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Abstract: A finite volume flow solver was used to solve the Reynolds averaged 

Navier-Stokes equations for the 2D flow field on a paraglider open airfoil. The 

canopy was assumed to be smooth, rigid and impermeable. The parametric study 

performed concerns the position and the width of the air inlet at the leading edge. 

The range of values used covers the air inlet geometries from classical ram-air 

parafoil to sport paraglider airfoil, including transition toward the full closed 

baseline airfoil. Results are focused both on lift and drag coefficients for 

performance analysis and on the internal pressure coefficient which can be critical 

for a real flexible wing regarding the risk of collapse. Depending on the 

appearance of a separation bubble over the upper edge, two well separated 

behaviours can be observed. The first behaviour is more typical of ram-air 

parachutes and the second one corresponds to the design of performance 

paragliders. For paraglider configurations, it is shown that the aerodynamic 

coefficients of the open airfoil can be easily deduced from the pressure 

coefficients of the baseline airfoil without solving the internal flow. 
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1 Introduction 

Paraglider wings differ from rigid wings in several ways. To give the wing its structural 

integrity, a leading edge opening, which acts as a ram-air intake, is needed to maintain the 

canopy inflated. This opening is also called air inlet, or simply inlet, even though most of the 

time no flow enters when a steady state solution is considered. In fact it acts more as a pressure 

inlet. In that way a paraglider airfoil is similar to a ram-air parafoil for gliding parachutes. 

However, for performance purposes and without constrains like airdrop or parachute inflation, 

paraglider airfoils have the air inlet underneath the leading edge and further downstream. The 

inflated wing geometry remains stable only if the internal pressure remains greater than that of 

the external flow everywhere along the airfoil. A structural support can have a stabilizing effect 

in one way or another (e.g. arch strengthener or rigid ribs). As this form of support cannot easily 

be applied to the entire wing surface, this pressure condition remains a limitation for using such 

an airfoil at low angles of attack, which allow for higher flight velocities, and also for robustness 

in atmospheric turbulence. 

Experimental investigations (Burk and Ware, 1967; Nicolaides et al., 1970; Ware and Hassell, 

1969; Tribot et al., 1997), have established that the leading edge air inlet has a significant impact 

on the flow characteristics and thus the performance of a parafoil. These findings have been 

reproduced numerically by two- and three- dimensional potential flow computations performed 

by Ross (1993). He already pointed out that the limiting factor for the performance would be the 

structural integrity of the wing. To extend Ross’s approach to viscous flow phenomena, two-

dimensional Reynolds-averaged Navier-Stokes (RANS) analyses were carried out by Mittal et al. 

(2001) and Balaji et al. (2005). They mainly focused on the developing instabilities due to the 

leading edge air inlet but also hinted at a smaller inlet improving the glide ratio. More recently 
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Mohammadi and Johari (2010) investigated the flow features which develop around the air inlet 

to explain these performance differences by using a refined structured mesh around the leading 

edge and a Spalart-Allmaras turbulence model replacing the Baldwin-Lomax model used 

previously. On a parafoil derived from the Clark-Y airfoil, he found a little reduction in the lift 

curve slope and a major effect on drag. He also suggests ΔCd = 0.5 h/c as a first estimate for the 

additional drag coefficient due to the air inlet, where c is the airfoil chord and h is the height of 

the cut. 

Mashud and Umemura (2006) undertook wind tunnel experiments on an inflatable 3-D cell 

model. All preceding studies were concentrated on airfoils with cut off nose cones, creating a 

blunt body more characteristic for ram-air parachutes. Their study differs in such a way that it 

exhibits the transition from open to closed airfoil, once they started closing the air inlet by 

increasing the length of the upper lip. As they used flexible materials, the results included the 

effects of skin deformation. They noticed that the internal pressure varies with the squared sine 

of the angle between the air inlet and the free stream. They also showed that the internal pressure 

applied into the open airfoil modifies drag and lift at the air inlet region. 

The airfoil studied in the present paper refers to an existing paraglider, with a chord length of 

2.4 meters and which fly at a speed about 11 m/s. As a consequence, the free stream Reynolds 

Number in standard conditions is 1.8x10
6
. Consequently, airfoil geometry and Reynolds number 

are fixed but still realistic. The angle of attack varies from medium to relatively low values, 

representative of normal to accelerated flight, respectively. The main objectives are to quantify 

the influence of the position and the width of the air inlet on the aerodynamic performances and 

relate them to physical phenomena such as the appearance of separation bubbles. This is 

achieved by the analysis of the streamlines and pressure coefficient distributions. Results are 
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focused on lift and drag coefficients as well as internal pressure. The position value extends from 

forward air inlet, as it is for ram-air parachute airfoils, to an underneath and rear position as it is 

for paraglider airfoils. The width values extend from the closed baseline airfoil to one that is 

representative of sport paragliders. Thus, the transition from a parachute design to a paraglider 

design is covered, as well as the transition from the baseline closed airfoil to the paraglider open 

airfoil. 

2 Numerical methodology 

The 2-D simulation of the cross section of the airflow around a paraglider airfoil was obtained 

by solving the steady-state Reynolds Averaged Navier-Stokes equations (RANS) over a 

rectangular flow domain. The flow was considered incompressible with constant properties. For 

the free stream Reynolds Number of 1.8x10
6
, the turbulent Reynolds stresses were taken into 

account by choosing the turbulence model proposed by Spalart and Allmaras, (1992). Due to 

practical constraints, the interior of the paraglider was solved using the same turbulence model, 

regardless of the low Reynolds number in this area for which this model may not be well 

adapted. 

The baseline closed airfoil and paraglider airfoil geometries were imported into the mesh 

generator software Gambit, which can build both structured, unstructured or hybrid meshes. 

Over the airfoils, a rectangular uniform structured mesh was used to analyse the boundary layer 

in the proximity of the canopy to its full extent. For the interior of the paraglider airfoil and the 

outer domain, an unstructured triangular mesh was used. 

The mesh files were handled by the widespread finite volume flow solver FLUENT, which 

solves the RANS equations and manages the numerical simulations. The paraglider fabric was 

presumed rigid and impermeable. The boundary conditions on the computational domain 
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included uniform velocity at the inflow, upper and lower boundaries to allow for the freestream 

velocity V to enter at the specified angle of attack α (Figure 1). For the upper and lower 

boundaries, when the value chosen for the angle of attack results in an effective outflow, the 

solver automatically changes the condition to pressure outlet. The outflow condition was 

specified as pressure outlet. The no-slip boundary condition was applied to the interior and 

exterior surfaces of the airfoils. The numerical calculation was executed on a Linux workstation 

with one processor and two cores. The convergence of all numerical solutions presented is 

obtained with a second order numerical scheme. 

In order to automate the mesh generation and the numerical simulation, the numerical 

framework VLab (V.Chapin et al.,2006), was used to define a specific parametrical script and 

run Gambit and FLUENT as a unique process. The main post-processing, which included the 

creation of streamlines, vorticity, internal and external pressure plots and other features, was also 

accomplished autonomously by this VLab script. 

3 Mesh and domain sensitivity 

There were no airfoil data sets available for the paraglider airfoil and its baseline closed 

airfoil. Nevertheless, a numerical simulation with the well-established software Xfoil (Drela 

1989) was carried out for the baseline airfoil with a forced transition at 5% of the chord length. 

 As there was no experimental reference, and this study being closely related to the general 

approach of Mohammadi (2010), the same domain of 16x10 of the chord length was assumed to 

be valid. These dimensions refer to the domain extent in the chord direction and in the transverse 

direction respectively. The airfoil was placed halfway between the top and bottom boundaries, 

and five chord lengths from the inflow as shown in Figure 1. 
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The airfoil surface was covered by a boundary layer-type mesh and an unstructured triangular 

mesh elsewhere (Figure 2). In order to obtain a theoretical value of y+ of less than 2.5, necessary 

to ensure the existence of a grid point inside the viscous sublayer (Kalitzin et al.,2005), a first 

cell transverse dimension of 0.0055% of the chord length was employed. The Spalart-Allmaras 

model is one of the most sensitive to the location of the first cell center, therefore the condition 

for a maximal y+ value was analysed to ensure that the majority be below 5. For the baseline 

airfoil at α = 14°, it was found to be 5.60, nevertheless its value for α = 6° was more significant 

to the optimization and only 4.41. The leading edge inlet did not have a significant impact (max. 

4.43), except in the very localized recirculation bubbles. There it reached up to 14 in the worst 

cases, but this was accepted as it was limited to very few cells. 

In order to evaluate the mesh resolution effects, the rectangular-cell dimension on the airfoil 

surface and the height of the first rectangular cell above the surface were systematically 

modified. Moreover, the number of lines constituting the structured rectangular mesh refinement 

for the boundary layer and the growth rate of the unstructured triangular mesh were varied. 

Following each change in the mesh parameters, the resulting lift and drag coefficients were used 

as convergence criteria in regard to mesh sensitivity. Finally, the meshes around the baseline 

airfoil were composed of 78k cells and 69k nodes and the meshes around the paraglider airfoil 

were composed of 112k cells and 84k nodes. 

The resulting lift (Figure 3) and drag (Figure 4) curves were then compared to the results 

obtained using Xfoil for mesh validation. The computed lift coefficients did not exhibit 

significant differences in their linear part. However, the drag coefficients predicted by FLUENT 

were generally greater than the ones calculated by Xfoil. This behaviour can be explained by the 
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intrinsic tendency of FLUENT to overestimate the drag coefficient (Silva et al. 2002) and by the 

model’s assumption of a fully turbulent flow simulation. 

In order to execute the automated computation, a mesh validation was performed using VLab 

with the same specifications (first row size etc.) for mesh generation. The mesh sensitivity 

analysis resulted in the following characteristics: 65 lines for the boundary layer refinement 

mesh (resulting in 0.098c for the total size of the structured rectangular mesh), 0.2c for the size 

of the wake zone and 15 mesh points on the edge of each boundary of the structured zone of the 

flow domain. A further refinement was implemented on the leading edge with a rectangular-cell 

dimension on the airfoil surface of 0.00125c chord length. 

For the paraglider airfoil, an unstructured triangular mesh covered the interior computational 

domain. The interior mesh characteristics were adapted to the number of nodes of the leading 

edge refinement. 

4 Results 

To respect the freestream Reynolds Number 1.8x10
6
 with a unitary chord at sea level, a 

freestream velocity of 26.4 m/s was selected. Three angles of attack, 2°, 4° and 6°, were 

investigated for each inlet configuration. For the most significant cases, the range was extended 

to -4°  α  14° to exhibit the airfoil characteristics in more depth. For the paraglider airfoil, the 

air inlet parameters consisted of its width and of its position, with respect to its midpoint. The 

spline length of the width Sw, and the spline length between the leading edge and the midpoint 

of the inlet Sc, were normalized with the total spline length of the lower surface which is 1.027c 

(Figure 5), regardless of whether the air inlet extended over the upper surface which was 

sometimes the case. The following dimensions were analysed: Sw = [1% - 4%] in 1% intervals 

and Sc = [0%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4%]. The parameters were chosen in this 
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particular way as this corresponds to the common limits used in paragliding and parachute 

production. The excessive position Sc = 5.3% was added. For each case, the lift and drag 

coefficients, as well as the vorticity contours, the streamlines and the pressure coefficient on all 

airfoil surfaces, were given as an output. 

4.1 Baseline airfoil 

The baseline airfoil had a thickness ratio of 18.5%. The lift coefficient Cl (Figure 3) displayed 

a linear dependence on the angle of attack α, for -4°  α  8°, with a slope of 6.10 rad
-1

. This is 

slightly below the 6.28 rad
-1

 predicted by linear theory. The drag coefficient increases slightly 

from its minimal value 0.013, at α0, to 0.019 for α = 8°, and subsequently rises clearly. The zero-

lift angle of attack was found to be α0 = -1.3°, and the maximum glide ratio to be 51.2 at α = 10°. 

Nevertheless, the analysis focused on α = 6°, as this is a more suitable angle of attack for a real 

3D wing which receives additional induced and parasitic drag, due to the lines and the pilot. For 

α = 6°, the minimum pressure coefficient on the airfoil was Cp = -2.16, occurring on the upper 

surface between 0.09c and 0.095c (Figure 6). After this peak, the flow slows down, so that the 

pressure coefficient on the upper surface progressively recovers, and becomes slightly positive at 

the trailing edge. The stagnation point, Cp = 1, is situated on the lower side, right after the 

leading edge at 0.005c. Further downstream, the pressure on the lower surface decreases and 

stays close to zero, from 0.3c to the trailing edge. Since the pressure on the lower surface is 

always greater than the pressure on the upper surface, lift is generated all along the airfoil. At 

this angle of attack there is no flow separation, and the vorticity contours (Figure 7) display a 

fully attached boundary layer, which thickens along the two surfaces toward the trailing edge. 

The boundary layer on the suction side nearly doubles compared to the boundary layer on the 

pressure side. 
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4.2 Flow analysis around the leading edge 

This section presents a physical description of various flow patterns obtained in the region of 

the leading edge. Before this, a more general remark must be made on the internal flow. At the 

interior of the paraglider airfoil, some vortices of considerable dimensions are displayed. Their 

number and extent either depends on the configuration of the air inlet or the angle of attack. For 

instance, Figure 8 shows, for the case α = 8° with Sc = 2%, Sw = 1%, which is detailed later, the 

values of the turbulent viscosity ratio inside and around the airfoil. The internal value reaches 60 

in the core of these vortices. On the external side, the value is about 170 in the boundary layer 

and 350 in the wake. However, the turbulence model adopted is not optimal for these low 

Reynolds number phenomena, and no wind tunnel experiments are available to observe and 

validate this output. In addition, the interior velocity is almost zero everywhere, so the 

streamlines showing these vortices are somewhat misleading in this practically stagnation area. 

As a matter of fact, the internal pressure has a constant value, except for a restricted area near the 

air inlet. 

Referring to the main stream direction, the stagnation point can precede, coincide with, or 

follow the air inlet, depending on the position of the inlet and on the angle of attack. When the 

stagnation point is located after the air inlet on the lower surface (Figure 9a), the flow along this 

surface is nearly unperturbed by the presence of the air inlet itself. This situation happens with an 

air inlet oriented ahead and/or an increased angle of attack. To the contrary, the flow along the 

upper surface is disturbed and the boundary layer is thicker than that of the baseline airfoil. This 

effect is more obvious when the air inlet width is increases. Moreover, especially if the width 

rises, a larger amount of air can penetrate the airfoil. Subsequently, it has to circumvent the solid 

canopy to exit, thus resulting in an additional stagnation point at the interior of the leading edge. 
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A strong separation bubble appears on the external surface, at the front end. Circulation and 

boundary layer are altered, decreasing the lift coefficient and increasing the drag coefficient. 

When the stagnation point is just before the air inlet in the leading edge area (Figure 9c), the 

physical behaviour is a mirror image of the one illustrated above. A second stagnation point 

appears at the opposite inlet end, or at the interior of this end, toward the lower surface. A 

separation bubble can form on the external surface of the inlet end. In this case, the lift 

coefficient is not decreased but a negative effect on the drag coefficient is still present. As for the 

previously analysed case, when a separation bubble occurs the boundary layer is thicker than for 

the baseline airfoil. Here the phenomenon is less significant. When the beginning of the air inlet 

is further downstream, its distance to the stagnation point increases. As a consequence, when the 

flow reaches the air inlet, it has had a larger distance to accelerate and has become tangent to the 

canopy (Figure 10). Hence, the deflection of the fluid, which penetrates the canopy, is reduced. 

However, the internal pressure decreases, this will be examined in more depth in the following 

section. 

When the stagnation point coincides with the air inlet as in Figure 9b, it is located inside the 

airfoil and stays behind the upper or the lower leading edges. For increasing values of the air 

inlet width, external separation bubbles can form on one or both of the air inlet ends. On the 

other hand, when the stagnation point is within the air inlet, in conjunction with a small width 

(Figure 11), no separation bubbles form and the flow slows down in front of the air inlet. Thus it 

leads to the highest pressure coefficient at the interior of the canopy and to an almost 

unperturbed external flow. In this case the air inlet acts like a total pressure tap. 

4.3 External and internal pressure 
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A systematic study shows that the external pressure coefficient curve around the open airfoil 

is, in every case, mostly equal to that of the baseline airfoil, a difference appears only if a 

separation bubble occurs near the opening (Figure 12). If it is on the lower edge as in Figure 9c, 

the curve modification remains in the region of the bubble and is characterized by a local 

additional depression. If the bubble is on the upper edge as in Figure 9a, there is also a local 

effect and a global one in addition. This is obvious from a loss at the main depression peak 

further on the upper side. 

A 3-D mapping of the internal pressure coefficient, with respect to position and width of the 

air inlet, was performed for an angle of attack of 2° (Figure 13). This angle was evaluated as 

optimal to describe this phenomenon because it represents, among our studied cases, the most 

critical for deflation risk due to internal pressure loss. Examining the plot, the influence of the 

position of the air inlet is essential, while its width represents only a minor contribution to the 

internal pressure value. The systematic study of pressure coefficient curves correlated with the 

flow patterns brings a more precise explanation for the way the internal pressure varies. When 

the stagnation point is located in the air inlet like in Figure 9b, the internal pressure coefficient is 

maximal with a value of 1. When the stagnation point moves out of the air inlet, the internal 

pressure is, in all our cases, exactly equal to the external value existing on the edge at the inlet 

end which is the same side as the external stagnation point (Figure 14). This result is very 

interesting, as we established previously that the external pressure curve for an open airfoil is 

nearly the same as that for baseline airfoil. It shows that the internal pressure can be well 

estimated with only the closed baseline results and the air inlet location. 

At present, an absolute quantitative 3D method to evaluate the structural stability of a 

paraglider regarding the differential pressure between the inner and outer canopy surfaces has 
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not been established. Indeed, even if the structure can help to maintain the geometry under a 

local inward pressure balance, the higher the internal pressure, the better the resistance to 

deflation. So, in our study, Sc1% tends to present an elevated robustness to deflation for every 

air inlet dimension considered. Internal pressure coefficients decayed rapidly by setting back the 

air inlet. Increasing the air inlet size partially compensates this loss by enlarging the opening 

towards the stagnation area. This result confirms that parafoils are more robust to deflation than 

paragliders because they maintain a high internal pressure at low angles of attack. 

This behaviour can be explained by examining the position of the stagnation point for every 

case. In fact, air inlet positions tailored for gliding parachutes had stagnation points situated 

either on the location of the air inlet (Figure 9b) or just after on the lower surface (Figure 9a). For 

this second case, considering that the internal pressure was nearly the same as the one on the 

edge end between the internal and external fields, the internal pressure coefficient is close to that 

of the stagnation point. Therefore the internal pressure for parachutes is always equal to, or 

approaching, Cp = 1. On the other hand, paraglider airfoils can have the stagnation point situated 

before the air inlet, in the leading edge area, especially if the inlet is located further on the lower 

surface and the angle of attack is low (Figure 10). This means higher velocities appear on the 

edge end at the air inlet, therefore causing a decrease in the internal pressure. 

In order to focus on a critical case, internal and external surface pressure coefficients plotted 

versus the relative position to airfoil chord x/c are highlighted for Sc = 3% at the smallest width 

Sw = 1% and α = 2° (Figure 15). The internal pressure is greater than the external one, except for 

a small portion close to the leading edge. This condition suggests that the canopy can potentially 

begin to reverse its curvature locally due to pressure inversion. If this failure extends, the airfoil 

can be distorted to such an extent, that the frontal collapse limit is reached. Nevertheless, in 
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modern paragliding industry a solution to delay the problem, such as reinforcing the leading edge 

with a semi-rigid structure, is often considered. Depending on the type of structure used, some 

critical configurations become stable. Thus the limit at low angles of attack is extended. 

4.4 Influence of the air inlet configuration on lift and drag 

Figure 16 shows the lift slope coefficient curves between 2° and 6° for all cases. For small air 

inlet widths Sw, there is no difference in the slope between the baseline airfoil and the paraglider 

airfoils. Only when the air inlet is centered at the leading edge can a little gap be noticed. As the 

width is increased, the difference progressively grows. A more important alteration of the slope 

clearly appears for some configurations, suggesting two distinct behaviours. At Sw = 2% it 

concerns Sc0.5%, at Sw = 3% it involves Sc1.0% and at Sw = 4% it concerns Sc1.5%. All 

these configurations are characterized by an air inlet extending over the beginning of the upper 

side, just like parafoils. So this first group was named "parachute-like" on the Figure 16. The 

second group concerns all the other air inlet configurations. They are entirely located on the 

lower surface of the airfoil and are much "paraglider-like". In the scope of tested parameters 

values, the degradation of the slope for "parachute-like" is well correlated with the size of the 

upper separation bubbles growing with the angle of attack as shown in Figure 17. It can be 

related to the associate loss found at the main depression peak on the upper side suggesting a 

global effect on the circulation around the airfoil. Inversely, when there is no visible bubble with 

increasing angle of attack like for Sw = 1% at Sc = 0% (Figure 18), the value of the lifting slope 

stays similar to that of the baseline. Other local contributions to the lift change, with respect to 

the baseline airfoil, can be found in the pressure field balance. They derive from the cut part of 

the airfoil and the depression caused by the separation bubble. 
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The width effects on polar curves are presented for three air inlet positions, namely Sc = 0% 

(Figure 19), 2% (Figure 20) and 5.3% (Figure 21). They clearly show different tendencies. At Sc 

= 0%, thus for a symmetric air inlet, an increase in the width tends to increase the drag a lot and 

reduce the lift slightly. This effect becomes more pronounced as the angle of attack increases. Sc 

= 2% stands in contrast, the curves now converge with increasing angles of attack and the lift 

coefficient Cl rises slightly with the width, especially for low angles of attack. The final position 

Sc = 5.3%, relatively far downstream, differs from the previous positions with very similar polar 

curves. There is just, depending on the extent of the width extent, a little additional drag for the 

closed airfoil case. 

For an open airfoil, the aerodynamic force is obtained by the integration of pressure and skin 

friction on the both sides of the upper and the lower surfaces. Mashud and Umemura (2006) 

detailed this calculation for the pressure part. Assuming that the internal pressure was uniform, 

they showed that the result is equal to the integral of the external pressure applied to the upper 

and lower surfaces, plus the internal pressure applied at the external side of the straight line 

joining the two inlet extremities. 

In order to express this calculation with only the closed baseline airfoil results, another way of 

decomposition is possible for a paraglider airfoil in its performance range. Applied to the Figure 

5 geometry, the pressure integration of the open airfoil is expressed in equation (1). For this kind 

of performant airfoils, within the range of parameters investigated, there is not a strong 

separation bubble. Our results show that the external pressure coefficient curve matches very 

well the baseline airfoil and also that the internal pressure is almost constant. Thus Pext = Pextb 

can be used to write equation (2). Adding and subtracting the pressure integration on the both 

sides of the curve segment corresponding to the air inlet area gives equation (3). As Pint is 
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constant, its integration around the closed airfoil equals zero and gives equation (4). In the first 

term, the integration of the external pressure around the baseline airfoil gives its aerodynamic 

force. In the second term, the integration of the constant pressure Pint on a curve segment is equal 

to this pressure applied on the straight line joining its extremities. Finally, the aerodynamic force 

on the open airfoil is obtained with equation (5). As shown previously, the internal pressure can 

be deduced from the external pressure field on the baseline airfoil, therefore the force can be 

evaluated only with baseline airfoil results. This greatly facilitates a quantitative estimation by 

using published data for closed airfoils or classical airfoil software. 

 𝐹⃗𝐴 = ∫ (𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡). 𝑛⃗⃗. 𝑑𝑠
𝑇

𝐴
+ ∫ (𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡). 𝑛⃗⃗. 𝑑𝑠

𝐵

𝑇
 (1) 

 𝐹⃗𝐴 = ∫ (𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡𝑏). 𝑛⃗⃗. 𝑑𝑠
𝑇

𝐴
+ ∫ (𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡𝑏). 𝑛⃗⃗. 𝑑𝑠

𝐵

𝑇
 (2) 

 𝐹⃗𝐴 = ∮(𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡𝑏). 𝑛⃗⃗. 𝑑𝑠 − ∫ (𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡𝑏). 𝑛⃗⃗. 𝑑𝑠
𝐴

𝐵
 (3) 

 𝐹⃗𝐴 = −∮𝑃𝑒𝑥𝑡𝑏 . 𝑛⃗⃗. 𝑑𝑠 − ∫ 𝑃𝑖𝑛𝑡 . 𝑛⃗⃗. 𝑑𝑠
𝐴

𝐵
+ ∫ 𝑃𝑒𝑥𝑡𝑏 . 𝑛⃗⃗. 𝑑𝑠

𝐴

𝐵
 (4) 

 𝐹⃗𝐴 = 𝐹⃗𝐴𝑏 − 𝑃𝑖𝑛𝑡. ‖𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ‖. 𝑛⃗⃗ + ∫ 𝑃𝑒𝑥𝑡𝑏 . 𝑛⃗⃗. 𝑑𝑠
𝐴

𝐵
 (5) 

Where 𝐹⃗𝐴 is the total aerodynamic force, 𝑛⃗⃗ is a unit outward normal vector, s is the curvilinear 

abscissa, A is the lower extremity of the air inlet, B is the upper extremity of the air inlet, T is the 

trailing edge point and b is a subscript for the baseline airfoil. 

That decomposition is also an interesting approach to explain the way that the air inlet 

influences drag and lift. Thus, the additional force on the paraglider airfoil based on the baseline 

airfoil, is reduced to the localized pressure integration at the air inlet location on the closed 

baseline airfoil. On the internal side, externals results from the baseline are applied, whereas on 

the external side the internal pressure from the open paraglider airfoil is used. 
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When the external pressure field around the air inlet location is almost uniform, it follows 

from the above that the internal pressure in the paraglider airfoil is also equal to that uniform 

pressure. So, the integrated pressure is almost the same on the both sides. As a consequence the 

influence of the air inlet on the pressure force is small and the performance is weakly altered. 

This situation can arise in two ways: when the air inlet is reduced in size close to the stagnation 

point or when the air inlet is located downstream on the lower surface. This second case 

corresponds well to Figure 18. The internal pressure is high in the first case and low in the 

second, but, in both cases, the influence of the air inlet on the total aerodynamic force is small. 

When the stagnation point is just beside the air inlet, an accelerated flow is observed at the 

inlet location. For this case, it has already been shown that the internal pressure is equal to the 

external pressure at the extremity A or B of the air inlet which is on the stagnation point side. 

This internal value is greater than that for the external accelerated flow. So, when evaluating the 

added force by applying this pressure field on the both sides of the inlet part removed from the 

baseline airfoil, an extra force appears, directed from the air inlet into the open airfoil. Two 

subcases must be distinguished. The first one is when the stagnation point is located just after the 

air inlet on the lower surface, like for gliding parachute airfoil at increasing angle of attack. In 

front of the air inlet the flow accelerates substantially towards the upper side. Therefore the 

additional force is significant and oriented mostly backward. This is in correlation with the 

tendency observed in Figure 19, even though it must be kept in mind that there are also the 

effects of the separation bubble and the influence of the skin friction. The second subcase arises 

when the stagnation point is located just before the air inlet in the leading edge area, like for 

realistic paraglider configurations at low angles of attack, e.g. Sc = 2% and Sw2% at α = 2°. 

Here the flow accelerates moderately in front of the air inlet, towards the lower surface. The 
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additional force is moderate and oriented upwards (lift) and backwards (drag). This corresponds 

well with the remarks made about Figure 20. 

 

4.5 Best configuration 

Results are summed up in three 3-D plots where each performance parameter is compared 

with the result found for the baseline airfoil for α = 6°, representative of a cruise gliding flight. 

In Figure 22 the influence of the air inlet configuration on the additional lift coefficient is 

displayed. When the midpoint of the air inlet is further downstream, a lift coefficient equal or 

even slightly greater than the value obtained for the baseline airfoil is achieved. On the other 

hand, as the air inlet midpoint moves upstream, the lift coefficient decreases if the width 

increases. This is the main effect of the parachute-like behaviour previously noticed. 

The influence on drag coefficient (Figure 23) reveals a minimum when Sc = 2%, regardless of 

its width. Width Sw = 1% and position Sc = 1.5% leads to nearly the same value. When position 

Sc move below 1.5%, and width Sw is simultaneously increased above 1%, the drag coefficient 

clearly increases. This is the second aspect denoting a parachute-like behaviour. Its origin is in 

the previously viewed effect of adding the air inlet contribution in the pressure integration of the 

baseline airfoil. 

The influence on the glide ratio is shown in Figure 24. The observations made for the drag 

coefficient can be made again here. The efficiency degrades when the position moves towards 

the leading edge and when the air inlet dimension is increased. As a matter of fact, Sw = 1% and 

Sc = 2% (Figure 25) was found to be the configuration with the best performance. For the same 

width, but with Sc = 1.5%, practically the same performance was obtained. These two positions 
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have in common the total absence of separation bubbles around the air inlet, whatever the angle 

of attack. In the section 4.3 it was shown that these two configurations fully inflate. 

Therefore, the Sw = 1%, Sc = 2% case, was investigated for a wider range of angles of attack, 

i.e. -4°  α  14°, and compared to the baseline airfoil. The drag coefficient for the paraglider 

airfoil was marginally higher at α0°, slightly lower at α10° and nearly identical elsewhere. The 

computed lift coefficient was slightly greater than the value calculated for the baseline airfoil at 

negative angles of attack, practically identical between 0° and 10°, and slightly lower for α 

greater than 10°. This resulted in two nearly superimposed lift to drag ratio curves. 

5 Conclusions 

Even if the baseline airfoil used is highly realistic, and representative of a performance 

paraglider, the results of this study are limited to this shape, at a single Reynolds number, and in 

the scope of the investigated parameters variations. Under this restriction, it can be concluded 

that: 

The flow pattern reveals one stagnation point when the flow separates in front of the air inlet 

and two stagnation points when it separates to one side or another. One of these points is always 

located on the internal side or just at the extremity of one of the air inlet ends. The second 

stagnation point, when it occurs, is located on the external side of the other air inlet end. When it 

is located on the internal side, a stagnation point can be associated with a more or less important 

separation bubble on the external side of the same border. A larger air inlet promotes the 

development of this separation bubble. 

The internal pressure in the airfoil is constant everywhere except near the air inlet. It is equal 

to the stagnation pressure when the flow separates in front of the air inlet. It decreases when the 

flow separates to one side of the air inlet, at an external stagnation point. The value of the 
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internal pressure is equal to the external pressure at the inlet end which is on the same side as the 

stagnation point. 

If there is no separation bubble, the external pressure curve on the open airfoil is the same as 

for the closed baseline airfoil. For this case, lift and drag of the open paraglider airfoil can be 

calculated only by knowing the closed baseline airfoil pressure curve, the air inlet location and 

the value of the internal pressure. From the above conclusion, the internal pressure can also be 

deduced from the baseline airfoil results. A good approximation is also possible in the same way, 

for small bubble on the lower surface. These results are important because, generalized to similar 

airfoils, they give paraglider designers a simple way to obtain a good estimate of the 

performances and internal pressure with only classical closed airfoil software. 

A larger air inlet causes deterioration of the aerodynamic characteristics. A rise in drag is 

mainly due to a loss of frontal suction in the pressure integration at the air inlet. It is even more 

important when the air inlet is positioned forward and thus oriented more ahead in an accelerated 

flow. For a lower amount, the drag increase is also due to the thicker boundary layer obtained 

when separation bubbles occur. 

The association of a large air inlet (>2%) and a forward position (<2%) results in a specific 

behaviour. It is characterized by a lower lifting curve slope, which originates from the growth of 

a separation bubble over the leading edge when the angle of attack increases. This affects the 

whole external pressure curve over the airfoil. Combined with the drag increase, it results in a 

degraded lift to drag ratio. A position of the air inlet located further downstream leads to less 

performance alterations, even for large dimensions. Thus, the internal pressure clearly decreases 

for lower angles of attack. Hence, two clearly separate behaviours for open airfoils are found. 

The first one is “parachute-like”, with the air inlet acting rather like as a total pressure tap, 
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resulting in good deflation robustness but performance losses. The second one is “paraglider-

like”, at low angles of attack, the air inlet tends to act as a static pressure tap, resulting in less 

altered performances but lower deflation robustness. 

For a paraglider, at a typical cruise angle of attack of α = 6°, the configuration with an air inlet 

midpoint at 2% and a width of 1% shows the best performances, almost equal to those of the 

baseline airfoil. 
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Figure 1 Schematic of the computational domain with the boundary conditions applied 
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Figure 2  Mesh produced for Sw = 2% and Sc = 2% a) around the whole airfoil, b) focused on 

the air inlet region 

a),  

b),  
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Figure 3  Lift curve for the baseline airfoil 

 

Figure 4  Polar curve for the baseline airfoil 
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Figure 5  Definition of air inlet geometry 

 

Figure 6  Pressure coefficient around exterior surfaces of the baseline airfoil at α = 6° 
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Figure 7  Vorticity contours for the baseline airfoil 

 

Figure 8  Turbulent viscosity ratio inside and around the open airfoil 

 

Figure 9  Streamlines at α = 6° for three different configurations:  

a) Sc = 0% Sw = 3%, b) Sc = 2% Sw = 4%, c) Sc = 4% Sw = 4% 

a),  b),  c),  
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Figure 10 Streamlines at α = 4° for Sc = 5.3%, Sw = 4% 

 

Figure 11 Streamlines at α = 8° for Sc = 2%, Sw = 1% 
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Figure 12 Comparison of closed airfoil and open airfoil pressure coefficient curves 

 

Figure 13 Internal pressure variation at α = 2°with changing width Sw and position Sc 
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Figure 14 Correspondence between internal and external pressure coefficients 
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Figure 15 Cp values for a critical internal pressure case at α = 2°, Sw = 1% and Sc = 3% 

 

Figure 16 Lift curve slope variation with position and width 
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Figure 17 Streamlines for Sc = 0%, Sw = 4% and varying α : a) 2°, b) 4° and c) 6° 

a),  b),  c),  

Figure 18 Streamlines for Sc = 0%, Sw = 1% and varying α : a) 2°, b) 4° and c) 6° 

a),  b),  c),  

Figure 19 Polar for four widths positioned at Sc = 0% 
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Figure 20 Polar for four widths positioned at Sc = 2% 

 

 

 

 

Figure 21 Polar for four widths positioned at Sc = 5.3% 
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Figure 22 Change in Cl for α = 6° relative to the baseline airfoil as a function of Sc and Sw 

 

Figure 23 Change in Cd for α = 6° relative to the baseline airfoil as a function of Sc and Sw 
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Figure 24 Change in glide ratio for α = 6° relative to the baseline airfoil as a function of Sc and 

Sw 

 

Figure 25 Streamlines at α = 6° for the combination yielding the best performance: Sc = 2%, 

Sw = 1% 

 


