us(z),0,...) wit UO_(x) = (=21, —72),  that F*(x) is non-empty and compact for any € R, see Theorem 2.8
ui(x) = (3/|zs],0), uz(x) = (+/|zs|, —sign(xz3)+/|x3|) and in [21]. Non-emptiness follows from the Standing Assumpti€ompactness
uz(z) = (=2+/]x3], sign(zs) /|173|), where sigf0) = 0. alfhiﬁ(m) proceeds from the compactnessiéf () (when f is continuous,

. is assumed to be the case in Theorem 3), which is a coeseg of
Then ¢(k, z, ulx(z)) = 0 for any k > 4, hence condition e conditions of Theorem 3 and the continuity16f proved in this theorem,

(7) in Section V in [19] is satisfied withX; = R™. As according to item (a) of Theorem 1.17 in [31].

wherez = (x1,22,73) € R3, u = (ug,us) € U(z) = R



This is the purpose of the corollary below, the proof of whicithe theorem below shows that stability is guaranteed for
directly proceeds from the proof of Theorem 3 and is themfosystem (15) when Assumptions 1 and 2 hold.

omitted in Section VIIl. Theorem 4. Consider system (15) and suppose Assumptions

Corollary 4. Suppose the following holds. 1 and 2 hold. Then, there existse XL and v € K., such
(a) The conditions of Corollary 2 are verified. that for anys, A > 0, there existsy* € (7,1) such that for
(b) Items (b)-(c) of Theorem 3 hold. anyvy e (v*,1) andz € {z € R" : o(z) < A}, any solution

_ av ¢(-,x) to system (15) satisfies
Then, for anyy € (v*,1) with 4* > — anday and
aw as defined in Corollary 2, the 0%"6n—1|racllv\7alue functidh o(¢(k,2)) < max{B(o(x) k)5 9(n)} Vke Z>0'16
in (3) is continuous oMR™. O ( D)
According to Theorem 4, the uniform semiglobal practical
stability property ensured in Theorem 2 is preserved when
A crucial challenge in practice is that it may be difficulthe sequence of inputs is no longer optimal but only near-
to construct an optimal sequence of inputs for the discalinteptimal in the sense of Assumption 2. The only difference
cost (2). An alternative is to applyreearoptimal sequence of with Theorem 2 is the ternd#(n) in (16), which is inherited
inputs to system (1) instead. Many algorithms that compufi®m the near-optimality bound in item (i) of Assumption 2.
near-optimal sequences in various settings are avail@3f [ This term vanishes when = 0. In the proof of Theorem
[26], while the entire fields of approximate dynamic programé (see Section VIII-H), the constant is selected such that
ming and reinforcement learning deal with computing nealt(ay (A), 1;—3*) < iaw oa;(%gy(d)) for givend, A > 0
optimal control solutions, see [3], [5], [8], [30], [33]. lihis (andn > 0 in item (i) of Assumption 2), see Table | for the
section, we prove that robust stability can be ensured m thxpressions of these functions. It is possible to derivelaim

VI. NEAR-OPTIMAL SEQUENCE OF INPUTS

case under appropriate conditions. results as in Corollaries 1 and 2 for system (15) and thus
We formalize what we mean by a near-optimal sequencetaflored estimates of*; we do not do it for the sake of brevity.
inputs in the next assumption. The continuity of V, with respect toz is studied in the

proposition below. Its proof follows the same lines as th@opr

Assumption 2. The following holds. of Theorem 3 and is therefore omitted in Section VIII.

(i) There exista : Ry — R>( continuous, positive semi- " id d he foll
definite, andy > 0 such that for anyz € R and Proposition 1. Consider system (15) and suppose the follow-

y € (3,1) with 5 ¢ [0,1), there exists an infinite- "d holds. -

length sequence of input. (z) such thatV,(z) := (&) Assumption 1 and 2 are verified. .

Jy(z, 0, (2)) < Vy(2) + a(o(z)) +1. (b) f and/ are continuous oY andi{ is continuous and
(i) For any = € R™, ¥, (x) = £(x,dy0(x)) + 7V, (0 locally bounded orR™. _

where i, o(z) is the first element ofi,(z) and 5 := () ForanyM >0, the set{z : o(x) < M} is compact.

f(x, Uy 0(x)). [0 Then, for anyA > 0, there existsy* € (¥, 1) such that for

any~ € (y*,1), V, is continuous onfz € R" : o(z) < A}.
Iltem (i) of Assumption 2 means that, for any initial stat yye (. v i (@) )

xz € R" andy € (¥,1), we know an infinite-length se-

quence of inputs such that cost function in (2) evaluatedAs above, a similar result as in Corollary 4 can be derived.
along the corresponding solution to system (1) lower bounds

V,(z) + @(o(x)) + n. The terma(o(x)) + n characterizes VII. ADDITIONAL RESULTS

the near-optimality of the strategy. Intuitively, it meati&t |, this section, we present two additional results. First,
larger errors may be allowed far from the set we aim ige show that the approach can be used to analyse stability
stabilize, in addition to a constant error that is alloweg, time-varying cost functions for which the stage cés
everywhere. Item (ii) of Assumption 2 is a dynamic promyltiplied by a term that, contrary to the discounted case,
gramming relationship, which is verified for example whephcreases with time; we call this scenaraverse-discounted
Uy (2) = (Uy,0(x), Uy (f(2,Uy0(2)))), for anyz e R", that  gptimal control. Second, we provide a relationship betwaen

is whenu, (f(z,uo(z))) is the tail ofu, (z) without the first ontimal value functions of the discounted and the undistein

term i, o(x). This is true in the common situation where theoplems (when the latter exists) using stability under the
sequence of near-optimal inputs is defined by a state-feédbggngitions of Corollary 2.

law.

Because the sequendg (x) in Assumption 2 may not be
unique, forxz € R™, consistently with Section IIl, we denote
the set of inputs at the start of near-optimal sequencespotsn ~ The results presented so far concentrate on the case where
atz asii, (z). We write system (1) in closed-loop with a neary € (0,1) in (2). In that way, the discount factor* in (2)
optimal sequence of inputs as penalizes the stage coétas time grows. We could think of

the opposite situation where the importance of the stage cos
2(k+1) € f(x(k), U (x(k)) = E(x(k)).  (15) increases with time, that is to take> 1 in (2). The stability

A. Reverse-discounted cost



results of Section IV can be easily adapted to this case. \&fe fiwhereuv*(x) is the set of optimal inputs at for cost (17).
suppose that the Standing Assumption holds when[1,7) The theorem below shows that the stability results derived
for some? € [1, 0] (the conditions in [19] may still be usedin Section IV can also be easily adapted to this problem.

in this context to verify the validity of this assumption).eW
can then write the system subject to an optimal sequence
inputs for the cost function (2) with € [1,7) as system (5).
The next result ensures stability under the same assunspti
as in Theorem 2.

Tct)}eorem 6. Consider system (18) and suppose Assumption 1
holds for anyy € (0,1). Then, for anyy € (0, 1), there exists

€ KL such that for anyy € (0,%), « € R™, any solution
é?-,a:) to system (18) satisfies(¢(k,x)) < B(o(x), k) for
any k € Z=g. O
Theorem 5. Consider system (5) and suppose that Assumptio
1 holds for anyy € [1,7). Then, there existg € KL such
that for any~ € [1,7%) and z € R", any solutiong(-, z) to
system (5) satisfies(¢(k, x)) < B(o(x), k) for any k € Zo.
U

MAs in Theorem 5, the stability property of Theorem 6 is
global and asymptotic, which comes from the fact that there
is always a minimum weight of — ¥ in (17). Hence;y has
to be sufficiently small to ensure stability, and not suffitig
close to1 as before. On the other hand, we note that we
Regarding the conditions of Theorem 5, we first note thate free to select the valugin Theorem 6 as we wish, and
item (ii) of Assumption 1 is independent of. When ¢ is that the value ofy has an impact o and therefore on the
uniformly globally exponentially controllable for syste() convergence of along the solutions to the system.
with respect too with decrease rate. > 0 (see Lemma
1), item (i) of Assumption 1 is verified for any € [1,7)
with ¥ = e*. This result directly follows from the proof
of Lemma 1 in Section VIII-A. Furthermore, whef is*
uniformly dead-beat stabilizable with respectador system
1), item (i) of Assumption 1 holds for arfy > 1. This is the . . , .
(ca)se for ((:c)mtrollable IFi)near systems, morz generally fozdr B. _Relatlonshlp bet_ween the discounted and the undiscdunte
systems when dead-beat stable uncontrollable part, when W?t'mal value functions
stage cost is given by (10). Conditions for uniform deadtbea Often, the discount factor is introduced in the cost functio
controllability of a class of nonlinear systems can be foimd because the undiscounted problem is too hard to solve. In
[27], for instance. this case,y is typically selected close ta in the hope of
Contrary to the case where < 1 (see Theorem 2), the obtaining an optimal value functiol, close to the one we
stability property in Theorem 5 is global and asymptotigyould have obtained in the undiscounted case, assuming it
and not semiglobal and practical. This comes from the fa@xists. The next proposition proves that this is indeed the
that the perturbative terrfl in the Lyapunov analysis (seecase under appropriate conditions and an explicit relakign
Theorem 1) is negative whef > 1. On the other hand, between these two functions is provided.
stability does.not r_equirg ext_ra.conditionsmnThe latter or_1|y Proposition 2. Suppose the following holds.
needs to be if1,7), which is imposed by the assumptlons.(é

Remark 4. The analysis of the continuity of the optimal value
functions for the two reverse-discounted costs considared
this section is outside the scope of the paper and is thexefor
left for future work. O

a) The conditions of Corollary 2 are verified.

b) For any z € R", there exists an infinite-length input
sequencar*(z) such thatV(z) := J(z,u*(z)), where
J corresponds to cost (2) with = 1. In addition,
V(z) < ayo(x) for any 2 € R™, whereay is defined
in Corollary 2.

ay

Theorem 5 justifies the observations made for the linearize
inverted pendulum example at the end of Section IV-D1, which
suggested that stability always hold for any> 1: this is
indeed the case as the considered linear system is cobteolla
and the stage cost is of the form of (10).

Another way to increase the stage cost as time proceeds is
to multiply it by 1 — ~*+%, wherey € (0,1), which leads to Let~* > F— then for anyy € (y*,1) and anyz €
the cost function R, V3 () < V(2) < V3(2) + (1= 7)0(1) (V5 (@) + W(2))

= V(@w —aw) +av

Tew) = (=", 2 uly).u).  (17) Where(y) == —H——Trm—, W) comes from the
k=0 satisfaction of item (ii) of Assumption 1 angt, ay, anday,
Contrary to the case wherg > 1 in (2), the time-varying are defined in Corollary 2. O

weight is bounded here. We assume that there exists an dptima b) of " hat th . imal
sequence of inputs for this cost, for ang R™ and e (0, 1). Item (b) of Proposition 2 means that there exists an optima

Hence, we can write system (1) subject to an optimal sequerfoiution to the undiscounted problem and, again, condition

of inputs for cost (17) as Fo ensure.t_his property can be found in [19]. Thg inequalitie
~ 3 in Proposition 2 state that, for anye R", the undiscounted
w(k+1) € F¥x(k):= f(z(k),U*(x(k))), (18) optimal value functionV/(z) is betweenV, (z) and V,(z) +
(I =5)0(v)(Vy(x) + W(x)), where the latter term vanishes

4We say that/ is uniformly dead-beat stabilizable with respect dofor as~ approachesd. Hence. fory close tol, V. (z) andV (z
system (1) if there existk € Z-o and ¢ € K., such that for any k’y Fp | ) O Vo (@) ()
x € R™ there exists an admissible infinite-length control inpu¢jusnce take close values.
u(z) such thatt(p(k, z, u|y (x)), uk(x)) < o(o(x)) for any k € Zso and . .
0(é(k, 2, ul(x)), up () — 0 for any k > K. This property implies that R€mark 5. The proof of Proposition 2 strongly relies on

item (i) of Assumption 1 holds witary = K55 o e K, foranyl <~ <7. the exponential stability ensured by Corollary 2. It should



be possible to relax these conditions to allow for semiglob8. Proof of Theorem 1.

exponential stability instead. O Lety e (0,1), 2 € R", v = f(z,u* o(z)) whereu? o(z) €

The next result provides a tailored relationship for linede; (z) is the first element of the optimal sequena&(x),
system (9) with quadratic stage cost (10). which exists according to the Standing Assumption. Sifice

. .. is nonnegative and in view of item (i) of Assumption 1,
Corollary 5. Consider system (9) and the cost functibnin ! gatv n view ot ® Umpt

(2) with ¢ defined in (10). Ley € (0, 1) be such t_hat (_11) holds Uzu*o(x) < Vi(z) < av(o(z)), (20)
andS; > wl_TUDV whereS,, @ and P, are defined in Corol- R

lary 3 and in Section IV-C, respectively. Then, for ang R?, these inequalities will be useful in the following. On théet
Vo(z) < V(z) < Vy(z) + (1 — 7)1;@()” (V,(z) + 2T 5,2) hand, according to the Bellman equation,

whereg(y) > 0 s such thatL S — =2 P, > ¢(7) (552 +P,)

_ *
with S, defined in Corollary 3. Whex) is positive definite, V@) = Uz uyo@) +975 (), @D
€ (0,1) has to be such that-Q + 1*T”PV > 0 holds. In therefore
this casel, () < Vi(w) < (1+ (1 =) ) Vi@ where o e ) 4 (- i)
¢(y) is such thatQ — I*TVP7 = ¢(y)P,, for z e R™. O B ! P ! (22)

The required conditions on in Corollary 5 are satisfied !N view of (21) and sincé(z, u o(z)) = 0, 7V, (v) < V4 (2).
only for v € (v*,1), with ~* defined as in Corollary 3. We AS @ result
can note the difference between the upper-boundi’oim
Proposition 2 and Corollary 5. PP v Vi) = Vo) < @ ufo(z) + (1= 7)771‘/7(&6)2’3
Corollary 5 can be applied as follows in the general case, . .h gives, using (20) (23)
We first use Corollary 3 to determing*. We then select ' '
v € (v*,1) and we maximizecw > 0 such that (11) and _ < _ * =
S1 > w@i2P, holds (we takeS, = P, when P, is M) =@ s o) + av(a(:v)).(24)
positive definite, i.e. whe4, C') is observable). Afterwards, we now distinguish two cases like in the proof of Theorem
we maximizes(v) > 0 under the constraint S, — I*TVP7 > 1in [15].
s(7)(£S2 + P,). In the case where) is positive definite,
we selecty € (y*,1) as in Corollary 3 and we maximize Case 1:yy < L.
s(y) > 0 under the constrain® — PTWPV = <(y)Py. We We defineY, := V, + W. In view of Assumption 1,
obtain in Example 1, fory = 0.9, V,(z) ~ 4.156 - 22 < Y,(z) < @y(o(z)) with @y = @y + aw € K. From
V(z) ~ 4.236 -2 < 1.672- V,(x) ~ 6.950 - 2% with z € R the second inequality in (6) and the fact thaty < I,
(s(v) = 0.129). For the example in Section IV-D1, we obtainiv (z) > aw (o(z)) — Uz, u® o (2) + W(v) = aw(o(x)) —
for v =0.988 andz = (1,1), V,(z) ~ 3.681-10* < V(z) ~ ((z,u% ,(x)). Consequently, using (20¥, (z) = aw (o (z))—
4.158 10" < 2.861-10° (<(7) = 1.904-10~*). The observed ¢(z,u* o(x)) + £(z,u* o(x)) = aw(o(z)) and item (a) of
conservatism is inherited from Corollary 3 on which Comglla Theorem 1 holds withy, = aw € K.

5 relies. In view of (6), (24) and the fact thagy <1,
VIll. PROOFS Y,(0) = Yy(2) < —lxulo(@) + 2ay (o(2)
A. Proof of Lemma 1. —aw (o(z)) + (=, u:o(:c))

Let v € (0,1), z € R™ and take the sequenagz) that = —aw(o@) + ay (o(x)).
satisfies the condition of Lemma 1. It then holds that, for any v (25)
N € Z=o, asy € (0,1), ltem (b) of Theorem 1 is therefore verified with

N . N ay =aw €K, andY : (Sl,Sg)Hav(Sl)SQEICIC.

DA Uk, ul(2)), up (@) < D LSk, @, i (2), ug())

k=0 v Case 2: There existse€ R such thatyy (s) > s.
< Z Mo(z)e= This case requires to modify th(se functio®s and . Let

= qv(s) := 2xw(2s) and py (s) := §; qv(t) dt for s > 0. We
< Mo(x) note thatgy and py are of classC,,. We apply Lemma 2
ST o~ (19) in the appendix withh(z) = £(z,u’ 4(z)), a1 = @y and
1—y—

. . as = —La@y, to obtain
The inequalities a}\l])ove hold for anyV € Z-., and the v
sequenceN — Y, v*(¢(k,z,ulx(z)), ur(x)) is non- v - < —vur (0(z. u* U u*

decreasing, therefore the limit of the latter Ais— oo exists pv(V5(0)) = pv (V2 (@) < =xw (U, w50 (@)))E(w, 05 0())

— 1~y — 1~y —

and J(z, u(x)) < 22°E) . As a resultV (z) < J(x, u(z)) < av (v (0(2)) + Ay (o)) SHav (o ()
f{z@g (recall thatV/, (z) is well-defined in view of the Stand- = —xw (£(z, v} o(2))) (2, u} o (2)))
ing Assumption in Section IIl). This implies the satisfacti +qv(%av(a(x)))1%av(a(x)).
of item (i) of Assumption 1 withey = 241 26)



—1
Let gw : l(XW + aW(a;Vl@XW))) and pw (s)
SO gw (t) dt for any s > 0. Both ¢y and py are of class-
K We |dentlfy [e%1 aw, 02 = XwW and as = ap in
Lemma 3 in the appendix, from which we derive
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(¥, (2), 27) <

derive from (29),
Yy (v) — —3ay (Y5 (2)).

By proceeding by iteration and using Theorem 8 in [28], we

1dy (Y, (x)) according to (30), and we

Yy(z) <

~

(31)

pw (W () — pw (W (x)) < deduce that there existse KL such that for any solution
2w (xw(f(w,u;" o(2))) + aw (ag! (2XW(€(:v,u$70(x))))))to (5) initialized atz and anyk € Zx,

XXW(Z(%U%(CU))) q (zaw (o(2))) jaw(o(x)) Yy(o(k x)) < max {E(Yv(x),k),g}. (32)
= Uz, u} o(x))xw Uz, uf o (2))) — aw (o () (27) Using item (a) of Theorem 1 and thegefinition?ipfwe obtain
where dw = gw(2aw)law € K. We definey, = that (7) holds with3(s,k) = a3’ (B(ay(s),k)) for any
pv(V2) + pw (W). By (26) and (27), s,k > 0.

Y (v) 3/17(:5) S _XWI(_E 2, u3,0(@))(E, v (7)) D. Proof of Corollary 1.
v (50v (0(2))) FHav (o () Let A > 0, v € (y*,1) where* is specified in the
o(z))) —aw(o(x))  (28) following, and definel := @y (A) as in the proof of Theorem

2. First consider the case wherfe < L, with L defined in
Corollary 1. Sinceyy < I according to Corollary 1, item (b)
of Theorem 1 holds witl('(s1, s2) = @y (s1)s2 anday (s) =

with &y € K,.. We have shown that item (b) of Theorem Xvw (s) for si,s2,s > 0 according to Case 1 in the proof of

holds withay = ay € £, and T :
Sg)av(sl))SQav(Sl) e K.

(s1,82) = qv((1 +

Theorem 1. The deflnltlons ot anda ay in Section VIII-C
are therefore in this caséf(sl,SQ) = av(gy (s1))s2

We now show the satisfaction of item (a) oftv((ay (s1))s2 anddy(s) = aw ((@v +@W)*1(8)) for
Theorem 1. In view of (20) and the secondi,ss,s > 0. Let s € [0,L], T(s,557) < fLsiz?t,
inequality in (6), Y,(x) > pv(ﬁ( ;u¥o(z))) + Similarly, we deduce thafiy (s) > —“%—s. Consequently,
pw (max {aw (o(z)) — xw (l(z, uk 4(2))),0}). if Drgl=2 < l_aw s then Y (s, 12 1) < 1ay(s). For
When faw(o(z) < xw(l(z, 'y-,O( 2))), Yy(z) = the first inequality to be true, it suffices to selegt >

: _
pv (xw (zow(o(2))).  When  jaw(o () > (1 + 2%) . In this case, for any € (v*,1) and
xw ((z, uf o(x))),  Yy(z) > pw (zow (0(x))). Sy 1
Hence Y. () > ay(o(z))  with  ay ~ anyse[0,A] < [0, L], T(s, T) < 50y (s) and we follow
min {pv (XEV ( aw)) pw(%aw)} c K,. On the proofwof Theorem 2 to obtain the deswed resu[[.1
the other hand Y, (o(z)) < ay (o(x)) with WhenA > L, we selecty* € [(1 + %%) ,1)

ay = py(ay) + pw(aw) € K, in view of Assumption 1.
We have proved that item (a) of Theorem 1 holds.

C. Proof of Theorem 2.

Let A,0 > 0, v € (v*,1) where~* is specified in the
following, z € R™ such that(z) < A, andv = f(x, uZ (())
whereu ,
quenceu*(z). DefineA := @y (A) > 0 andd := ay(6) > 0

such thatT(N,lgf) < dy(L). The fact thaty* >
aly

—1 -
(1 + %m) ensures thal (s, 1)
any s € [0,L] and~y € (y*,1). The fact thatT (A, =) <
&y (L) guarantees thal (s, =) < 1ay(s) for s € [L, A].
The desired result is then derived by following the proof of

< 1dy (s) for

(z) e U () is the first element of the optimal se-Theorem 2.

where@y anda, come from Theorem 1. In view of Theoremg. Proof of Corollary 2.

1:

1—v

Y,(0) = Ya(a) < —ay(¥y(2) + T (Y (@), 52

R (29)
with dy := ay oay" and Y(-,+) := Y(ay"'(-),-). We select
~* sufficiently close tol such thatY (A, 1;3 ) < 1&y(6)

which is always possible sincé e KK andy — —2 strictly

decreases t0 as~ tends tol. Consequently, a?f and ay
are increasing, for alk € [4, A]

T(s =0y <Y(g 1227
s, 22) < T (s, 122

Sinceo(z) < A, Y, (2)
1 and the definition ofA above. Therefore, it (x)

< A in view of item (a) of Theorem
> 0,

=

Letz e R", ve Ff(z) andy € (y*,1). Sincexw = I, we
can use the developments of Case 1 in the proof of Theorem
1. In particular, in view of (25),

Y, (v) = Y5 () —aw(o(2)) + Fav(o(x)).

whereY, =V, 4+ W. Using the conditions of Corollary 2

<

~

(33)

<

Yy(v) =Yy(z) < (—aw + 17T"YEV)0(90). (34)

Sincey* > — v andy € (v*, 1), there exists € (0,ay ),
a aw

whereay := aw + av, —E.
As Y,(xz) < ayo(z) in view of item (a) of Theorem
1 and the assumptions in Corollary 2, (v) — Y, (z) <

X
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—eo(z) < —ea@y Y, (z) and thusY, (v) < (1 —eay')Y,(x) [20], we therefore omit & The desired continuity property is
with 1 — eay! € (0,1). Let 2 € R™ and denotep(k,z) be a consequence of these two properties.
a corresponding solution to (5) at time € Z-, it holds System (1) can be written as

that Y., (¢(k,z)) < (1 — ea,')FY,(x). Using the fact that
Yv(:v)’ygb(aw(z)(x)) " aWUY(x)) (i7n( e of Cate 1 the { sk +l) = fla(k)ulk)) 37)
proof of Theorem 1), we derive that Corollary 2 holds with { w(k+1) € U(z(k +1)) =U(f(z(k),u(k))).
K =20 =2t and A = —In(1 —eay ). We thus obtain an extended autonomous system, which we
rewrite as
x(k+1) € G(x(k)), (38)

F. Proof of Corollary 3.

wherey := (z,u) and G(x) := (f(x,u),U(f(x,u))). Since
The existence of an optimal sequence of inputs is ensurje ndi{ are continuous according to item (b) of Theorem 3,

in view of Section 4.2 in [3], hence the Standing Assump'uogo iSG. We similarly write the system in closed-loop with an
holds. Lety € (v*, 1) andx € R™. The optimal value function optimal sequence of inputs as

atz for the discounted problem, namé¥y (z), is less than or

equal the optimal value function for tnmdiscounted problem x(k+1) € Gx(x(k)), (39)
which corresponds te™ Pz, as~y € (0,1) and the quadratic whereG*( ) = (f(z,u), U5 (f(z,u))) for x = (z,u) and

) 3 ’Y ) )
stage cost is non-negative. As a result, in view of (23), e (0, 1) The set of solutions to (39) is included in the set

. of solutions to (38) a#/(x) < U(x) for any z € R™ and
—lz,uy o(2)) + (1 =)y V5 (2) ~v € (0,1). In the following, we respectively denote solutions
—l(x, K*z) + (1 = y)y~ 2" Pa. to (38) and (39) at timek initialized at y as v(k,y) =
_ (35)  (¢(k, x), u(k, X)) and ¥*(k,x) = (¢*(k, x), u*(k, x)). The
On the other hand, 16t/ () := Zz"Syz. In view of (11),  notation we use in this proof for is slightly different
compared to the rest of the paper, as it depends on the initial
Ww)-W() < —L1a2TSz+0(x,K*z), (36) conditiony and not only onz as before.

. Let A > 0and § € (0,1), x € {z : o(2) < A}, and
wherev = (A + BK7)x. LetY, =V, +W. We derive from consider an arbitrary sequeneg, n € Z=o, such thats,, — «
(35) and (36) that, (v) — Y, (z) < —a™ (ésl — 1 P) asn — . Letu,, n € Zso, be a converging sequence such
Sincey > 7 1 1 — 1_7P S L 19— 1— 7 P.Asy* > ==, thatu,, — uasn — o anduw,, € U(z,,) for anyn € Z=¢. By
1 _W 1o a f12),15—2P >0, (outer semi)continuity of &, u € U(z) (see Section Il). Let

=51 P> Sl P InV|eW0 ( ).z 51 = (z,u) andx, = (2, u,) for anyn € Z-o.
consequentlywS Let ¢ > 0, and~* € (0,1) be such that (7) holds for the
existse > 0 such thatYV(v) - Yw(x) < —¢|z|?. Since set of initial conditions{z : o(z) < A} whereA > A. Let
’A\”““Tg“y:cﬁ < Yy (2) € Amax(P + £S52)|z> and 0 < v € (", 1), and;j € Z=, be sufficiently big such that
TERE < Apax (P + éSz , we conclude that the origin is *\jm . €
uniformly globall(y exponer)wtially stable. (rYay @max{flo(@) +1,5).0}) < 4’ (40)

When(@ is positive definite, the paifA, C) is observable, where 3 comes (7). Sincer, — z asn — o ando(r) <
henceP is positive definite. Then, the desired result followd < A, o(z,) < A for n sufficiently big (recall thatr is
by using (35) and the definition of* in this case in Corollary continuous). Consequently, we apply Theorem 2 for the set
3. of initial conditions{z : o(z) < A}, noting that the required
conditions hold according to item (a) of Theorem 3, to ohtain
for n sufficiently big,

G. Proof of Theorem 3 .
_ 0(0*(k,xn)) < max{f(o(xn), k), 0} ke Zxo,

The proof follows the same steps as the part on conti- (41)
nuity in Seption 5.2 in [20]. Th_ere are several differencetﬁereforeg(gz,*(k,Xn)) < max {B(co(z,),0),6} for any k €
though, which prevent us to directly apply the results of_,. Forn e Z, sufficiently big, by continuity ofr, o(z,) <
[20]. Indeed, the stage cost we consider in (2) is diﬁereg{x + 1, hence
as it involves the input: (and not only the state) and it is
discounted. Furthermore, we investigate stability witspesct o (¢*(k; xn)) < max {f(o(z) + 1,0), 4} Vk € Zzo.
to o, which is not necessarily the distance to a compact set as (42)
in [20]. Finally, the ‘optimal’ closed-loop system (5) sdi€s  Swe can apply Lemma 18 in [20] as done in [20] since our definiti6
a (uniform) semiglobal practical asymptotic stability pesty continuity is equivalent to the one in Definition 3 in [20] a® wlso assume

: : : : : - to be locally bounded, see Lemma 5.15 in [13] and page 1931 {Be
accordlng to Theorem 2 (WhICh applles in view of item ( ct that the distance to a set (and not a generic continadus considered
of Theorem 3), while the results in [20] rely on a (uniformjn Lemma 18 in [20] is not an issue.
global asymptotic stability property. We show in the foliogg ~ ®Since the satisfaction of item (b) of Theorem 3 fbre (0,1) implies
that we can still app|y similar arguments as in [20] to prd\et its satisfaction for anyy > 1, there is no loss of generality in assuming

. L . o € (0,1).
desired property. We d_o it 'n d_eta"_ f‘?f lower seml_con_twult Sincel{ is assumed to be continuous, it is outer semicontinuousghwhi
the proof of upper semicontinuity similarly follows in viewf  allows us to write thau € U(z).

Vi(v) =Va(x) <
<




12

Let M(z) = PB(o(z) + 1,0) + 2 and M(x) := from (48)

{z : 0(2) < M(x)}. The setM(z) is compact according -1

to item (c) of Theorem 3. Consequently( M (z)) is also V(z,) = V(i (k, X)) — = (50)
compact by continuity and local boundednesg/oftloseness k=0

follows from the fact thatl/ is outer semicontinuous (see -

Theorem 5.25 in [31]) and boundedness proceeds from tRgding and subtractmgz ~YRe(p* (k -, {b\n(jax))) (which

fact thaetu is locally bounded (see Proposition 5.15 in [31]). =y
For o on the compact seM(x) x U(M(z)), by (uni- is finite) above gives, using the definition ©f (z),
J .
form®) continuity ofZ (see item (b) of Theorem 3), there exists = — .
8, > 0 such that for anyy1, x2 € M(z) x U(M(z)), Vo(@n) 2 D Y Wk, X)) + Y MW (k = 5,9, X))
c k=0 k=j
i—x21<d1 = [l0a)—lx2)| < 5 43
2j 43) —= - Z VO™ (k= 3,9 (5, X))
On the other hand, let; = min {3@,'(£),1} (whereay
comes from item (i) of Assumption 1), by (uniform) continuit _ E _ ROp* (k — 5,
of o, there exist); > 0 such that for anyzy, 22) € M(x) x 2 Z ! G 0))
(M(x) + 01B), (51)
The last term in the right hand-side of the inequality above
o1 — 2o <82 = oler) —o(ws) <ex  (44) oo J ety
For the triple (j, min{dy,d2}, x), Proposition 6.14 in [13] © R L
ensure$ that there existsis > 0 such that for any solution Y Y*0(*(k = ,9n (5, X)) = ¥V3(dn(i X)) (52)
P*(+, xn) 10 (39) withn sufficiently big so thafy —x»| < Js, k=j

there exists a solution to (38) initialized gt and denoted On the other hand, from item (i) of Assumption 1 and (46)

w ((bn,un) such that
V(6n (5. %)) <@y (0(n (i, X)) <@ (0(6* (4, xn)) + 2),
(45) sinceay € K., av(a +b) < ay(2a) + @y (20) for any
In the following, we considen € Z= sufficiently big such «a,b > 0, hence
that the properties obtained above hold. For amy{0, ..., j}, ~ . o , o
D (k. xn) € M(z) (in view of (42)) andi, (k, x) € M(z) +  1(@nlB:X) < av(20(6*( xn))) +av(2e2).  (54)
9B (from (42) and (45)), we thus derive from (44) and (45From (41) and the definition ofs,

that, for anyk € {0, ...,j}, ~ ) €
- Va(¢n(5,x) < av (2max{B(o(zn),5),0}) + ;-
o(@* (k. xn)) — o(n(k, )| < e (46) (55)

We deduce from the inequality above and (42), fore Sincen is sufficiently large such that(z,) < o(x) + 1,

0, 7% Vy(@n(G0) < v (2max {Blo(x) +1,5),6}) + =
a(¢n(k, X)) < a(¢*(k,xn)) + &2 _ 56)
< max{B(o(x) +1,0),0} + ey (47) using (40) and the fact thate (v*, 1),
< Blo(z) +1,0)+6 +e. WV, (@) <7 (@v (2max {Bo(@) +1,5),6}) + 5)
Sinceey < 1 andd < 1, in view of the definition ofM (z), < Z + yﬂz < %

o(Gn(k, X)) < M(x) and i, (k, x) € M(x) x U(M(x)) for (57)
anyk € {0, ..., j}. We derive from (43) and (45) that, for anyCombining (51) with the inequality above and (52) leads to
ke {0,...,7},

(o (k 0Ok € Vy(zn) = Vy(z) —e (58)

‘ X)) = £n( X))‘ 2j (48) We have proved that, is lower semicontinuous at. Since

We now consider the optimal value functiéf in (3) atz,, = has been taken arbitrarily iz : o(z) < A}, for any
. _ v € (v*,1), V, is lower semicontinuous ofr : o(z) < A}

J—1
Z CW*(kxn)) = Y YR U@* (R, xn)),
k=0

— H. Proof of Theorem 4
(49)

Let z € R™, v € (7,1) wherey comes from item (i) of
8Since we work on the compact sétl(z) x U(M(x)), the continuity of Assumption 2,0 = f(x,4,,0(z)) whered, o(z) is the first

¢ 'ng:]”'fOde(?!‘ that fs"it by H_e_'”e'ecizt?f E?g;’fem- o e element of the sequendg, (x) given by Assumption 2. In

e conditions of Proposition 6.14 in are verified as we embe . : . :

system (38) as a hybrid system with empty flow set, which isinaty well- view of item (") of Assumption 2,

posed sinc& is continuous, the jump set®" ™ and pre-forward complete ~ ~ ~ ~ A

- see Definition 6.12 in [13]. We apply it with = min{d1,d2}, 7 = 5 and ny(v) - ny(x) = Lz, u'y-,O(fE)) +(1— V)Vv(v)-( )
= {x}. 59
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(2I) € K. Consequently, wher@()

Moreover, item (ii) of Assumption 2 implies thatf/v(ﬁ) < Ky and 9 = PW
3 3V, () <@g (o(x ). In this case, in view of (66),

‘77(17) sincel(z, iy 0(x)) = 0. As a result S(x), Y5 (2
0.0) = V() < —f(x,8y0(@)) + (L =)y~ (). Y4 (0) - Vs (2) < —aw oag! (3, () (67)
(60) +1 (Y, (x), 152).

Using item (i) of Assumption 2,
R Let A,d > 0 and suppose(z) < A. We now takey € (v*,1)
V4, (D) = Vo () < —l(z, Ty 0(z)) + (1 — )y~ " 61 Where v* € (7,1) is specified in the following. LeA =
x (Vy(z) + a(o(z)) + 1), (61) ap(A)+9(n ) andé = ay(é) We selecty* sufficiently close
to 1 such thafl' (A, =)< aWoaAl(—(S) which is always

and item (i) of Assumption 1, possible in view of the definition dT By following the same

Vo () = Vo () < —(x, 5y () + (1 — 7)1 lines as in the proof of Theorem 2, there existse KL,
/(0) =Va (@) (_ rolo) A( (e (62) which is independent of;, such that for any solution to
x (@v(o(2)) +a(o(z)) +n). (15) initialized atz and anyk € Zo,
On the other hand, we also have from item (i) of Assumption & 5 2o
on th 0 PION 9. (6(k.2)) < max {B(¥;(2). k). 5.200m)} . (68)
N ~ _ ~ Since o(x) < Y. (:c), o(p(k,x)) <
V4 < V. < Y,\ Y
(o) " o) at ) +(7€753) max {Oéy (ﬁ(Yv ) 5,0y (20(n ))}. Furthermore,
which will be useful in the following. Yv(x) < aplo(z )) (77) < 2max{af,(a(x)),1§(n)}.

Like in the proof of Theorem 1, we need to distinguish tw@onsequently, for any soluton¢ to (15) ini-
cases depending ogyy in Assumption 1. We only treat thetialized at « and any & € Zso, o(é(k,z)) <
case where there exists> 0 such thatyw (s) > s; the case pax {g;l (3(2&?(0_(@)7,{)) Loyt (3(23(77)70)) 5,
whereyy < I similarly follows. LetY, := py (V,)+pw (W), ~
where pv, pw € K., are prowded in Table I. We apply &v (2’9(77))}' Property (16) thus holds
Lemma 2 to (62) and (63) by identifyingz) = ¢(z, 1, 0(z)), with  B(") = Y YB@ag(),),  9() =
a1(0(®) = Av(2) +(0(@) + 1 andaa(o@) = (1 = maxfa;? (320(),0)) 2 200}

v~ (@v(o(x)) + alo(z)) +n). In that way, we obtain

pv (V,(8)) = pv (V, () < —qv (L0(z, 0y 0(x))) I. Sketch of Proof of Theorem 5 5.
x L0(z, 0y 0(2)) Let v € [1,7), = € R", v = f(z,u}y(x)) where
2 ’1 7_ R u¥ o(x) € U (x) is the first element of the optimal sequence
tav (? (@v (o(2)) + a(a(z)) + 77)) u’(z), WhICh exists by assumption. According to the Bellman
x(1 =)yt @y (o(z)) + alo(x)) +n) equation, V, (z) = £(z,u}q(z)) + vV, (v). Hence, since

_ - - 72 1L V,(v) = Vy(z) = —l(z,uf o(x) + (1 —7)V;(v)
=—xw (6@, .0 (@)@, By 0 () < —l(x,u% 5(x)). We then follow similar lines as the proof of

+qv (% (@v(o(z)) +a(o(z)) + 77)) Theorems 1 and 2 in Sections VIII-B and VIII-C, respectively
x(1— ’7)’771 @y (o(z)) + alo(x)) +n) to obtain the desired result.
(64)
wherey is given in Table I. We derive from the inequalityJ: Proof of Theorem 6.
above and (27) that Let ¥ e (0,1), v € (0,%), z € R" andv = f(z,u o(v))

A N where @% (z) is the first element of the opt|mal sequenc
Y,(0)=Y5(@) < —dw(o(@) of |nput5u (z), which exists by assumption. L8t (z) :=
+qv ( (v (o(2)) +a(o(z)) + 77)) 1an (x,u). Sincel is non-negative and — "1 > 1 - >
x(1 =)y~ (@v(o(z)) +alo(z)) +n). 1'— % for any k € Z>0,
N (65) <

Using that?, (z) > Y, (2) > ay (0(z)) whereay € K, see (L~ D@ 050(2)) < (1 =)z, 15 (2))
Table I, <1nf2 1— k+1)€(¢(k,x,u|k),uk)

Y,(0)=Yy(x) < —aw(o(x) + (Y, (2), ), ()

A (66) = 'y( )-
with Y (s1,s2) = qv ((1 + s9) ((av + Q) og;l(sl) + 77)) S
x ((@y +a)oay'(s1) +n) for si,s2 > 0, note thatY is
strictly increasing in its first argument and of classin its
second argument. On the other haﬁd(x) < pv(av(o(z))+
a(o(x)) +n) + pw(@w(o(z))) in view of (63) and item
(i) of Assumption 1. From which we derive théty( x) < (W) = mf Z A+
ay (o(x)) +9(n) whereay = py (2ay +2a) + pw(aw) €

(69)
On the other handffv(x) < V(z) < av(o(z)) in view of
item (i) of Assumption 1 and since— v < 1.
We now study the relationship betwegh(:c) and ‘77(1)).
By definition

k v,u|k),uk). (70)
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starting atv = f(x,u? ,(z)). The sequenceu’ ,(z),u*(v))

remove its first element and apply the corresponding tr@acatmay not be optimal for the undiscounted cost. Therefore, by

sequence (i.eﬁ’:(:c) = (U} ;(x),u% 5(z),...)) starting from
the initial statev, it may no longer be optimal, therefore

[oe]
~ % -
Z ’”1 o(k U,u’v|k(x))au:,k+1(‘r))
k=0
(71)
asl —~y**1 <1 —~F*2 for anyk € Z,,
-
~ >,k h
V) < 2 =20k, 0,07 k(@) T i (2))

a:,u,yo

0
(z) = (1

=
NG

- (),

(72)

we note that the infinite sums above are well-defined. Conse-

quently,

V,(v) =V, () —(1 =7 (2)).

We now distinguish two cases dependinggir in Assump-
tion 1, as in the proof of Theorem 1.
Case 1:yw < L.

<

~ €, U,y 0 (73)

Let YV, := V, + (1 — )W. From (73) and item (ii) of
Assumption 1,
V(o) = Ya(@) < —(1—9)a,1% ()
—(1=)aw(o(z)) (74)
+(1 = y)xw (b(z, 0% o (z))),
sincexyw <lTandl—~v>1-%,

—(1 =F)aw (o(x)).
(75)

(1 = y)aw (o(2)),

Y, (v) = Ya(2) < (1 = y)aw (o) <

On the other handY, (z) < @y (o(z)) +

in view of the inequalities after (69) and item (i) of As- _

sumption 1. Consequentl}vfw(:c) < ay(o(z))+aw(o(z))

ay (o(z)) with @y € K, as in Case 1 in the proof of Theorem
1. We also have, from item (ii) of Assumption 1 and (69)|_et Y,

>

=

that ¥, (z) > (1 = 7)l(z, 7% o(2)) + (1 = y)aw(o(z)) ~
(1 —y)l(z,u% o(z)) (see Case 1 in the proof of Theore

1 for more detail). Thereford’, (z) > (1 — y)aw(o(z)) =

=

(1=F)aw(o(x)) =: ay(o(z)) with ay € K. We conclude

definition of V(z),

Vie) < (z)) + V(v), (76)

adding and subtractingV/, (v) to the right-hand side leads to

a:,u,yo

V(x) <z, u? o(x)) +7Vy(v) =vV;(v) + V(v). According
to the Bellman equatiol, (z) = £(z, u o(x)) +~V;(v), thus
Viz) < Vy(@) —9V3(v) +V(v). (77)

We add and subtradt,,(v) to the right-hand side above and
we obtain

V(o) < Vy(@)+ (1= + V@) - Vi), (78)
which we rewrite as

Vi) - V(@) < V) =V30) +(1=)V(). (79)
Let vi = v and vy = f(v1,ul 5(v1)) whereu?  (v1) is

the first element of the optimal sequence of inputs for the
discounted cost (2) starting at;. By following the same
reasoning as above, we obtaif(v;) — V,(v1) < V(vg) —
Vy(v2) + (1 — )V, (v2). Hence, in view of (79),

V(w)=Vy(z) <

~

V(vz) =V, (v2)
+(1 =) (Vy(v1) + V4 (v2)) .

We proceed by iteration. Denotg.,; = f(vk,ujyo(vk)) for

k € Z>o\{1} whereu? ,(vy) is the first element of the optimal
sequence of inputs for the discounted cost (2) starting,at
i.e. u¥ o(vk) € UF(vx). From (80), we deduce that for any
ke Zi~g

(80)

<

V() = Vy(z) < V(ve) = Vy(ur) + (1

k
=) 2, Va(vj)
j=1
(81)
=V, + W. In view of the proof of Corollary 2, we
denve thatY (vr) = 0 ask — co. Therefore, sincé’, (vy,) >
m, wo(vg) = 0 (still in view of the proof of CoroIIary 2), we
deduce that(v,) — 0 ask — oo. Recall thatd < V,(z) <
V(x) < a@yo(z) in view of item (i) of Assumption 1 and item

that item (b) of Theorem 6 holds like in Case 1 in the Proqh) of Proposition 2. Consequently,

of Theorem 1.

Case 2: There exists € R such thatyw (s) > s.

This case follows the same lines as Case 2 in the proof
Theorem 1 by taking”, := py (V) + pw((1 — 7)W). The
fact thaty appears inpw ((1 — )W) is not an issue as we
use the inequality — % < 1 — v < 1 to render the obtained
inequalities independent of as done in Case 1 above.

K. Proof of Proposition 2.

Let v € (7*,1) andz € R". Sincey € (0,1) and ¢
takes non-negative valueg, (z) < V(z). We prove the other
inequality of Proposition 2 in the following.

Consider the sequence of inputs® ,(x),u*(v)) where

u¥ o(x) is the first element of a sequence of optimal inputs j=1

for the discountedcost (2), i.e.u? o(z) € U*(x), andu*(v)
is the sequence of optimal inputs for thadiscountedost./

Vo(ug) >0 and V(vy) >0 as k—ow. (82)
Bf the other hand, according to the proof of
Corollary 2 (see (34)), Vy(vx) < Yy(vp) <

k
(1 + (—aw + Sav)ay ) Y,(x) where ay -

ay +aw > 0 for k € Z-o9. As a consequence,

V() < (1+( aw + Z2ay)ay )kyw(x). Thus,
since (1+( aw + Z1ay)ayt) € (0.1) (@sy € (7%.1)
and~y* > = ) we obtain after some calculations,
k k j
Sy (1 o+ a0m ) v
j=1
=0(7)Y(z),
(83)
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whered(v) is defined in Proposition 2. In view of (82) and,.emma 3. Let f : R"*™ — R", W : R" — Ry,
(83), by taking the limit ag — oo in (81), V(z) = V,(z) < o : R" - Ryp, £ : R"™™ — Ry, a1 : Ryg — Ry,
(1 —~)0(v)Y5(z), which corresponds to the desired bound.and «as,a3 € K, such that W(z) < ai(o(x))
and W(f(z,u) — W) < aol(z,u) — as(o(z))

L. Sketch of Proof of Corollary 5. for( "’)‘" x edp R(n) ITet pW" q ef ’gf bet. such thatd
. . qw (s = “E%(s) is well-defined, continuous, an
Let v € (0,1) satisfy .the condltllons of Corollgry 5 andnondecreasing. Therpw (W (f(z, 1)) — pw(W(z) <
x € R™. We use the notation of Section VIII-F. In view of (35) 3

/1 1y 2qw (a2(b(z,w)) + a1 (a5 (202(£(z, w))))) aa((z,u)) —
and (36),Y,(v) — Yy (z) < —z (ESl - TPV) z. By def- qw (iOLg(O’(CC))) iO{g(O’(CC)) for all (z,u) e R"*™. O
inition of ¢(v), Y, (v) — Y, (z) < —s(y)z™T (%SQ + P,Y) T =

B . . Compared to Lemma 4 in [15}y; is not required to be of
<(7)¥>(z). We then follow the same lines as in the prootleasslcﬁf_‘ in Lemma 3, but the proof remains the same as this

k
of Proposition 2. Instead of (83), we deriv}) V,(v;) < Property is not used in [15].
J=1
k k ; ;
. 1—¢(7) B. Satisfaction of (11)
. _ J
Z Bl < Z(l sy ¥a () < <(v) ¥y (), from The next result ensures the satisfaction of (11) and (12) in

j=1 j=1
which we derive the desired result. The case whérds Corollary 3.

positive definite similarly follows. Lemma 4. The linear matrix inequalities (11) and (12) hold
when R is symmetric, positive definite ar@ = CTC with
IX. CONCLUSIONS (A, C) is detectable. O

We have analysed the stability of general nonlinear dieere‘:,roOf Since
time systems controlled by a sequence of inputs that mi X

imizes an infinite-horizon discounted cost. In generalyon 18], givene > 0 and S, real, symmetric, positive definite
uniform semiglobal practical stability is ensured, but vexé ther'e existsS,, real symmet,ric and pos'itive definite suc’h
also derived stronger properties under additional assongt that (A — LC)%SQ(A, L) — Sy + 51 + ATA = —L. i_et
Then, we have exploited stability to derive new results %1 .= ATy A—So+S —wQ. It holds that, — (A—LC+
the continuity of the optimal value function and thus of th%C)TSQ(A ZLC Y LC) = S5 + 51 — wQ sinceq = CTC.
Lyapunov function used to prove stability. This is fundanaén Using that2ATS,L.C < ATA + CTLTS2LC, we deduce
to guarantee some nominal robustness for the closed-I Rﬁtiml < —l—CT (wH 4 LTS, — LTS%L) C By taking
system. Afterwards, we have shown that the stability and the big enough, < —el. DenotingNt th2e matrix in (11)
continuity results still apply when an appropriatearoptimal o ATS, B '
sequence of inputs is applied to the system. The approagd have thatht < ¢ 2 = M.
has been shown to be general enough to address cases where BTS,A B'S;B—wR

the time-varying term multiplying the stage cost no longd8y taking = sufficiently big, sinceR is positive definite,
exponentially decreases to zero but increases as timegatece™! is negative definite, in view of Schur complement. As a
Finally, we have investigated the relationships betwean tRonsequence, (11) holds.

optimal value functions of the discounted and undiscountedThe satisfaction of (12) is ensured by taking > 0
problems, when the latter is well-defined. sufficiently small asP is positive semi-definite and; is

positive definite. |

(A, C) is detectable, there exists a matfixsuch
1at A — LC is Schur. In view of item 4 in Theorem 8.4 in
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