M. Fernandez-garcia, M. Mazzon, M. Jacobs, and A. A. , Pathogenesis of Flavivirus Infections: Using and Abusing the Host Cell, Cell Host & Microbe, vol.5, issue.4, pp.318-328, 2009.
DOI : 10.1016/j.chom.2009.04.001

URL : https://hal.archives-ouvertes.fr/pasteur-00429869

B. Lindenbach and C. Rice, Molecular biology of flaviviruses, Adv Virus Res, vol.59, issue.03, pp.23-61, 2003.
DOI : 10.1016/S0065-3527(03)59002-9

T. Monath and A. Barrett, Pathogenesis and Pathophysiology of Yellow Fever, Adv Virus Res, vol.60, issue.03, pp.343-395, 2003.
DOI : 10.1016/S0065-3527(03)60009-6

B. Pulendran, Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology, Nature Reviews Immunology, vol.26, issue.10, pp.741-747, 2009.
DOI : 10.4049/jimmunol.175.8.5260

A. Barrett and D. Teuwen, Yellow fever vaccine???how does it work and why do rare cases of serious adverse events take place?, Current Opinion in Immunology, vol.21, issue.3, pp.308-313, 2009.
DOI : 10.1016/j.coi.2009.05.018

T. Monath, Yellow fever vaccine, Expert Review of Vaccines, vol.30, issue.4, pp.553-574, 2005.
DOI : 10.1086/340104

B. Pulendran, J. Oh, H. Nakaya, R. Ravindran, and D. Kazmin, Immunity to viruses: learning from successful human vaccines, Immunological Reviews, vol.11, issue.1, pp.243-255, 2013.
DOI : 10.1038/nmeth924

URL : http://europepmc.org/articles/pmc3748616?pdf=render

C. Hahn, J. Dalrymple, J. Strauss, and C. Rice, Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain Yellow Fever Virus Entry and Antiviral Immune Response, 1987.

, Proc Natl Acad Sci U S A, vol.84, pp.2019-2023

A. Barrett, T. Monath, C. Cropp, J. Adkins, T. Ledger et al., Attenuation of wild-type yellow fever virus by passage in HeLa cells, Journal of General Virology, vol.71, issue.10, pp.2301-2306, 1990.
DOI : 10.1099/0022-1317-71-10-2301

B. Sil, L. Dunster, T. Ledger, M. Wills, P. Minor et al., Identification of envelope protein epitopes that are important in the attenuation process of wild-type yellow fever virus, J Virol, vol.66, pp.4265-4270, 1992.

E. Lee and M. Lobigs, E Protein Domain III Determinants of Yellow Fever Virus 17D Vaccine Strain Enhance Binding to Glycosaminoglycans, Impede Virus Spread, and Attenuate Virulence, Journal of Virology, vol.82, issue.12, pp.6024-6033, 2008.
DOI : 10.1128/JVI.02509-07

T. Querec, R. Akondy, E. Lee, W. Cao, H. Nakaya et al., Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans, Nature Immunology, vol.8, issue.1, pp.116-125, 2009.
DOI : 10.4049/jimmunol.177.5.3185

E. Wheelock and W. Sibley, Circulating Virus, Interferon and Antibody after Vaccination with the 17-D Strain of Yellow-Fever Virus, New England Journal of Medicine, vol.273, issue.4, pp.194-198, 1965.
DOI : 10.1056/NEJM196507222730404

D. Gaucher, R. Therrien, N. Kettaf, B. Angermann, G. Boucher et al., Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses, The Journal of Experimental Medicine, vol.13, issue.13, pp.3119-3131, 2008.
DOI : 10.1084/jem.20031598

URL : http://jem.rupress.org/content/205/13/3119.full.pdf

A. Lefeuvre, H. Contamin, T. Decelle, C. Fournier, J. Lang et al., Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection, Microbes and Infection, vol.8, issue.6, pp.1530-1538, 2006.
DOI : 10.1016/j.micinf.2006.01.013

J. Smit, B. Moesker, I. Rodenhuis-zybert, and J. Wilschut, Flavivirus Cell Entry and Membrane Fusion, Viruses, vol.3, issue.2, pp.160-171, 2011.
DOI : 10.3390/v3020160

URL : https://www.mdpi.com/1999-4915/3/2/160/pdf

H. Mcmahon and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nature Reviews Molecular Cell Biology, vol.84, issue.8, pp.517-533, 2011.
DOI : 10.1016/S0092-8674(00)81070-3

M. Krishnan, B. Sukumaran, U. Pal, H. Agaisse, J. Murray et al., Rab 5 Is Required for the Cellular Entry of Dengue and West Nile Viruses, Journal of Virology, vol.81, issue.9, pp.4881-4885, 2007.
DOI : 10.1128/JVI.02210-06

J. Chu and M. Ng, Infectious Entry of West Nile Virus Occurs through a Clathrin-Mediated Endocytic Pathway, Journal of Virology, vol.78, issue.19, pp.10543-10555, 2004.
DOI : 10.1128/JVI.78.19.10543-10555.2004

A. Benmerah, M. Bayrou, N. Cerf-bensussan, and A. Dautry-varsat, Inhibition of clathrin-coated pit assembly by an Eps15 mutant, J Cell Sci, vol.112, pp.1303-1311, 1999.

S. Mayor and R. Pagano, Pathways of clathrin-independent endocytosis, Nature Reviews Molecular Cell Biology, vol.264, issue.8, pp.603-612, 2007.
DOI : 10.1177/44.8.8756764

E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner et al., Dynasore, a Cell-Permeable Inhibitor of Dynamin, Developmental Cell, vol.10, issue.6, pp.839-850, 2006.
DOI : 10.1016/j.devcel.2006.04.002

H. Damke, T. Baba, D. Warnock, and S. Schmid, Induction of mutant dynamin specifically blocks endocytic coated vesicle formation, The Journal of Cell Biology, vol.127, issue.4, pp.915-934, 1994.
DOI : 10.1083/jcb.127.4.915

S. Mayor, R. Parton, and J. Donaldson, Clathrin-independent pathways of endocytosis, Cold Spring Harb Perspect Biol, vol.6, 2014.

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nature Reviews Molecular Cell Biology, vol.178, issue.8, pp.513-525, 2009.
DOI : 10.1091/mbc.11.12.4403

S. Sieczkarski and G. Whittaker, Differential Requirements of Rab5 and Rab7 for Endocytosis of Influenza and Other Enveloped Viruses, Traffic, vol.69, issue.5, pp.333-343, 2003.
DOI : 10.1099/0022-1317-81-11-2697

T. Pierson, M. Sánchez, B. Puffer, A. Ahmed, B. Geiss et al., A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection, Virology, vol.346, issue.1, pp.53-65, 2006.
DOI : 10.1016/j.virol.2005.10.030

H. Hoffmann, W. Schneider, and C. Rice, Interferons and viruses: an evolutionary arms race of molecular interactions, Trends in Immunology, vol.36, issue.3, pp.124-138, 2015.
DOI : 10.1016/j.it.2015.01.004

J. Schoggins, S. Wilson, M. Panis, M. Murphy, C. Jones et al., A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, vol.81, issue.7344, pp.481-485, 2011.
DOI : 10.1128/JVI.00690-07

J. Melchjorsen, L. Sørensen, and S. Paludan, Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function, Journal of Leukocyte Biology, vol.20, issue.3, pp.331-343, 2003.
DOI : 10.1128/MCB.20.6.2239-2247.2000

S. Sieczkarski and G. Whittaker, Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis, Journal of Virology, vol.76, issue.20, pp.10455-10464, 2002.
DOI : 10.1128/JVI.76.20.10455-10464.2002

C. Sanchez-san-martin, T. López, C. Arias, and S. López, Characterization of Rotavirus Cell Entry, Journal of Virology, vol.78, issue.5, pp.2310-2318, 2004.
DOI : 10.1128/JVI.78.5.2310-2318.2004

A. Khan, A. Pickl-herk, L. Gajdzik, T. Marlovits, R. Fuchs et al., Human Rhinovirus 14 Enters Rhabdomyosarcoma Cells Expressing ICAM-1 by a Clathrin-, Caveolin-, and Flotillin-Independent Pathway, Journal of Virology, vol.84, issue.8, pp.3984-399201693, 2010.
DOI : 10.1128/JVI.01693-09

E. Acosta, V. Castilla, and E. Damonte, Alternative infectious entry pathways for dengue virus serotypes into mammalian cells, Cellular Microbiology, vol.9, issue.10, pp.1533-1549, 2009.
DOI : 10.1099/0022-1317-83-7-1535

M. Kalia, R. Khasa, M. Sharma, M. Nain, and S. Vrati, Japanese Encephalitis Virus Infects Neuronal Cells through a Clathrin-Independent Endocytic Mechanism, Journal of Virology, vol.87, issue.1, pp.148-162, 2013.
DOI : 10.1128/JVI.01399-12

A. Grassart, A. Dujeancourt, P. Lazarow, A. Dautry-varsat, and N. Sauvonnet, Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2, EMBO reports, vol.18, issue.4, pp.356-362, 2008.
DOI : 10.1128/MCB.18.4.2153

URL : https://hal.archives-ouvertes.fr/pasteur-00332556

C. Basquin, V. Malardé, P. Mellor, D. Anderson, V. Meas-yedid et al., The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors, Journal of Cell Science, vol.126, issue.5, pp.1099-1108, 2013.
DOI : 10.1242/jcs.110932

Y. Yanagi, M. Takeda, S. Ohno, and T. Hashiguchi, Measles Virus Receptors, Curr Top Microbiol Immunol, vol.329, pp.13-30, 2009.
DOI : 10.1007/978-3-540-70523-9_2

E. Plow, T. Haas, L. Zhang, J. Loftus, and J. Smith, Ligand Binding to Integrins, Journal of Biological Chemistry, vol.305, issue.29, pp.21785-21788, 2000.
DOI : 10.1074/jbc.273.40.25664

URL : http://www.jbc.org/content/275/29/21785.full.pdf

L. Lepiniec, L. Dalgarno, V. Huong, T. Monath, J. Digoutte et al., Geographic distribution and evolution of yellow fever viruses based on direct sequencing of genomic cDNA fragments, Journal of General Virology, vol.75, issue.2, pp.417-4230022, 1994.
DOI : 10.1099/0022-1317-75-2-417

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/75/2/JV0750020417.pdf?itemId=/content/journal/jgv/10.1099/0022-1317-75-2-417&mimeType=pdf&isFastTrackArticle=

G. Barba-spaeth, R. Longman, M. Albert, and C. Rice, Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes, The Journal of Experimental Medicine, vol.65, issue.9, pp.1179-1184, 2005.
DOI : 10.1016/0042-6822(89)90045-7

URL : https://hal.archives-ouvertes.fr/pasteur-01402342

R. Van-der-most, J. Corver, and J. Strauss, Mutagenesis of the RGD Motif in the Yellow Fever Virus 17D Envelope Protein, Virology, vol.265, issue.1, pp.83-95, 1999.
DOI : 10.1006/viro.1999.0026

R. Germi, J. Crance, D. Garin, J. Guimet, H. Lortat-jacob et al., Heparan Sulfate-Mediated Binding of Infectious Dengue Virus Type 2 and Yellow Fever Virus, Virology, vol.292, issue.1, pp.162-168, 2002.
DOI : 10.1006/viro.2001.1232

URL : https://hal.archives-ouvertes.fr/hal-01061419

J. Nickells, M. Cannella, D. Droll, Y. Liang, W. Wold et al., Neuroadapted Yellow Fever Virus Strain 17D: a Charged Locus in Domain III of the E Protein Governs Heparin Binding Activity and Neuroinvasiveness in the SCID Mouse Model, Journal of Virology, vol.82, issue.24, pp.12510-1251900458, 2008.
DOI : 10.1128/JVI.00458-08

E. Lee, R. Hall, and M. Lobigs, Common E Protein Determinants for Attenuation of Glycosaminoglycan-Binding Variants of Japanese Encephalitis and West Nile Viruses, Journal of Virology, vol.78, issue.15, pp.8271-8280, 2004.
DOI : 10.1128/JVI.78.15.8271-8280.2004

URL : http://jvi.asm.org/content/78/15/8271.full.pdf

E. Lee and M. Lobigs, Mechanism of Virulence Attenuation of Glycosaminoglycan-Binding Variants of Japanese Encephalitis Virus and Murray Valley Encephalitis Virus, Journal of Virology, vol.76, issue.10, pp.4901-4911, 2002.
DOI : 10.1128/JVI.76.10.4901-4911.2002

E. Lee and M. Lobigs, Substitutions at the Putative Receptor-Binding Site of an Encephalitic Flavivirus Alter Virulence and Host Cell Tropism and Reveal a Role for Glycosaminoglycans in Entry, Journal of Virology, vol.74, issue.19, pp.8867-8875, 2000.
DOI : 10.1128/JVI.74.19.8867-8875.2000

E. Lee, P. Wright, A. Davidson, and M. Lobigs, Virulence attenuation of Dengue virus due to augmented glycosaminoglycan-binding affinity and restriction in extraneural dissemination, Journal of General Virology, vol.87, issue.10, pp.2791-2801, 2006.
DOI : 10.1099/vir.0.82164-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/87/10/2791.pdf?itemId=/content/journal/jgv/10.1099/vir.0.82164-0&mimeType=pdf&isFastTrackArticle=

C. Mandl, H. Kroschewski, S. Allison, R. Kofler, H. Holzmann et al., Adaptation of Tick-Borne Encephalitis Virus to BHK-21 Cells Results in the Formation of Multiple Heparan Sulfate Binding Sites in the Envelope Protein and Attenuation In Vivo, Journal of Virology, vol.75, issue.12, pp.5627-5637, 2001.
DOI : 10.1128/JVI.75.12.5627-5637.2001

K. Bernard, W. Klimstra, and R. Johnston, Mutations in the E2 Glycoprotein of Venezuelan Equine Encephalitis Virus Confer Heparan Sulfate Interaction, Low Morbidity, and Rapid Clearance from Blood of Mice, Virology, vol.276, issue.1, pp.93-103, 2000.
DOI : 10.1006/viro.2000.0546

A. Byrnes and D. Griffin, Binding of Sindbis virus to cell surface heparan sulfate, J Virol, vol.72, pp.7349-7356, 1998.

D. Sa-carvalho, E. Rieder, B. Baxt, R. Rodarte, A. Tanuri et al., Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle, J Virol, vol.71, pp.5115-5123, 1997.

C. Payne, S. Jones, C. Chen, and X. Zhuang, Internalization and Trafficking of Cell Surface Proteoglycans and Proteoglycan-Binding Ligands, Traffic, vol.162, issue.4, pp.389-401, 2007.
DOI : 10.1083/jcb.200305145

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2007.00540.x/pdf

D. Bruni, M. Chazal, L. Sinigaglia, L. Chauveau, O. Schwartz et al., Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons, Science Signaling, vol.88, issue.366, p.25, 2015.
DOI : 10.1128/JVI.00282-09

URL : https://hal.archives-ouvertes.fr/hal-01285424

J. Mandl, R. Akondy, B. Lawson, N. Kozyr, S. Staprans et al., Distinctive TLR7 Signaling, Type I IFN Production, and Attenuated Innate and Adaptive Immune Responses to Yellow Fever Virus in a Primate Reservoir Host, The Journal of Immunology, vol.186, issue.11, pp.6406-6416, 2011.
DOI : 10.4049/jimmunol.1001191

URL : http://www.jimmunol.org/content/jimmunol/186/11/6406.full.pdf

J. Ye, B. Zhu, Z. Fu, H. Chen, and S. Cao, Immune evasion strategies of flaviviruses, Vaccine, vol.31, issue.3, pp.461-471, 2013.
DOI : 10.1016/j.vaccine.2012.11.015

A. Beck, R. Tesh, T. Wood, S. Widen, K. Ryman et al., Comparison of the Live Attenuated Yellow Fever Vaccine 17D-204 Strain to Its Virulent Parental Strain Asibi by Deep Sequencing, The Journal of Infectious Diseases, vol.108, issue.Pt 10, pp.334-344, 2014.
DOI : 10.1073/pnas.1111650108

URL : https://academic.oup.com/jid/article-pdf/209/3/334/17410698/jit546.pdf

M. Vignuzzi, J. Stone, J. Arnold, C. Cameron, and R. Andino, Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population, Nature, vol.77, issue.7074, pp.344-348, 2006.
DOI : 10.1128/JVI.77.12.7131-7138.2003

URL : http://europepmc.org/articles/pmc1569948?pdf=render

P. Lozach, A. A. Bartosch, B. Virelizier, J. Arenzana-seisdedos, F. Cosset et al., C-type Lectins L-SIGN and DC-SIGN Capture and Transmit Infectious Hepatitis C Virus Pseudotype Particles, Journal of Biological Chemistry, vol.143, issue.31, pp.32035-32045, 2004.
DOI : 10.1074/jbc.M311227200

URL : http://www.jbc.org/content/279/31/32035.full.pdf

C. Rice, A. Grakoui, R. Galler, and T. Chambers, Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation, New Biol, vol.1, pp.285-296, 1989.

T. Pierson, M. Diamond, A. Ahmed, L. Valentine, C. Davis et al., An infectious West Nile Virus that expresses a GFP reporter gene, Virology, vol.334, issue.1, pp.28-40, 2005.
DOI : 10.1016/j.virol.2005.01.021

URL : https://doi.org/10.1016/j.virol.2005.01.021

A. Hayer, M. Stoeber, C. Bissig, and A. Helenius, Biogenesis of Caveolae: Stepwise Assembly of Large Caveolin and Cavin Complexes, Traffic, vol.131, issue.1, pp.361-382, 2010.
DOI : 10.1091/mbc.9.9.2595

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2009.01023.x/pdf

L. Meertens, C. Bertaux, and T. Dragic, Hepatitis C Virus Entry Requires a Critical Postinternalization Step and Delivery to Early Endosomes via Clathrin-Coated Vesicles, Journal of Virology, vol.80, issue.23, pp.11571-11578, 2006.
DOI : 10.1128/JVI.01717-06

URL : http://jvi.asm.org/content/80/23/11571.full.pdf

A. Subtil, A. Hémar, and A. Dautry-varsat, Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited, Biology of the Cell, vol.84, issue.1-2, pp.3461-34680248, 1994.
DOI : 10.1016/0248-4900(96)81369-4

T. Oliphant, M. Engle, G. Nybakken, C. Doane, S. Johnson et al., Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus, Nature Medicine, vol.257, issue.5, pp.522-530, 2005.
DOI : 10.1093/nar/13.18.6515

URL : http://europepmc.org/articles/pmc1458527?pdf=render

J. Brault, M. Kudelko, P. Vidalain, F. Tangy, P. Desprès et al., The interaction of flavivirus M protein with light chain Tctex-1 of human dynein plays a role in late stages of virus replication, Virology, vol.417, issue.2, pp.369-378, 2011.
DOI : 10.1016/j.virol.2011.06.022

URL : https://hal.archives-ouvertes.fr/pasteur-00648668

B. Snijder, R. Sacher, P. Rämö, P. Liberali, K. Mench et al., Single-cell analysis of population context advances RNAi screening at multiple levels, Molecular Systems Biology, vol.3, p.579, 2012.
DOI : 10.4161/cc.7.4.5452

URL : http://msb.embopress.org/content/msb/8/1/579.full.pdf

P. Lozach, L. Burleigh, I. Staropoli, E. Navarro-sanchez, J. Harriague et al., Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN)-mediated Enhancement of Dengue Virus Infection Is Independent of DC-SIGN Internalization Signals, Journal of Biological Chemistry, vol.73, issue.25, pp.23698-23708, 2005.
DOI : 10.1128/JVI.79.8.4557-4567.2005

URL : http://www.jbc.org/content/280/25/23698.full.pdf

L. Meertens, X. Carnec, M. Lecoin, R. Ramdasi, F. Guivel-benhassine et al., The TIM and TAM Families of Phosphatidylserine Receptors Mediate Dengue Virus Entry, Cell Host & Microbe, vol.12, issue.4, pp.544-557, 2012.
DOI : 10.1016/j.chom.2012.08.009

URL : https://hal.archives-ouvertes.fr/pasteur-01110072

A. Grassart, V. Meas-yedid, A. Dufour, J. Olivo-marin, A. Dautry-varsat et al., Pak1 Phosphorylation Enhances Cortactin-N-WASP Interaction in Clathrin-Caveolin-Independent Endocytosis, Traffic, vol.29, issue.8, pp.1079-1091, 2010.
DOI : 10.1128/MCB.11.10.5113

URL : https://hal.archives-ouvertes.fr/pasteur-00502612

C. Basquin, V. Malardé, P. Mellor, D. Anderson, V. Meas-yedid et al., The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors, Journal of Cell Science, vol.126, issue.5, pp.1099-1108, 2013.
DOI : 10.1242/jcs.110932

, Yellow Fever Virus Entry and Antiviral Immune Response