Caveats with stochastic gradient and maximum likelihood based ICA for EEG

Abstract : Stochastic gradient (SG) is the most commonly used optimization technique for maximum likelihood based approaches to independent component analysis (ICA). It is in particular the default solver in public implementations of Infomax and variants. Motivated by experimental findings on electroencephalography (EEG) data, we report some caveats which can impact the results and interpretation of neuroscience findings. We investigate issues raised by controlling the step size in gradient updates combined with early stopping conditions, as well as initialization choices which can artificially generate biologically plausible brain sources, so called dipolar sources. We provide experimental evidence that pushing the convergence of Infomax using non stochastic solvers can reduce the number of highly dipolar components and provide a mathematical explanation of this fact. Results are presented on public EEG data.
Type de document :
Communication dans un congrès
Latent Variable Analysis, Independent Component Analysis LVA-ICA International Conference, Feb 2017, Grenoble, France
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01451432
Contributeur : Jair Montoya Martinez <>
Soumis le : mercredi 1 février 2017 - 10:32:05
Dernière modification le : samedi 18 février 2017 - 01:17:33

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01451432, version 1

Citation

Jair Montoya-Martínez, Jean-François Cardoso, Alexandre Gramfort. Caveats with stochastic gradient and maximum likelihood based ICA for EEG. Latent Variable Analysis, Independent Component Analysis LVA-ICA International Conference, Feb 2017, Grenoble, France. <hal-01451432>

Partager

Métriques

Consultations de
la notice

97

Téléchargements du document

66